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The magnetoplasmadynamic thruster (MPDT) has recently passed milestones in performance and life-
time that have prompted renewed interest in its unique advantages for energetic space missions. Mission
and system studies, as well as ongoing performance characterization, require the use of simple relations
for the scaling of performance parameters. The Maecker formula has long played such a role for the
thrust of the self-field MPDT. The formula is shown to be too simplistic to account for the trends in
measured thrust data that exhibit departures from the model, particularly at low current. We show that
at high currents, the departures can be explained by the evolution of the current densities over the
electrode surfaces that influence the spatial distribution of the volumetric Lorentz force densities. At low
current levels the departures are attributed to the scaling of gasdynamic pressure distributions induced

ts of the vol

tric electr

tic forces. The insight was used to formulate

by the pinching ¢

a more accurate empirically based model for the scaling of the thrust of an MPDT.

Nomenclature
a, = ion acoustic speed
B = magpnetic field
Cr = thrust coefficient
I, = specific impulse
J = total current
J.., = critical ionization current
Jj = current density
JjnJo = current densities on upstream and downstream faces
of anode
m = mass flow rate
p = pressure
r = radial coordinate
r. = anode radius
r, = cathode radius
r. = chamber radius
T = thrust
7. = electron temperature
u = velocity
U = critical ionization velocity
u,, = exhaust velocity
z = axial coordinate
B = Maxwell stress sensor
¥ = specific heat ratio
E, = first ionization potential
(7] = azimuthal coordinate
Ko = permeability of free space
v = dimensionless mass flow rate
I3 = dimensionless current; self-field MPDT scaling
parameter
p = density
¢ = fraction of total current attached at the cathode tip
Subscripts

AIF = anode inner face
AOF = anode outer face
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BP = backplate

b = blowing

c = cold thrust component
P = pinching

1. Introduction

HE magnetoplasmadynamic thruster (MPDT) is an elec-

tromagnetic plasma accelerator intended for spacecraft
propulsion. The MPDT, shown schematically in Fig. 1, is es-
sentially a coaxial device in which a high-current discharge
ionizes a gas and accelerates it to high exhaust velocities
through the action of the Lorentz force produced by the inter-
action between the current flowing through the plasma and a
self-induced or applied magnetic field. The schematic in the
figure shows the self-field version with no applied magnetic
field. The vectors j and B represent the current density and the

induced magnetic field, respectively. References 1-3 give a -

review of research on MPDT from its inception® in 1963 until
1991. In this section we first briefly review the present status
of MPDT technology, present a statement of the thrust scaling
problem addressed in this paper, and follow with a synopsis
of the paper.

A. Status of MPDT Technology

The MPDT has a demonstrated specific impulse (/,;) in the
range of 1500—-8000 s with thrust efficiencies exceeding 40%.’
High efficiency (above 30%) is typically reached only at high
power levels (above 100 kW)® and, consequently, the steady-
state version of the MPDT is regarded as a high-power pro-
pulsion option. It has the unique capability, among all devel-
oped electric thrusters, of processing very high power levels
(megawatt level) in a simple, small, and robust device pro-
ducing thrust densities as high as 10° N/m’. These features
have rendered the steady-state MPDT particularly attractive for
deep-space energetic (high Av) missions requiring high
thrust levels, such as manned and cargo spacecraft to Mars and
the outer planets,® as well as for nearer-term orbit-raising
missions.”® The present unavailability of high power in space
and the cathode erosion rates of the steady-state MPDT (which
can be as high as 0.2 ug/C), have, until recently, impeded
the evolution of steady-state MPDTs toward flight applica-
tions.

A version of the steady-state MPDT. called the lithium Lor-
entz force accelerator (Li—LFA), which uses a multichannel hol-
low cathode and lithium for propellant, promises to solve the
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Fig. 1 Schematic of the self-field MPD thruster.

cathode erosion problem while raising the thrust efficiency at
moderately high power levels.” Recently, a thrust efficiency of
43% at an I, of 3460 s was measured in Moscow'® for a low-
erosion Li-LFA operating at 130 kW. The thrust-to-power ra-
tio of these devices is typically about 25 N/MW. The extension
of the lifetime of such thrusters to above 1000 h has been
recently shown to be within reach, with the demonstration of
500 h of practically erosion-free operation of a 50%-efficient
Li-LFA at 0.5 MW."' Because no other single electric thruster
has yet demonstrated the capability of processing that much
power (500 kW), producing that much thrust (12.5 N), and
operating for that long (500 h) without significant erosion, the
Li-LFA is at the forefront of propulsion options for nuclear-
powered deep space human exploration and heavy cargo mis-
sions to the outer planets.

Ongoing research activities in Moscow,'? Jet Propulsion
Laboratory, and Princeton'’ on the Li-LFA, and in Stuttgart'®
and Pisa' on the gas-fed MPDT, aim at further improving the
performance and lifetime of the steady-state MPDT, to meet
near-future advanced propulsion needs.

To benefit from the advantages of MPD propulsion on to-
day’s power-limited spacecraft, the MPDT can be operated in
a quasisteady (QS) pulsed mode,'*"” where flat-top high-cur-
rent pulses longer than 350 us are long enough for a steady-
state current pattern to dominate the acceleration process [as
opposed to the pulsed plasma thruster (PPT), in which an un-
steady current sheet is at play]. The QS-MPDT can thus ben-
efit from the high efficiency warranted by the instantaneous
high power while drawing low steady-state power from the
spacecraft bus. This approach was adopted in the first MPDT
to fly as a propulsion system, a 1-kW-class QS—MPDT that
operated successfully in 1996 onboard the Japanese Space
Flyer Unit.'®

B. Statement of MPDT Thrust Scaling Problem

It is useful to have a simple analytical model or formula that
can readily be used to predict the scaling of the thrust of
MPDTs for a wide range of interesting operation parameters,
e.g., current, mass flow rate, geometry, and propellant type.
Such a formula would be useful for characterizing thruster
performance as well as for system and mission analysis. The
Maecker equation,'® described later, is such a formula. How-
ever, as we shall see, it can suffer from substantial inaccuracies
when applied to real thrusters under many conditions of inter-
est.

The MPDT is considered to be an electromagnetic acceler-
ator in which the acceleration is primarily a result of the action
of the Lorentz force. In this paper we will be concerned only
with the self-field MPDT,' i.e., with no applied magnetic field
(from here on, MPDT refers to the self-field version only). The
thrust produced by a coaxial self-field electromagnetic plasma
accelerator was first treated analytically by Maecker' and ex-
pounded by Jahn.*® The resulting expression, often referred to
as the Maecker formula, simply states that

T = (pno/4m[€n(r,ir) + 11 (1)

where J is the current driven between the electrodes. It is con-
venient for our discussion to define a dimensionless thrust co-
efficient, Cr, of order unity

Cr = (47! po)(TIJ?) (2)
which, for the case of the Maecker formula, is
r=En(r./r) + 3 3)

Most notable in the Maecker formula is that the thrust coef-
ficient is independent of J, m, and the type of propellant used.

Although the Maecker formula is derived from an idealized
model of the MPDT, it has often been indiscriminately applied
to explain the scaling of the thrust of real MPDTs. Not sur-
prisingly, the invariance with J, i, and the propellant predicted
by the formula is most often contradicted by experimental
thrust measurements. This is illustrated in Fig. 2, where the
measured thrust coefficient of an MPDT (obtained, to a con-
stant, by dividing the measured thrust with the square of the
measured current), is plotted vs the measured current for two
different argon mass flow rates along with the constant C; of
the Maecker formula.

The argon thrust measurements were made by Gilland®' us-
ing the Princeton benchmark thruster (PBT). The general
trends in the figure are typical of data from other thrusters.
While the data were obtained with a pulsed thruster, the rec-
tangular pulse duration (1 ms) is long enough for steady-state
conditions to be valid' for plasmadynamical phenomena, thus
allowing the inference of a steady-state thrust. 2

The following features and trends can be noted from the
plot:

1) Generally, C; is dependent on the mass flow rate and
current, contrary to the Maecker formula.

2) At high current levels the thrust coefficient does reach a
somewhat steady value; however, the Maecker model overpre-
dicts Cr by more than 20%. Even in this high-current range,
C; still exhibits a (weak) dependence on the total current with
a weakly pronounced minimum.

3) While at high current levels the measured C, does become
somewhat insensitive to the mass flow rate, the mass flow rate
dependence becomes more pronounced as the current is low-
ered, and eventually goes into a regime where C; strongly
depends on .

4) At low current levels the measured Cy rises quickly with
decreasing current and can easily reach more than 250% of
the Maecker value.

5) The current value at which this transition happens occurs
at a lower current when the mass flow rate is decreased.
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Fig. 2 Comparison of the Maecker thrust coefficient with that
measured”™ for the PBT (r./r. = 526) with two different argon
mass flow rates.
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In light of this comparison, it is obvious that the Maecker
model is too idealized to account for the thrust scaling of real
MPDTs with complex geometries, and that it can become
wholly inaccurate when applied at low current levels. In the
context of attempting to understand these departures and find
a more accurate thrust scaling model, it is convenient to dis-
tinguish between two scaling problems corresponding to low
and high current operation.

At high current levels, the discrepancy is often reconciled
in the literature by substituting for the constant 3 in Eq. (1),
a value that causes the model to better fit the data, or by re-
placing the thrust coefficient, given in (Eq. 3) by en(ra/rdess
where (r./r.).qs is an effective value that provides better fit to
the formula. These adjustments are often arbitrary, and in both
instances C, remains constant for a given thruster.

It is often assumed that the departure at low current levels
must be linked to an increase in the prominence of electro-
thermal acceleration related to the heating and expansion of
the gas. However, from experimental data such as those in Fig.
2. we note that at low current levels Cr scales with J~", where
n is between 3 and 4. This implies that the thrust (proportional
to C;J%) produced by this additional mechanism must scale
inversely with J raised to a power greater than 1. This means
not only that the fraction of the supposedly electrothermal to
electromagnetic thrust must decrease with increasing current
(as is intuitive), but also that the magnitude of this nonelec-
tromagnetic additional thrust must (in a certain low-current
range) also decrease with increasing current. It is difficult to
explain how electrothermal acceleration can be made to de-
crease with increasing electrical power. This dilemma can be
resolved. as will be shown in this paper, by accounting for the
role of the electromagnetic pinching forces in regulating the
gasdynamic pressure.

C. Synopsis

In Sec. II we discuss the Tikhonov formula,* which is an
improvement on the Maecker formula. Tikhonov used a simple
one-dimensional description of the MPDT to derive a formula
for C; that is not a constant except at high currents. While the
poor agreement found can be attributed to the PBT’s violation
of the model’s simple assumptions, the formula does show a
J™" dependence for Cr at low currents. In particular, the model
shows that n is equal to 4 under the quasi-one-dimensional
assumption.

To rigorously distinguish the various sources and depend-
encies of the MPDT thrust, we proceed in Sec. III with a
detailed analytical description, based on first principles, of the
thrust of a particular thruster: the PBT. The PBT was selected
because of the enormous experimental database accumulated
with that configuration, including all of the thrust data used in
this paper. Using the results of research carried on at Princeton
over the span of two decades, we explore the scaling and de-
pendencies of the thrust and its departure from the simple pre-
scriptions.

By using experimental data with the analytical model, a
semiempirical evaluation is carried out for thrust as a function
of the current at a fixed argon mass flow rate of 6 g/s. The
predicted T(J) dependence of the semiempirical evaluation is
compared for the first time with thrust measurements, allowing
an interpretation of the departure from the Maecker law in
terms of the evolution of the blowing and pinching effects with
the current.

In Sec. IV. we combine the insight gained from the previous
sections with the notion of a nondimensional similarity param-
eter that scales various aspects of MPDT behavior. This allows
us to formulate a simple semiempirical scaling formula that
can be used to predict the thrust scaling as a function of the
current, r,/r., mass flow rate, and propellant type. The formula
is subsequently tested for both argon and xenon and over a
wide range of currents and mass flow rates.

II. Previous Scaling Relations

As mentioned in Sec. I, the Maecker formula is derived for
an idealized MPDT and often does not conjugate well with the
thrust measurements of real MPDTs with complex geometries.
The extent of agreement and departure between theory and
experiments were described in Sec. II in the context of Fig. 2.
In Sec. III, the sources of these departures will be clarified
when we consider the Maecker model as a special case of a
more generalized treatment of the real thruster that was used
for the measurements. However, before we look at a more
complex analysis, it is informative to consider another simple
MPDT thrust formula that has been proposed™** (referred to
as “Tikhonev’’). Unlike the Maecker formula, that of Tik-
honov allows for a C; that does vary with the current.

Tikhonov treats the case of a cylindrical MHD channel flow
in the MPDT under the following assumptions: 1) quasi-one-
dimensional flow, 2) single fluid, single temperature, 3) iso-
thermal, and 4) high magnetic Reynolds number. By setting
the downstream end of the channel to be at the section where
the magnetic and thermal pressure become equal, and the up-
stream end to be at a section immediately behind all the en-
closed current, he derives the following simple expression for
the thrust coefficient:

Cr=1[(y + 1)2] + (a5’/2) C)]

where a, is a dimensionless parameter evaluated at the up-
stream end of the channel

2
o =222 ®)
8ma, m

a, is the ion acoustic speed evaluated at the upstream end.
Notably, the expression is independent of r./r., the propellant
ionization potential, and much of the geometrical details of the
electrodes. Furthermore, it states that when J*/ri becomes high,
i.e., ag >> 1, the thrust coefficient is simply

Cr=(y+ 12 ©6)

(which for a monatomic gas, ¥ = 5/3, has a value of 1.33).

In Fig. 3 we compare the Tikhonov thrust coefficient with
the measured thrust coefficient of the PBT plotted vs the mea-
sured current for two different argon mass flow rates. Also
shown is the constant Maecker Cr. (The ion acoustic speed,
for the Tikhonov Cy, was calculated for 1 eV.) From this figure
we find that at high current C; is underpredicted. It is inter-
esting to note, however, that the Tikhonov model clearly shows
the trend of increasing C; with decreasing current and specif-
ically a scaling of J™* for the thrust coefficient as the current
is decreased. Even though the model’s agreement with the data
is limited (because of the simplistic assumptions that prevent
its direct application to the PBT) it does, unlike the Maecker
formula, show the general trend of the data.
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Fig. 3 Comparison of the Tikhonov thrust coefficient with the
measured thrust coefficient of the PBT.
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III. Detailed Analysis of the Thrust of an MPDT

A. First-Principles Model

It was Rudolph® who analytically treated the thrust of the
PBT starting from first principles. At the time of that work in
1980, there were no direct thrust measurements available on
the PBT. The extensive database available now will allow us
to confirm the predicted trends and better understand the dif-
ferences between measured thrust and the predictions of the
simpler models. We will follow the analysis in Ref. 26 and
include some effects neglected in that work. These additional
effects are essential to explain the departures of the data from
the simple models such as the Maecker formula.

Figure 4 shows a schematic of the PBT configuration with
a central cathode (10 cm long) and an outer anode (5.1 cm
i.r). The neutral gas is injected from ports in the backplate
(left side of the figure), which, like the chamber walls, is an
insulator. Also shown in the figure are the cylindrical coordi-
nate system and the boundary (dashed line) of the control vol-
ume adopted for the analysis. For the particular thruster used
in the thrust experiments we have r. = 0.95 cm, r, = 5.1 cm,
ro=93cm, ry,=64cm,t, =095 cm, and /. = 10 cm.

The control volume denotes the region where electromag-
netic, gasdynamic, and viscous shear forces act on the propel-
lant. thus producing a momentum flux. The thrust is equal to
the net momentum flux carried away by the propellant flow.
The control volume is chosen such that all of its free bound-
aries are far enough from the thruster to warrant setting the
magnetic field there to zero and the pressure equal to the am-
bient pressure. With these boundary conditions, the only forces
that need to be considered are those on the thrust surfaces and
inside the control volume. Because we are interested in thrust
as the axial component of the force, we can write

JPM:("'dS)= +fj,BudV— fp(z~d5) )
S v s

where S and V are the surface and volume of the control vol-
ume, respectively, and z is the unit vector. The left side of Eq.
(7) is the net momentum flux, which is the difference between
the thrust and the *““cold’’ thrust T, resulting from the cold slow
gas entering the control volume. We therefore have

T=T + fjrBU dv - IP(Z'dS) ®
v S

The second term on the right-hand side (RHS) of Eq. (8) rep-
resents the contribution of j, B, the axial component of the
Lorentz force density, which acts to “blow’ the plasma out.

. p=p,

Fig. 4

Control volume used in deriving a thrust equation for the
PBT.*

This term will be referred to as 7,, the blowing contribution
to thrust. The radial component of the Lorentz force density,
J:Be, acts to pinch the plasma and contributes to axial thrust
through the unbalanced effect of the gasdynamic pressure on
some surfaces of the accelerator. Consequently, the second in-
tegral on the RHS is an integral of the gasdynamic pressure
and represents the “‘pinching’’ contribution of the Lorentz
force to the axial thrust and is termed 7,. This integral con-
tains, implicitly, the effects of j,B,.

The cold gas contribution 7., is typically much smaller than
the total thrust and will be neglected in this analysis. Also
neglected in Eq. (8) are viscous effects. In SI units, a typical
plasma viscosity of 107°, a velocity of 10°, and a boundary-
layer thickness of about 1 mm yield a viscous force of 1072
N/em®* For a thruster whose total wall surface area is on the
order of 100 cm’, the viscous force is negligible compared
to the thrust of the PBT, which is typically on the order of
100 N.

1. Blowing Contributions

The evaluation of T, through volume integration, as pre-
scribed by the second term on the RHS of Eq. (8), requires
knowledge of the details of the current distribution inside the
chamber. However, by using the concept of the magnetic stress
tensor, the volume integral can be replaced by a far more use-
ful surface integral.*>** By definition, the Maxwell stress sen-
sor, 3, satisfies the following equation:

V-B=jxB )

which, when combined with Maxwell’s equations for the di-
vergence and curl of the magnetic field, yields

V-[§=(VXB)XB (10)
Ho

This equation allows us to relate the volume integral of the
Lorentz body force density to a surface integral through the
divergence theorem

T,,=Jj,Bst=f<V-ﬁ>; dV=f([i-dsx (11
v v £

For a coaxial self-field MPDT with a symmetric discharge, the
magnetic field has only an azimuthal component and the mag-
netic stress tensor takes the form

By
-= 0 o0
2
. B}
3=#— 0 Zr‘; 0 (12)
0
B;
o o =
2

The only areas of the control volume surface shown in Fig. 4
that contribute to the surface integral in Eq. (11) are the four
that are perpendicular to the thrust axis and over which the
magnetic field is finite. These are the backplate, the anode
outer (downstream) surface, the anode inner (upstream) sur-
face, and the tip of the cathode. The anode lip, which in reality
is rounded, will be approximated by a flat surface as shown
in Fig. 4, where all of the physical dimensions of the PBT that
are needed for the evaluation of the integral are defined.

The analytical thrust model shown next differs from that
obtained by Rudolph,™ in that it does not contain the effects
of current attachments on the outside cylindrical part of the
thruster and it assumes a nonuniform gasdynamic pressure ra-
dial profile on the backplate. The pressure radial profile affects
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only the pinching contribution and. as will be seen later, is
essential to explain the departures from the Maecker model at
low currents.

The resulting contributions of the four surfaces to the
blowing component T, are quoted next. Details of the integra-
tion can be found in Ref. 26.

a. Backplate blowing contribution. For the backplate we
have

~ = B2
a;m=[jMﬂ@&l =f 2 2mrdr (13)
s BP re 2“-0

where Ampere’s law is used to get the value of B, at the back-
plate

By = polJi2mr (14)

because J is all downstream of the backplate. The integration
yields an expression for the backplate contribution (7em)sr

mm=ﬁm%ﬁ 15)

b. Anode inner face blowing contribution. The evaluation
of B, from Eq. (14) for the anode inner face requires knowl-
edge of the enclosed current, J,. at the various radii along that
surface. This can be found in terms of j, on the anode inner
face through

Jenc(r) = J - J ji ds (]6)

because this current density acts to diminish the enclosed cur-
rent from its maximum value J at the corner between the anode
inner face and the chamber wall. We shall assume that this
current density stays, to a first order, uniform, and is given by
experiments. Under this assumption

Jacr) =J = jim(rd, = 1) a7

and the integration yields the following expression for the an-
ode inner face contribution (7..)aw:

(To)ar = Lo l:(ﬁ - 2777':nj:-] + ﬂ’rihj.’) €n o
47 r,

a

2

J;
4

+ (ml)i — 77:"31'].,2)("; - r:) + (r:h - r:)] (18)

c. Anode outer face blowing contribution. In similar
fashion, an expression for the enclosed current J,. as a func-
tion of r along the outer face of the anode can be written,
again assuming that the current density there j, is uniform and
that no current attaches on the outer cylindrical part of the
thruster (which was insulated for the thruster used in the thrust
experiments)

Jene = Motz = 17) 19)

This leads to

5 2 T, .
(To)aor = £o l:'rr’r:oj;, n = — rijirie — r})
4T r,

PP
+ —ZJ'Q (roe — ri)} (20)

where Jj, is the current density on the outer face of the anode.
d. Cathode tip blowing contribution

22
(Ter = o] (3 -2¢6n 2> Q@
4T 2

where the cathode tip is taken to be hemispherical.
The final expression for 7, is obtained by summing the four
contributions given by Egs. (15), (18), (20), and (21).

2. Pinching Contributions

To evaluate the surface integral of the gasdynamic pressure
in Eq. (8), we consider the radial momentum balance

du_ % _ g @2)
Pl ey = Tar e

where the term pu.du,/dz does not appear because u, is zero
on the solid surfaces over which the integral will be evaluated
(backplate, inner and outer anode faces, and the cathode tip).
This yields the following expression for p(r, z) along the sur-
faces of the control volume:

o o
ou, B, orB
p(r.2) = f pu, — dr + f “"r-gr—" dr + p(ro,2)  (23)
r r (]

where Maxwell’s V X B equation was used to eliminate j..
The last term, p(ro, 2), is the integration constant taken as the
gasdynamic pressure at an arbitrary radius ro.

The magnitude of the integrand in the first integral can be
estimated to be on the order of 10* N/m?, using an upper limit
on the plasma density 10* m™ (which gives p = 6.6 X 107
kg/m® for argon), velocities of 10* m/s, and a characteristic
length of 5 cm. This magnitude is typically much lower than
that of the radial pinching force density as estimated from
measurements by Rudolph.” Consequently, Rudolph assumes
the radial flow term to be negligible in his analysis. We shall
see that to explain the rise in C; at lower currents the radial
fiow term should not be neglected, at least for the case of the
backplate pinching contribution to thrust.

a. Backplate pinching contribution. The pinching contri-

bution of the backplate part of the control volume presents an

interesting singularity: the second integral in Eq. (23) vanishes
because all of the current is downstream of the backplate and
rB, is a constant there. This implies that the pressure gradient
on that surface is balanced by the radial flow term only. This
gives a thrust contribution of

(Tper = [—f p(Z'dS)]
s

where z, refers to the axial position of the backplate. The pres-
sure p(r., Zo) was measured at the backplate by Cory,” and
we will use his measurements in the calculations shown next.
We lack, however, an experimental characterization that would
allow us to estimate the radial flow term in Eq. (24). If this
flow term is neglected, as was done by Rudolph,™ the pressure
profile is fiat and the thrust contribution is a constant given by
P(Fen 20)7(r% — r2). A finite (nonuniform) radial velocity pro-
file, on the other hand, would induce a pressure radial profile
at that surface that is peaked at the cathode. Consequently, a
better approximation than a flat profile would be a parabolic
one centered at the cathode and modeled as

plr,z) =b — ar (25)
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where

a= P(’cz - p("«:h)y b - P(rc) + P(’cz :P(Zrcn) 7‘2- (26)

re =i Ten = T

and where, for the case of the backplate, the pressures are
those at z = 2. After integration, this yields the following thrust
contribution:

) a amw
(Tp)BP =ba(ri, — rl) — ? (ren — ":) 27N

While the measurements of Cory27 will be used for p(re,, ),
the unknown term p(r., %) becomes the only free parameter
of the model. The value for p(r., z,) will be inferred from the
thrust data as will be shown later. Rudolph’s approximation of
neglecting the radial flow term is equivalent to setting p(r., Zo)
equal to p(r, Z). This would lead to an underestimate of the
pinching contribution to thrust and cannot account for the rise
of C, with decreasing current, as will be shown in the evalu-
ation at the end of this section.

b. Anode inner face pinching contribution. Downstream of
the backplate end of the control volume, the second integral
in Eq. (23) quickly dominates the radial flow term and, con-
sequently, the pressure profile may be assumed to be induced
mainly by the Lorentz term. Using the same assumptions as
for the blowing contribution in Eq. (18), the integration
yields™

o Fen = Ta

(Tar = s

[(J‘zﬂ,zr:h + J'.l'”;"sn"z - 2Jj'n'r:7,,) 3

2ra

- (2’3_/.:71':’in - 2./j,17"§) tn !_ajl - W(rzh - ri)P("cn- 20)
rC
(28)

We have again assumed the pressure constant to be p(re, Z)-

¢. Anode outer face pinching contribution. The plasma
density on the 200 cm® anode of the PBT does not exceed an
upper limit*’ of 10°° m™, so that even for a temperature as
high as 5 eV the pressure force will be less than 2 N and can
be neglected.

d. Cathode tip pinching contribution. This contribution is
also quite small because ¢ is typically on the order of 10%.
Following the prescriptions used earlier to get the blowing
contribution at the cathode tip, and neglecting the radial flow
term, the integration of Eq. (25) yields*

o $J°
T [P - iy
Tl = 0 12

+ p(re, zup)mrs (29)
where p(r., z;,) is the pressure at the cathode tip available from
experiments.

The total thrust is the total sum of the blowing contribution
expressed in Egs. (15), (18), (20), and (21) and the pinching
contributions expressed in Eqgs. (27), (28), and (29).

B. Comparison to the Maecker Formula

As previously mentioned, the total thrust model presented
earlier differs from that obtained by Rudolph® in that it does
not contain the effects of current attachments on the outside
cylindrical part of the thruster and that it assumes a nonuni-
form pressure radial profile on the backplate.

To see the difference from the Maecker formula as presented
by Jahn,™ we show in Fig. 5 the control volume used to derive
that formula following the Maxwell stress tensor approach.
This choice of control volume is equivalent to considering the
thruster as an infinite cylinder without a backplate.

The differences between the resulting simple formula and
the detailed model derived in the previous text can be attrib-
uted to the following:

Fig. 5 Control volume used in deriving the Maecker formula.”®

1) The Maecker formula does not include effects of current
attachment on surfaces that are not parallel to the thruster axis
(note the simple cylindrical control volume used in Fig. 5).

2) While the Maecker formula assumes that all the current
attaches uniformly at the cathode tip, the previous treatment
allows for a more diffusive current attachment over the cath-
ode length with a fraction ¢J attaching at the tip.

3) In the Maecker formula the blowing component contrib-
utes a term of (én r,/r. + 1/4) to Cr, assuming uniform current
density on the cathode surface, and a constant of 1/2 from the
pinching pressure on the cathode tip, giving a constant equal
to 3/4. It does not include the effects of pinching pressure on
the backplate of the thruster.

For the PBT at high currents, the blowing contribution at
the backplate dominates, while the terms for blowing and
pinching at the cathode tip, even if ¢ is near unity, contribute
a thrust coefficient below 0.2, which is far lower than the cor-
responding 3/4 term in the Maecker formula. We shall see later
that at high currents, the pinching contribution at the backplate
is not high enough to exceed the C; of the Maecker formula.
At low currents, however, the pinching pressure effects on the
backplate cause an enhancement in Cr above the Maecker
value.

C. Semiempirical Evaluation

So far, the thrust model, represented by Egs. (15), (18), (20),
(21), (27), and (28) is purely analytical and derived from first
principles. However, it cannot inform us as to how C; varies
with the current because we lack a formulation of how the
following parameters vary with J:

Jis Jor @, P(Fey Zug)s P(Fens Z0) (30)

A prescription of this sort can be obtained from experimental
measurements of current distribution along the electrodes as a
function of J and pressure measurements. The use of an ex-
perimental prescription of these parameters will render the
model semiempirical and applicable only for the conditions,
e.g.. i, propellant type. under which the thruster, used for the
experiments, was operated. Such a semiempirical evaluation of
the model is useful in showing the general thrust scaling trends
and will be of guidance to our efforts to formulate a more
generalized thrust scaling relation in Sec. IV.

Using the current density measurements reported in Refs.
26, 28, and 29, the evolution of j; and j, (along the anode inner
and outer faces) with the total current J was deduced to have
the following general trend. Below a first transition current Jas
the current attaches entirely to the inner face of the anode.
Above J,,, but below another transition current J,;, j; on the
inner face stays constant while j;, on the anode lip becomes
finite and increases with increasing J until J,, is reached. Above
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this limit any additional increase in J is attached at the outside
face of the anode while both j; and jy, stay constant. By re-
quiring that J = JiSi + JupSup + JoSo (where S is the area of
each surface), and assuming the current densities to be uniform
over these areas, we can write

JSiiji=2 =0, =0
S
. -’:l . J - J’n .
J,l =J= J(g: Ji= _S_is Jup = S“p s Jo = 0 (3])
. Jll . ‘]ﬂ ‘l'l . J - ‘]'2
Jao<Jiji= ? Jip = _—S..,, s Jo = —_So

For the PBT operating with 6 g/s of argon, we can deduce
from Ref. 26 that J,, = 3.7 kA and J,, = 14 kA.

The dependence of p(r.. Zo) on the current was measured
by Cory”” and is given by

DP(Fewe 20) = 6.5 X 10747 N/m’ (32)

for 6 g/s of argon. Finally, from current density measurements
and momentum balance considerations,’® we have

p(r., 2ip) = 0.263J N/m? (33)

and ¢ is essentially constant at 0.2.

With these empirical specifications all of the components of
thrust can be calculated with the exception of (7,)sp, Which
requires knowledge of the dependence of p(r., zo) on J. Con-
sequently, we calculated all of the other components of thrust
and subtracted their sum from the measured (total) thrust data
at 6 g/s. The remaining contribution represents the pinching
contribution at the backplate end of the control volume. Figure
6 shows the evolution of p(r., z,) vs J that is required for Eq.
(27) to fit the backplate pinching contribution inferred from
the data. It can be noted that as the current is increased beyond
about 14 kA, the pressure on that boundary at the cathode
radius becomes essentially equal to the pressure at a radius r,,
and is given by Cory's empirical formula. This means that,
above this current, the pressure radial profile is flat, as assumed
by Rudolph.* However, below that current level, a substantial
difference between the pressure at r, and that at r, is required
to explain the data. The pressure radial profiles corresponding
to the curves in Fig. 6 are shown in Fig. 7 for four different
current levels.

Figure 8 shows the contributions of the various blowing and
pinching components to C; along with their total sum. Because
of the lack of experimental data below 5 kA, all extrapolations
to lower currents are unreliable and, consequently, the corre-
sponding portions of the curves in that figure are meaningless.
It is clear from Fig. 8 that at high current levels, the main
contribution to the thrust is from the blowing component at

+
R r=r=10cm
£
~
Z 10004
by &
[ o
5 ]
w 41
< 1 r=r,=64cm
b
- 2 (Cory’'s measurement)
100 14 T T T 1 3
0 5 10 15 20 25x10

Current, ] (A)

Fig. 6 Evolution of the gasdynamic pressure on the backplate at
the cathode (r = r.) inferred from the measured data. Also shown
is the presssure at a radius (- = r.h) as measured by Cory” [cf.
empirical formula in Eq. (32)]
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Fig. 7 Radial profiles of the pressure at the backplate corre-
sponding to the curves shown in Fig. 6 for four different current
levels.
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Fig. 8 Contributions of the various blowing and pinching com-
ponents to C;, along with their total sum for the PBT operated
with 6 g/s of argon. Also shown are the measured data. Values
corresponding to current levels below 5 kA are not reliable.

the backplate with a small contribution from the pinching com-
ponent, which, from Fig. 6, can be seen to be fully accounted
for by Cory’s pressure measurements at r = rq,. As the current
is decreased, the pressure at the cathode end of the backplate
must increase above its value at higher radii to account for the
rise in Cy.

The rise in C; at lower current, according to this picture.
can be explained not by the scaling of thrust caused by the

expansion of an ohmically heated gas, but rather by the scaling -

of gasdynamic pressure distributions induced by the pinching
effect of the volumetric Lorentz force densities.

IV. Formulation of a Simple Scaling Relation

It is desirable to have a simple, albeit semiempirical, C;(J)
formula that would be applicable over a wide range of param-
eters and would be valid for other mass flow rates and pro-
pellants then 6 g/s of argon. To rigorously derive a Cy(J)
formula from the preceding analysis would require explicit ex-
pressions for all of the thrust contributions in the preceding
thrust model as functions of the total current. This is not pos-
sible because we lack a model for the dependence of the pres-
sure fields on J. Such a model is beyond the scope of this
study. Therefore, we will invoke some of the dependencies
found earlier, along with phenomenological arguments, to for-
mulate a semiempirical Cr(J) model of wider applicability.
Central to this formulation is the dimensionless current based
on the critical ionization velocity.

A. Critical Ionization Velocity and Dimensionless Current £

Numerous experiments on the MPDT have shown that the
following dimensionless parameter:

e/l () /(Be2) | oo
m, 41 re
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(where m, and &, are the mass and the first ionization potential
of the neutral atom, respectively) scales various aspects of
MPDT behavior such as voltage,” thrust,* erosion,” discharge
symmetry,” and anode drop.* The first scaling relations for
MPDT characteristics (voltage and thrust) based on this param-
eter were derived in 1987.*° The present section presents, in
the light of the preceding results, a refinement of the &based
thrust model presented in Refs. 30 and 31.

A physical interpretation for scaling with £ can be made as
follows. In the MPDT, ionization is a significant energy sink
whose scaling, under nominal operation of the thruster, is
strongly tied to the magnitude of the energy in the acceleration
(useful) sink. [The strong tie between these two sinks is sus-
pected to be related to the role of plasma instabilities in con-
trolling and enhancing ionization. (Evidence on the role of
plasma instabilities in MPDT ionization was presented in Refs.
35 and 36.) Because instabilities in MPDTs are of the current-
driven type,”* and because acceleration in the MPDT is also
current-driven, both sinks share the same source, namely the
current.] A nominal regime for MPDT operation can thus be
defined in terms of this equipartition of energy (or power)
sinks that can be stated, in terms of power, as

+Tue = m(e./M) (35)

which, by definition. only holds near the nominal operation
point. The velocity u,, in this expression is that of the plasma
exhaust. Because T = (uo/4mCrJ% the preceding relation
gives

(poldmCrlu,, = mul, (36)
where u,; is defined as
u, = (2e/m,)"? 37

and is generally known as the critical ionization velocity. For
xenon, argon, and lithium, u is 4.22, 8.72, and 12.24 km/s.
respectively.

We define “‘nominal operation’ to be that for a thruster
current that produces an exhaust velocity equal to the critical
ionization velocity. That current is termed J.. From the pre-
ceding equation we have

172 :

mu,

Jo= | e 38)
[(uommcr] (

This characteristic current is used to nondimensionalize the
thruster current giving us the dimensionless parameter £ de-
fined as

E=Jl. (39)

which is written more explicitly in Eq. (34), where C; was
taken, to a first order, to be €n(r,/r.). {For & near 1, a better
approximation for Cr, as will be seen later, is €n[(r./r.) + 1]}.

The parameter ¢ can be thought of as a similarity parameter
in the sense that two thrusters operating at the same value of
£ are expected to exhibit some similar characteristics. Because
this similarity is boe out by numerous experiments, we shall
adopt it axiomatically in our formulation of a thrust scaling
relation and verify its applicability by testing the resulting scal-
ing formula with experimental data over a wide range of pa-
rameters.

It is interesting to contrast the dimensionless scaling param-
eter { with the dimensionless parameter a, in the Tikhonov
formula. The former describes the relative importance of the
electromagnetic acceleration energy (power) sink to that of
ionization, whereas the latter uses the thermal energy as a ref-
erence. The two are related by

£ =ca (40)

where ¢ is given by
¢ = WkT./le)"® en(r,Ir.) @“é4n
which is typically of order unity.

B. Formulation of a Thrust Scaling Relation

It is clear from Fig. 8 that Cy, at low current levels, scales
with J™" and that this dependence can be mostly attributed to
the pinching contribution at the backplate. However, because
of the lack of explicit expressions for the dependence of the
pressure terms in Eq. (26) on the total current, we rely on a
data fit of the C; vs J data to find that n is about 4. This is
further upheld by the C; « J~* scaling in the Tikhonov for-
mula, Eq. (4). Therefore, assuming that C; x J™* at low cur-
rents and because J = £, we expect the following scaling for
small values of &

Cr~¢&* (foré<1) (42)

At high current levels (¢ > 1), we know from the preceding
discussions that Cr scales weakly with the current but is not
constant as in the Maecker formula. This is a result of both
the dominance of the backplate blowing contribution and the
finiteness of all the other terms, which provide the dependence
on the current. This dependence is too complex to model as it
relates to how the current densities distribute over the elec-
trodes and how that distribution evolves with changing current.
It would be much more useful to have a less entangled, albeit
empirical, characterization of the scaling of this effect. Fortu-
nately, such a study does exist in the form of an experimental
investigation carried by Kaplan,” who found that the scaling
of the thrust coefficient at high current levels is such that e
vs J*/r1 can be represented by a line whose intercept is very
close to the physical value of r,/r.. This is shown in Fig. 9,
where measurements of the quantity e are plotted vs J%/r for
various conditions and with two geometrically similar but dif-
ferent sized PBTs. If only the high-current (J*/ri) data points
on that plot are used for the fit, it can be seen that the intercept
of the line is very nearly the value of r,/r., which for that
thruster is 5.26.

Based on these considerations and the fact that J*/m scales
as £*, we expect the following scaling for the thrust coefficient
at high values of &

Cr ~ €En[(r./r) + €] (for é> 1) (43)
In light of all of the preceding information we can formulate

a scaling model that is a combination of Eqs. (42) and (43) in
the form of

Cr= (V) + Enl(r.r) + &) 44)

where v is a dimensionless mass flow rate that corrects for
mass flow rate effects

v = mim* 45)
and where m* is a reference mass flow rate presumed to be a
constant and is obtained empirically from the data. Using the
expression
Cr= (mim*/§*) + Enl(r./r) + €] (46)
with the 6 g/s argon data, yielded

m* =66 gis 47)

In the narrow sense of applying to data at three mass flow
rates of both argon and xenon as well as for two similar thrust-
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ers with different length scales, this value for m* is universal
as shown by the comparison of the model to these data.

The plot in Fig. 10 is a comparison of the model to the
thrust measurements at three mass flow rates of argon, showing
that the trends in the data are well accounted for. To test the
model’s accounting for propellant effects, it is compared in
Fig. (11) to both argon and xenon data taken with the same
thruster at the same mass flow rate. The agreement was far
worse for attempts to model hydrogen data. This could be
partly related to the fact that the critical ionization velocity of
hydrogen is both very high and ill-defined (diatomic mole-
cule).

Finally, it is important to note that the length scale invari-
ance implicit in the model is borne out by the fact that the 6
g/s argon data in Fig. 10 were obtained with the full-scale PBT,

FULL SCALE THRUSTER
0 6 gmssec
a 12 gm/sec
O 18 gm/sec

HALF SCALE THRUSTER
® 1.5 gm/sec

-1 2 O 30 gm/sec

C 459m/sec

q

"
o~ 5% '—-‘—-ﬁ"—_ ﬁ—
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D
T

" It n n i i . " n "

Srh
xAal/gm/sec

Fig. 9 Scaling of ¢ with J*/m, from Ref. 29.
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Fig. 10 Comparison of the scaling formula in Eq. (46) with argon
thrust measurements for three mass flow rates.
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Fig. 11 Comparison of the scaling formula in Eq. (46) with mea-
surements for argon and xenon at a fixed mixed flow rate.

whereas the other data on that plot were obtained with a half-
scale PBT?' (same r,/r.).

V. Summary

The scaling of thrust in MPD thrusters is shown to depart
from the simple prescription of the Maecker formula, which
states that the thrust coefficient Cr = (47/wo)T/J? is constant.
The departures at both low and high current levels are clarified
by studying the scaling of the various thrust components as a
function of current. At high currents, the analysis shows how
the particular geometry of a real thruster can yield finite cor-
rections to the simple Maecker model. At low currents, the
formula is wholly inadequate in describing the data, with mea-
sured thrust coefficients reaching values up to 250% of those
prescribed by the formula. It is shown that, in some real thrust-
ers, such as the one used for this study, these departures can
be explained not by the scaling of thrust caused by the expan-
sion of an ohmically heated gas, but rather by the scaling of
gasdynamic pressure distributions induced by the pinching
components of the volumetric electromagnetic forces. The in-
sight was used to formulate a simple but accurate scaling for-
mula that quantitatively describes the trends in an extensive
database of measured thrust.
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