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A similarity parameter for quasi-steady fluid flows advancing into horizontal capillary channels is presented.
This parameter, which may be used to scale propellant feeding rates in microthrusters, can be interpreted as the
ratio of the average fluid velocity in the capillary channel to a characteristic velocity of quasi-steady capillary
flows. It allows collapsing a large data set of previously published and recent measurements spanning five
orders of magnitude in the fluid velocity, fourteen different fluids, and four different geometries onto a single
curve, and indicates the existence of a universal prescription for such flows. On time scales longer than the
characteristic time it takes for the flow to become quasi-steady, the one-dimensional momentum equation leads
to a non-dimensional relationship between the similarity parameter and the penetration depth that agrees well
with most measurements. Departures from that prescription can be attributed to gravitational effects that are not
accounted for in the one-dimensional theory.

I. INTRODUCTION

There is presently a strong interest in developing mi-
crothrusters for spacecraft propulsion. Two different types
of applications are driving this interest. The first, primary
propulsion for microspacecraft[1], requires thruster size
and power consumption be reduced as the spacecraft size
and available power shrink. The second, fine-positioning
of spacecraft constellations for missions such as sparse-
aperture interferometry[2], may require thrusters with mi-
cronewton and sub-micronewton thrust resolution.

Apart from the challenges associated with the design of
microthrusters[3] are issues concerning propellant storage
and handling. Propellant storage typically requires the car-
rying of additional tankage mass. Also, micro-valves cur-
rently under development for flow control have high leak
rates[4]. We have addressed the issues associated with pro-
pellant handling in a previous paper[5] proposing that low
vapor pressure liquid propellants could be passively con-
trolled using capillary action. A system of this type is at-
tractive because it is valveless and requires no additional
tankage mass, other than the capillaries themselves.

A similarity parameter was defined in Ref. [5] based
upon the collapse of data obtained in penetration experi-
ments using a stepped capillary tube. However, the form
of that similarity parameter was only applicable to the
stepped-tube geometry. In the present work, which is a
more fundamental study, we present a similarity param-
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eter written in a form that can be applied to any one-
dimensional capillary-driven flow. This parameter, which
may be used for the optimization of microthruster mass
flow rates, is of general importance to the fundamental un-
derstanding of capillary-driven flows.

A. Historical Perspective

The first analytical studies of surface tension and cap-
illarity by Young[6] and Laplace[7] stated that at a liq-
uid/vapor interface the difference between the liquid’s pres-
sure, pl, and the vapor’s pressure, pv, is proportional to the
total curvature of the interface itself. For a spherical menis-
cus, this can be written as

pv − pl =
2γ
R

cos θ, (1)

where γ is the surface tension, θ is the contact angle, and
R is the radius of the interface.

Hagen[8] and Poiseuille[9] later studied the flow of vis-
cous liquids in circular pipes (including capillary tubes)
and derived an equation for the steady-state volume flow
rate based on the radial velocity profile for fully-developed
flow given by

u (r) =
1
4µ

∆p
∆x

(
a2 − r2) , (2)

where ∆p is the total pressure drop in a column of fluid
of length ∆x, µ is the viscosity, and a is the tube radius.
Reynolds experimentally tested the stability of this profile,
finding that it held for laminar flows[10].

At the beginning of the 20th century, there were sev-
eral works concerned with the dynamics of fluid penetra-
tion into capillary tubes[11–15]. One of the results of these
studies was the derivation of the Washburn equation[14] for
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laminar fluid penetration into a horizontal capillary. In the
derivation it is assumed that the pressures at the tube in-
let (x = 0) and in the air beyond the meniscus are equal.
The pressure drop, ∆p, over the length of the tube is time-
independent and is given by Eq. (1) for a circular tube. If
the flow is fully-developed and quasi-steady, then the ve-
locity profile is given by Eq. (2) where ∆x is replaced by
the variable meniscus position x∗ representing the distance
the fluid penetrates into the tube in time t. Averaging over
the velocity profile and integrating in time yields

x2
∗ =

∆p a2

4µ
t. (3)

Recently, there have been many experimental and the-
oretical studies on the spreading rates of liquids flow-
ing horizontally and in straight lines under capillary ac-
tion. For example, liquids have been studied flow-
ing in thin tubes[16], in surface grooves[17–21] and on
microstrips[22]. All of these systems have been observed
to follow Washburn-type dynamics, meaning the flow dy-
namics are functionally similar to Eq. (3) (i.e. x2

∗ ∝ t).

B. Motivation & Organization

While the study of systems adhering to Washburn-type
dynamics is a well developed field, no attempt has yet
been made to find non-dimensional similarity parameters
which would describe these flows. Consequently, capillary
spreading data in the literature are typically presented in
various dimensional forms, and the values of the relevant
variables can be quite disparate depending on the geometry
or fluid tested.

In this paper, we present a non-dimensional similarity
parameter which is a combination of the relevant dimen-
sional parameters of this problem. The similarity param-
eter is equivalent to the ratio of the average fluid velocity
and a characteristic velocity, which is shown to be the max-
imum velocity for a quasi-steady capillary flow. Using the
similarity parameter to non-dimensionalize published cap-
illary spreading-rate data, a large set spanning five orders
of magnitude in the fluid velocity, fourteen different flu-
ids, and four different geometries can be collapsed into a
single curve. To further collapse the data set of Ref. [5],
we develop a phenomenological correction to account for
gravitational effects, which are not included in the one-
dimensional theory.

The data collapse implies that a universal relation for
capillary flows exists. It is shown that the one-dimensional
momentum equation recast in terms of the non-dimensional
parameter leads to such a universal relation when the time
scales are much longer than the characteristic time it takes
for the flow to become quasi-steady.

The outline of the rest of this paper is as follows. In sec-
tion II we introduce the similarity parameter that forms the
basis of the paper. In section III we introduce the different
experimental geometries to which the similarity parame-

ter will be applied. Recent and previously published ex-
perimental data from these geometries are then presented
and reduced to non-dimensional form in section IV as a
means of evaluating the physical importance of the similar-
ity parameter. In section V we address the condition under
which the flow can be considered quasi-steady and provide
a physical interpretation of the similarity parameter. Fi-
nally, in section VI, we discuss a universal scaling relation
for these flows.

II. SIMILARITY PARAMETER

For this problem, the relevant dimensional parameters
and their units are

[〈u〉] = LT−1, [a] = L, [x∗] = L,

[µ] =ML−1T−1, [∆p] = ML−1T−2,

where 〈u〉 is the average fluid velocity and a is a character-
istic length (the radius for capillary tubes). The surface ten-
sion, while not explicitly in this list, is implicitly included
because the total pressure drop in these systems is a func-
tion of the surface tension as well as the geometry of the
problem.

The Buckingham Pi theorem states that we should be
able to find two independent, dimensionless parameters by
combining the above dimensional parameters. Two such
independent parameters are the similarity parameter,

Π =
〈u〉 µ
a∆p

, (4)

and the non-dimensional length,

X =
x∗
a
. (5)

We see that, physically, Π is the ratio of the competing ef-
fects of viscosity and the driving pressure, which is a func-
tion of the surface tension. We also recognize that Π is
similar to the well known Capillary number, Ca = 〈u〉µ/γ.
However, by including the total pressure drop in our list of
dimensional parameters instead of the surface tension, we
can tailor the final form of Π to different geometric config-
urations.

Note that Π is also equivalent to a ratio of two velocities.
Based on this, we can define a characteristic velocity for
capillary flows

Ucap =
a∆p
µ
, (6)

and rewrite Π as

Π =
〈u〉
Ucap

. (7)

We shall defer to section V an explanation of the physical
meaning of Ucap.

2
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FIG. 1: (A) A schematic of the stepped capillary tube geometry. (B) Schematic of a single tube geometry. (C) A view looking along the
channel of the V-groove geometry (after Ref. [19]). (D) A view looking down on the microstrip geometry (after Ref. [22]).

Had time been added to the list of relevant dimensional
parameters, an additional non-dimensional parameter, such
as t∆p/µ, would need to be added to our list of dimen-
sionless variables. However, as we show in section IV, the
collapse of the data is attained without invoking time. We
also show, in section V, that the irrelevance of time is due to
the quasi-steady condition prevailing in all the considered
flows.

III. EXPERIMENTAL GEOMETRIES

In this paper, we apply the derived similarity parame-
ters to data sets from four different geometries (see Fig.
1). The geometries analyzed are: (A) a stepped capillary
tube, (B) a single capillary tube, (C) a V-shaped groove,
and (D) a hydrophilic microstrip. In the following text, we
describe each geometry and the experiments that were orig-
inally performed and attempt to write Π and X in terms of
relevant, measurable variables. We shall find that the vari-
able that is most difficult to determine in all these cases is
the total pressure drop, ∆p, over the length of the capillary

A. Stepped Tube

We conducted experiments using the geometry shown in
Fig. 1A and first reported the results in Ref. [5]. All quan-
tities with a subscript of 1 denote values in the larger radius
tube while the subscript 2 denotes values in the smaller ra-
dius tube. Initially, fluid was injected into the larger radius
tube until the meniscus reached the smaller radius tube.
Once the fluid entered the smaller radius tube, all active
injection was halted.

Five different capillary tube radius combinations were
tested. In addition to varying the radii, five different fluids
were tested, where the fluid properties are given in Table
I. The properties for methanol and propanol-2 were taken
from Ref. [23]. The viscosities of the other three fluids
were taken from manufacturer data (Ref. [24] for dibutyl
phthalate and Ref. [25] for the mechanical and diffusion
pump oils). The listed surface tensions for these three flu-
ids were found by measuring the capillary rise in several
different radius tubes. The contact angles were found by
visually measuring the radius of the meniscus and compar-
ing that with the tube radius. The ratio of these two radii
was set equal to cos θ.

To write out the non-dimensional parameters, we must
first find a solution for the average fluid velocity, 〈u2〉. Tak-

3
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TABLE I: Stepped capillary tube fluids and their properties. Data with error bars were measured by the authors.

Name γ[mN/m] µ[mPa-s] θ[deg]
methanol 22.1 0.54 0

(CH4O)
propanol-2 20.9 2.04 0

(C3H8O)
dibutyl phthalate 33.9 20.3 62.3

(C16H22O4) (±3.3) (±3.2)
Fisherbrand 19 30.5 47.9 63.0

mechanical pump oil (±3.6) (±6.1)
Invoil 940 34.0 25.9 63.9

Si-diffusion pump oil (±4.4) (±4.7)

ing the pressure gradient, dP/dx, equal to a constant k in
each tube, we can average Eq. (2) over the cross-sectional
area of the flow to obtain an average velocity

〈u2〉 =
k2a

2
2

8µ
. (8)

The incompressible continuity equation (〈u〉A = a con-
stant) results in the compatibility condition

k1 =
(
a2

a1

)4

k2. (9)

We bring closure to this formulation by assuming a pres-
sure profile in the fluid (see Fig. 2). The meniscus at each
end is exposed to the same outside pressure, and it is known
from Eq. (1) that the discontinuities in the pressure at each
meniscus will be

∆P1 =
2γ
a1

cos θ1, (10a)

∆P2 =
2γ
a2

cos θ2. (10b)

Using Eqs. (9) and (10) and the fact that the pressure is
piecewise continuous between the menisci (see Fig. 2), an-
alytical expressions for k1 and k2 can be found[27]. These
are

k1 =
2γ (cos θ2/a2 − cos θ1/a1)

x2∗ − x1∗ (a2/a1)
4 (a2/a1)

4
, (11a)

k2 =
2γ (cos θ2/a2 − cos θ1/a1)

x2∗ − x1∗ (a2/a1)
4 . (11b)

Note from the coordinate system that x1∗ is measured such
that it is always negative, so the denominators in these ex-
pressions are always positive.

It is worth noting that the quantity xeq∗, which we define
as

xeq∗ ≡ x2∗ − x1∗ (a2/a1)
4 (12)

has a physical interpretation. It is the length of a column of
fluid of radius a2 and constant pressure gradient k2 having

x

x1∗ x2∗0

P

P0 P0
∆P1

∆P2

k1

k2

θ1

θ2

a2

〈u2〉

a1

FIG. 2: Pressure profile in a stepped capillary tube.

a pressure drop equal to the total pressure drop between the
two menisci. In other words, |k2xeq∗| = |k1x1∗|+ |k2x2∗|.

We can now write k2 as ∆p/xeq∗ and express the simi-
larity parameter, Eq. (4), as

Π =
〈u2〉µ

2γ
1

a2 (cos θ2/a2 − cos θ1/a1)
, (13)

and the dimensionless length, Eq. (5), as

X =
xeq∗
a2
, (14)

where the radius, a2, is used as the characteristic length.

B. Single Tube

Fisher and Lark[16] collected data for fluids flowing in
thin capillaries. They measured the value of x2

∗/t for differ-
ent tube radii (see Fig. 1B). These experiments were con-
ducted using both water (γ/µ = 72.7 m/s, θ = 0o) and

4
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cyclohexane (γ/µ = 22.1 m/s, θ = 8o) as the working
fluid. The goal in that work was to verify the applicabil-
ity of the Washburn equation, Eq. (3), for very small tube
radii[28].

We see that a single tube is a special case of a stepped
capillary tube where a1 → ∞. Using this fact allows us
to simplify the similarity parameter and non-dimensional
length given in Eqs. (13) and (14) to

Π =
〈u〉µ
2γ

1
cos θ

, (15a)

X =
x∗
a
. (15b)

Note that this form assumes the pressure at the immersed
end of the tube is equal to the vapor pressure at the
fluid/vapor interface (typically the atmospheric pressure,
P0). However, as long as the flow can be considered quasi-
steady, Eq. (15a) can be generalized to account for an arbi-
trary pressure, PA, at the immersed end. In that case, the
pressure difference over the length of the fluid is

∆p = PA − [P0 − (2γ cos θ) /a] ,

and Π takes on the more general form

Π =
〈u〉µ
2γ

1
([(PA − P0) a] / (2γ) + cos θ)

. (16)

C. V-shaped Grooves

For fluids flowing in V-shaped grooves, we use data
found in Ref. [19]. The geometry that was employed in
these experiments (see Fig. 1C) consisted of a groove of
angle β and height h0 being fed from a liquid reservoir.
Multiple groove angles, groove heights, and liquids were
tested, with each test’s properties listed in Table II.

A solution for the pressure drop over the length of the
groove can be determined from Ref. [19]. In that work, the
authors found that the governing equation for the spreading
could be written as

x2
∗ = K (θ, α)

γh0

µ
t, (17)

where the angle α is shown in Fig. 1C. If we assume that
the flow is fully-developed and quasi-steady, it will have a
form similar to that of the Hagen-Poiseuille flow of Eq. (2).
Averaging Eq. (2) over the velocity profile and recasting it
in terms of our dimensional variable list yields

〈u〉 =
∆p
x∗

a2

8µ
, (18)

where a is the characteristic length. Integrating the average
velocity with respect to time yields the Washburn equation
[Eq. (3)]. Setting a = h0 and comparing Eqs. (17) and (3),
it is evident that the pressure drop is given by the expression

∆p =
4γK (θ, α)

h0
. (19)

TABLE II: Fluids tested in V-shaped grooves and their properties
(from Ref. [19]).

γ/µ K (θ, α)1/2

liquid [cm/s] exptl Eq. (20)
1,4-butanediol 59.5 0.245 0.282
cyclohexanol 58.2 0.247 0.301
1-butanol 941 0.270 0.301
2-octanol 408 0.259 0.297
diethylene glycol 162 0.231 0.273
1-heptanol 489 0.249 0.297
1,4-butanediol 59.5 0.244 0.219
cyclohexanol 58.2 0.275 0.248
1-butanol 941 0.294 0.248
2-octanol 408 0.298 0.241
diethylene glycol 162 0.187 0.204
1-heptanol 489 0.281 0.241
cyclohexanol 58.2 0.190 0.174
1-butanol 941 0.194 0.174
2-octanol 408 0.202 0.166
1-heptanol 489 0.199 0.166

Several analytical solutions for K have been found[18,
19], each involving a different assumption regarding the ra-
dius of curvature of the top surface of the fluid, R top (see
Fig. 1C). The solution forK that is generally closest to the
experimentally determined value is based on a flat topped
fluid (Rtop = ∞) and is given by

K (θ, α) =
1

2π sin (α)

[
cos (θ) − (α− θ) cos (α)

sin (α− θ)
]
,

(20)
where the angle α is shown in Fig. 1C. This allows us to
write the similarity parameter and dimensionless length for
this geometry as

Π =
〈u〉µ
4γ

1
K (θ, α)

, (21a)

X =
x∗
h0
. (21b)

D. Microstrips

Darhuber et al.[22] conducted experiments using hy-
drophilic microstrips etched onto a hydrophobic back-
ground (see Fig. 1D). The microstrips were connected to
a reservoir pad of the same hydrophilic material. A quan-
tity of the working fluid (polydimethylsiloxane silicone oil
[Fluka], γ/µ = 1.03 m/s) was deposited on the reservoir
pad and the fluid then spread along the microstrip through
capillary action. In that study it was found that the spread-
ing was governed by Eq. (17).

Using the methods of Ref. [18], Darhuber et al.[22] de-
termined for this geometry the variation ofK with the strip
width. Unlike the V-shaped grooves, there are no known
fully-analytical solutions forK in this geometry. However,

5
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it was found that the average streamwise velocity should
vary according to the relation

〈u〉 =
K

2x∗
γa

µ
∝ γw4

µ

1
x∗
, (22)

where w is the strip width, which we shall take as the char-
acteristic length scale. To determine ∆p for this case, we
compare Eq. (22) with Eq. (18) and obtain

∆p =
8γw2

ζ
, (23)

where we have multiplied the far right hand side of Eq. (22)
by the proportionality constant ζ−1. We can now write the
similarity parameter and dimensionless length as

Π =
〈u〉µ
8γ

ζ

w3
, (24a)

X =
x∗
w
. (24b)

Note that ζ is a factor with dimensions of length-cubed. If
Eq. (23) accurately tells how ∆p varies with w and γ, then
ζ should be a constant for a given fluid irrespective of the
strip width or surface tension.

IV. EXPERIMENTAL DATA

In this section, we shall present experimental data for
each of the four geometries previously discussed. These
data will first be plotted in dimensional coordinates and
then replotted using their respective non-dimensional pre-
scriptions. We shall show that, for all cases, the non-
dimensional parameter collapses these data, i.e. signifi-
cantly reduces the range of data spread in one of the vari-
ables. The stepped capillary tube data set and discussion
will be deferred to the end of this section as we will be re-
quired to develop and apply a correction which need not be
applied to the other data sets.

A. Single Tube

Fisher and Lark[16] presented data for the penetration
rates of fluids into very fine capillaries. These data were
originally presented in coordinates of penetration depth
squared per unit time and capillary radius. If a Hagen-
Poiseuille flow having a constant pressure drop is assumed,
Eq. (3) allows us to state that the value of x2

∗/t should be a
constant, G, for a single fluid and radius. To obtain veloc-
ities from these data, we simply differentiate x2

∗ = Gt to
obtain 〈u〉 = G/2x∗. For comparing the various data sets,
we took x∗ = 50 mm for all single tube data. The data,
non-dimensionalized using Eqs. (15), are replotted in Fig.
3B.

We see that the data for both water and cyclohexane do
collapse to a single curve. The deviation from this curve
at larger values of X is due to the larger relative error in
determining the values of x2∗/t at smaller values of a.
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X
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 cyclohexane

Avg. Error = +/- 10%

FIG. 3: Data from Fisher and Lark[16] for fluid penetration rates
into a single tube expressed using the non-dimensionalization
given in Eqs. (15).

B. V-shaped Grooves

Data sets for fluids flowing into V-shaped grooves are
taken from Ref. [19]. The fluids tested and their properties
are listed in Table II. Included in this table are the values of
K (θ, α)1/2 that were computed in Ref. [19], where column
3 is the experimentally determined value and column 4 is
the value computed using Eq. (20). The non-dimensional
data set for β = 45o is found in Fig. 4(A-B), for β = 77o

is found in Fig. 4(C-D), and for β = 124o is found in Fig.
4(E-F). The velocities were determined in a manner nearly
identical to that used for the single tube geometry.

We see from the plots in Fig. 4 that not only can the data
all be collapsed to one curve for each angle β (as Rye et
al.[19] showed), but also that the similarity parameter col-
lapses the data from all groove-angles tested to the same
curve. Finally, we see that the analytical expression for
K (θ, α) [Figs. 4(A, C & E)] yields values of Π that are
very close to those computed using the experimentally de-
termined values ofK (θ, α) [Figs. 4(B, D & F)] in all cases,
leading us to conclude that Eq. (20) is a good expression for
K (θ, α).

C. Microstrips

Experimental data for polydimethylsiloxane silicone oil
[Fluka] spreading on hydrophilic microstrips[22] are pre-
sented in non-dimensional form [Eqs. (24)] in Fig. 5. The
proportionality constant ζ has been treated as a free param-
eter in this case. Its value has been chosen such that the data
agree with the universal scaling relation presented in sec-
tion VI. The value of ζ used to non-dimensionalize these
data was 5.55 × 10−6 m3 or ζ1/3 = 1.77 cm.

As shown in Fig. 5(B), all four data sets effectively col-
lapse onto a single curve when this value of ζ is used to

6
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FIG. 4: Penetration data from Ref. [19] for fluids flowing in V-shaped grooves cut with an angle β = 45o (A & B), 77o (C & D) and
124o (E & F) plotted using the non-dimensional prescription given in Eqs. (21) with the value of K (θ, α) (A, C & E) given by Eq. (20)
and (B, D & F) computed by Rye et al.[19] from a curve fit of the experimental data.

compute Π. However, the collapse is independent of the
numerical choice of ζ, as long as it is a constant. This fur-
ther validates the relevance of the non-dimensionalization
prescribed by Eqs. (24).

D. Stepped Tube

Experimental data for fluids flowing in stepped capillary
tubes (see Ref. [5]) are shown in Fig. 6. These data are
divided into two groups, each corresponding to a given ra-
dius, a1 (see Fig. 1A). In Figs. 6(A & B), the data have
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FIG. 5: Penetration data from Ref. [22] for polydimethylsiloxane
silicone oil flowing on microstrips of varying widths, w, plotted
using the non-dimensionalization given by Eqs. (24) where ζ has
been taken equal to 5.55 × 10−6 m3 for all widths.

been non-dimensionalized according to Eqs. (13) and (14).
We notice that, while non-dimensionalizing does collapse
the data significantly, the spread is still a little more than an
order of magnitude.

Gravitational Correction

At this point, it is convenient for us to introduce the Bond
number, which is defined as the ratio of gravitational to
surface tension forces and is written as

Bo =
ρgd2

γ
, (25)

where ρ is the fluid density and d is the capillary tube di-
ameter. The data set in Fig. 6 has Bo ∼ O (0.1 − 1), im-
plying that gravitational forces and their associated two-
dimensional effects, neglected in the theoretical treatment
of this problem, may be important. In fact, we expect these
neglected effects to cause the non-dimensionalization to
begin to fail for values of Bo ≥ O (0.1). However, inspired
by experimental observations, we have developed an em-
pirical model which, for the values of Bo spanned by these
experiments, corrects for the effects of gravity.

It is experimentally observed that the meniscus deforms
with increasing Bo. This deformation increases the menis-
cus radius, Rm, as shown schematically in Fig. 7. We
sought a simple, first-order scaling relation to effectively
account for this increase in radius and yield a small correc-
tion to the formula for Π given in Eq. (13).

It is convenient to define a reference condition where
the gravitational effects are small. We define our refer-
ence as the case where Bo = 0.1. We now define an ef-
fective meniscus radius, Reff , that can be used to mod-
ify Eq. (13). The quantity Reff/R, where R is the tube’s

TABLE III: Bond numbers, Bo2, for all experiments using
stepped capillary tubes.

fluid radius (a) [mm] Bo
methanol 0.30 0.126

0.60 0.506
1.35 2.55
1.50 3.15

propanol-2 0.30 0.141
0.60 0.564
1.10 1.89
1.35 2.86
1.50 3.53

dibutyl phthalate 0.30 0.230
0.60 0.922
1.10 3.10
1.35 4.66
1.50 5.75

mechanical pump oil 0.30 0.219
0.60 0.878
1.10 2.95
1.35 4.43
1.50 5.48

diffusion pump oil 0.30 0.236
0.60 0.945
1.10 3.18
1.35 4.78
1.50 5.90

physical radius, is expected to be more a function of Bo
than of Π andX . We attempt to correct the gravitationally-
induced departure in the data using the following proposed
phenomenological scaling which is not derived from first
principles. Since the Bond number is a function of the ra-
dius squared, we propose that the effective radius increases
monotonically with Bo1/2 and goes to the tube radius (for
a fully wetting fluid) as Bo goes to zero. Denoting the ref-
erence condition as Bo∗, we write this proposed scaling
as[29]

Reff = R

(
1 +

√
Bo
Bo∗

)
. (26)

Applying this scaling to the radius terms inside the paren-
theses in Eq. (13), we obtain the modified expression

Π =
〈u2〉µ
a2

1
∆p′

, (27)

where ∆p′ is the modified pressure drop:

∆p′ =
2γ cos θ2

a2

(
1 +

√
Bo2/Bo∗

) − 2γ cos θ1

a1

(
1 +

√
Bo1/Bo∗

) .
The values of the Bond number evaluated at the leading and
trailing menisci are Bo2 and Bo1 respectively.

The data found in Figs. 6(C & D) are plotted using the
modified Π given in Eq. (27) with the values of Bo1,2 given

8
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FIG. 6: (A)-(B) Penetration data from Ref. [5] for fluids flowing in stepped capillary tubes plotted using the non-dimensionalization of
Eqs. (13) and (14) (a1 as noted on the graphs). (C)-(D) The non-dimensional data replotted using the gravitational correction given in
Eqs. (27). Note that the legend for all plots is also shown in (D).
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FIG. 7: Schematic showing how the meniscus deforms with in-
creasing Bo.

in Table III. We see that the proposed gravitational correc-
tion further collapses these data by up to a factor of five,
showing that this phenomenological correction, to first or-
der, represents the effect of gravity.

V. THE QUASI-STEADY REGIME

In the appendix, we show that the momentum equation
for a flow entering a capillary tube from a semi-infinite
reservoir can be written as

Bτ2

a2

[(
x∗ +

a

2

) d2x∗
dt2

+
1
8

(
dx∗
dt

)2
]

= 1 − x∗τ
a2

dx∗
dt
.

(28)
In this equation, τ and B are, respectively, a dimensional
timescale and a dimensionless parameter and are defined

τ =
8µ
∆p
, B =

ρa2

τ2∆p
=
ρa2∆p
(8µ)2

.

Also, x∗, dx∗/dt, and d2x∗/dt2 are, respectively, the po-
sition, velocity and acceleration of the moving air-liquid
interface.

9
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A. Dimensionless Formulation and Solution

Introducing the dimensionless variablesX and ξ,

X =
x∗
a
, ξ =

t

τ
=
t∆p
8µ
,

we can rewrite Eq. (28) as

B

[(
X +

1
2

)
d2X

dξ2
+

1
8

(
dX

dξ

)2
]

= 1 −XdX
dξ
. (29)

For problems of interest, the condition X ≥ 1 should be
satisfied. We notice that if the left hand side of Eq. (29) is
negligible, the solution is

X =
√

2ξ, (30)

which is the non-dimensional version of the Washburn
equation [Eq. (3)].

Consistent with the Washburn solution we have(
dX

dξ

)2

=
1
2ξ
, X

d2X

dξ2
= − 1

2ξ
. (31)

In order for the left hand side of Eq. (29) to be negligible,
the inequality B << ξ must be satisfied. Rewriting this
inequality in terms of dimensional parameters, we obtain

tCO ≡ ρa2

8µ
<< t, (32)

where tCO is the “crossover” time. This implies that for the
flow to be considered quasi-steady, the time must be much
greater than tCO, which is essentially the time it takes for
viscous diffusion to travel a distance O (a).

B. Meaning of Ucap

If we operate at a time that satisfies the inequality in Eq.
(32), we can substitute for time using the first of Eqs. (31).
Substituting and rearranging yields the expression

2
ρ Ucap a

µ

( 〈u〉
Ucap

)2

= 2 Re|Ucap Π2 << 1, (33)

where Re|Ucap is a Reynold’s number based on the char-
acteristic velocity Ucap. For most practical flows such as
those discussed here Re|Ucap ≥ O (1).

We know that as 〈u〉 → Ucap, Π → 1. When this occurs
the inequality in Eq. (33) is violated and the flow cannot be
considered quasi-steady. We conclude that Ucap is a char-
acteristic velocity for capillary flows. For times later than
tCO, the flow becomes quasi-steady, the inequality in Eq.
(33) holds, and the fluid velocity is always less than Ucap

[30]. Since 〈u〉 is less than Ucap for all the developed flows
considered in this paper, we conclude that these flows are
essentially quasi-steady.

VI. SCALING RELATION

In this section, we turn our attention to the problem of
finding a relationship between the similarity parameter, Π,
and the non-dimensional length,X . For times greater than
tCO, we can set the left hand side of Eq. (29) equal to zero
and then rearrange the right hand side to obtain

dX

dξ
= X−1 (34)

Writing the left hand side of this equation in terms of the
similarity parameter yields the universal relation

Π =
1
8
X−1. (35)
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FIG. 8: All penetration data contained within this paper plotted in
coordinates of Π and X. In addition, Eq. (35), representing the
universal scaling relation, is plotted.

In Fig. 8, we have plotted all the data presented in this pa-
per using the variables Π andX . In addition, the line given
by Eq. (35), representing the scaling relation between the
non-dimensional parameters, has been plotted. This plot
shows that, not only do all the data, independent of geom-
etry or fluid, effectively collapse[31] to a single curve, but
that this curve is given by the scaling relation.

VII. CONCLUSIONS

This study leads to the following major conclusions.

• A similarity parameter for quasi-steady fluids ad-
vancing into horizontal capillaries exists and can be
found by combining the relevant dimensional param-
eters of this problem.

• The similarity parameter consists of the ratio be-
tween either the effect of viscosity and that of the
driving pressure, or the average fluid velocity and

10
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a characteristic capillary velocity, Ucap. When the
time is greater than the “crossover” time, the charac-
teristic velocity is greater than the fluid velocity.

• The similarity parameter collapses a large data set
spanning five orders of magnitude in penetration ve-
locity, fourteen different fluids, and four different ge-
ometries to a single line. This implies that a relation
between the similarity parameter, Π = 〈u〉 /Ucap,
and the non-dimensional distance,X , exists.

• The equation Π = (1/8)X−1, which holds for fully-
developed quasi-steady flows (i.e. for times much
greater than ρa2/8µ), provides a universal scaling
relation that agrees well with the collapsed data set
over a large range of experimental parameters.

• The scaling begins to fail as Bo approaches unity due
to gravitational effects, which are not accounted for
in the one-dimensional model. However, these ef-
fects can, to first order, be accounted for by applying
a phenomenological correction to Π.
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APPENDIX: ORIGIN OF EQ. (28)

We proceed with a derivation of the Eq. (28) from first
principles.

1. Formulation

Consider a straight, round, semi-infinite tube of radius
a. This tube extends in the positive x-direction and it is
connected to a much larger radius tube in the negative x-
direction. At t ≤ 0, liquid fills the x ≤ 0 side and there is
no liquid in the x > 0 portion of the tube. At t > 0, liquid
is expected to enter the narrow tube. The static pressures at
x = ±∞ are identical and denoted by p0. The static pres-
sure on the liquid side of the liquid-air interface is reduced
by the surface tension and is given by Eq. (1). For the mo-
ment, we shall take the pressure reduction due to surface
tension to be equal to ∆p. Let x∗ denote the location of
the moving air-liquid interface and 〈u〉 denote its average
velocity, or

〈u〉 =
dx∗
dt
, 0 ≤ x ≤ x∗, t ≥ 0. (A-1)

Note that we can rewrite the parabolic velocity profile, Eq.
(2), as

u (r) = 2 〈u〉
(

1 − r2

a2

)
. (A-2)

2. Static Pressure at x ≈ 0

The liquid at x < 0 converges and flows toward the en-
trance of the narrow tube. The static pressure at x ≈ 0
is less than p0. For the region where x < 0, we can use
Bernoulli’s equation for an inviscid, unsteady flow[32]

p0 = p+ ρ
(
V 2

2
+
∂φ

∂t

)
= constant, (A-3)

where φ is the velocity potential defined as

V = ∇φ, (A-4)

and V is the liquid velocity vector of magnitude V . Equat-
ing the flowrate into the narrow tube with the flowrate
through any tube cross-section, we can find a simple sink
velocity potential:

φ =
〈u〉 a2

2r
, (A-5)

where r is the radial spherical coordinate. We can now
evaluate Eq. (A-3) at x ≈ 0 as

p (x ≈ 0) = p0 − ρ
(

1
8

(
dx∗
dt

)2

+
a

2
d2x∗
dt2

)
, (A-6)

where the dynamic pressure and unsteady term in Eq. (A-
3) were evaluated at r = a. The time-dependent pressure
gradient in the narrow tube is expected to be a constant with
respect to x. This can be computed by

∂p

∂x
=

(p0 − ∆p) − p (x ≈ 0)
x∗

,

= −∆p
x∗

+
ρ

x∗

(
1
8

(
dx∗
dt

)2

+
a

2
d2x∗
dt2

)
.(A-7)

3. x-Momentum Equation

The x-momentum equation in the narrow tube is

ρ
∂ 〈u〉
∂t

= − ∂p
∂x

+ µ∇2u (r) . (A-8)

Taking u (r) to be given by Eq. (A-2), we can rewrite the
momentum equation as

ρ
∂ 〈u〉
∂t

= − ∂p
∂x

− 8µ 〈u〉
a2

. (A-9)
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Substituting Eq. (A-7) for the pressure gradient and rear-
ranging we obtain

Bτ2

a2

[(
x∗ +

a

2

) d2x∗
dt2

+
1
8

(
dx∗
dt

)2
]

= 1 − x∗τ
a2

dx∗
dt
,

(A-10)
where we have defined a dimensional timescale, τ , and a
dimensionless parameter,B, as

τ =
8µ
∆p
, B =

ρa2

τ2∆p
=
ρa2∆p
(8µ)2

.

Equation (A-10) is exactly Eq. (28).
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