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Abstract

The Maecker formula has long been used to explain
the scaling of the thrust of self-field magnetoplasma-
dynamic thrusters (MPDTs) with the total current.
The formula is shown to be too simplistic to account
for the trends in measured thrust data which exhibit
departures from the model especially at low current.
We show that these departures cannot simply all be
attributed to electrothermal effects. Instead, we find
that at high currents, the departures can be explained
by the evolution of the current densities over the elec-
trode surfaces which influence the spatial distribution
of the volumetric Lorentz force densities. At low cur-
rent levels the departures are attributed to the scal-
ing of gasdynamic pressure distributions induced by
the pinching components of the volumetric electro-
magnetic forces. The insight was used to formulate a
more accurate empirically-based model for the scal-
ing of the thrust of an MPDT.

1 Introduction

It is useful to have a simple analytical model or for-
mula that can readily be used to predict the scaling
of the thrust of magnetosplasmadyanmic thrusters
(MPDTs) for a wide range of interesting operation
parameters (e.g. current, mass flow rate, geometry,
propellant type, etc.). Such a formula would be use-
ful for characterizing thruster performance as well as
for system and mission analysis. The Maecker equa-
tion, described below, is such a formula. However,
as we shall see, it can suffer from substantial inac-
curacies when applied to real thrusters under many
conditions of interest.

The MPDT is considered to be an electromagnetic
accelerator where the acceleration is primarily due to
the action of the Lorentz force. In this paper we will
be concerned only with the self-field MPDT1 (with
no applied magnetic field). The thrust produced by
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a coaxial self-field electromagnetic plasma accelera-
tor was first treated analytically by Maecker[1] and
expounded by Jahn[2]. The resulting expression, of-
ten referred to as the Maecker formula, simply states
that

T =
µo

4π

(
ln

ra
rc

+
3
4

)
J2, (1)

where T is the thrust, µo is the magnetic permeability
of free space, J is the total current driven between the
electrodes and ra and rc are the anode and cathode
radii. It is convenient for our discussion to define a
dimensionless thrust coefficient, CT , of order unity,

CT ≡ 4π
µo

T

J2 (2)

which, for the case of the Maecker formula, is

CT = ln
ra
rc

+
3
4
. (3)

Most notable in the Maecker formula is that the
thrust coefficient is independent of the total current
J , mass flow rate ṁ and type of propellant used.

Although the Maecker formula is derived from an
idealized model of the MPDT, it has often been in-
discriminately applied to explain the scaling of the
thrust of real MPDTs. Not surprisingly, the in-
variance with J , ṁ and propellant predicted by the
formula is most often contradicted by experimental
thrust measurements. This is starkly illustrated in
Fig. (1) where the measured thrust coefficient of an
MPDT (obtained, to a constant, by dividing the mea-
sured thrust with the square of the measured current)
is plotted versus the measured current for two differ-
ent argon mass flow rates along with the constant CT

of the Maecker formula.
The argon thrust measurements were made by

Gilland[3] using the Princeton Benchmark Thruster
(PBT) (shown schematically in Fig. (3)), however
the general trends are typical of data from other
thrusters. The following features and trends can be
noted from that plot: 1) Generally, CT is depen-
dent on the mass flow rate and current unlike in
the Maecker formula. 2) At high current levels, the
Maecker model overpredicts CT by more than 20%.
3) The dependence on the mass flow rate becomes
more pronounced, as the current is lowered. 4) At
low current levels, the measured CT can easily reach
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Figure 1: Comparison of the Meacker thrust coeffi-
cient with that measured[3] for the Princeton Bench-
mark Thruster with two different argon mass flow
rates. (ra/rc = 5.26)

more than 250% of the Maecker value. 5) The cur-
rent value at which this transition happens occurs at
a lower current when the mass flow rate is decreased.

At high current levels, the discrepancy is often rec-
onciled in the literature by substituting for the con-
stant 3/4 in Eq. (1) a value that causes the model to
better fit the data, or by replacing the thrust coeffi-
cient, given in Eq. (3) by ln(ra/rc)eff where (ra/rc)eff
is an “effective” value that provides better fit to the
formula. These adjustments are often arbitrary and
in both instances, CT remains constant for a given
thruster.

It is also often assumed that the departure at low
current levels must be linked to an increase in the
prominence of electrothermal acceleration. However,
from experimental data such as those in Fig. (1), we
note that at low current levels CT scales with J−n

where n is between 3 and 4. This implies that the
thrust (proportional to CTJ

2) produced by this addi-
tional mechanism, must scale inversely with J raised
to a power greater than 1. It is difficult to explain
how electrothermal acceleration can be made to de-
crease with increasing electrical power.

The Tikhonov formula Before presenting a de-
tailed analysis, it is informative to consider another
simple MPDT thrust formula that has been proposed
by Tikhonov[4, 5]. Unlike the Maecker formula, that
of Tikhonov allows for a CT that does vary with the
current.

Tikhonov treats the case of a cylindrical MHD
channel flow in the MPDT under the following as-
sumptions: 1) Quasi-one-dimensional flow, 2) sin-

gle fluid, single temperature, 3) isothermal and 4)
high magnetic Reynolds number. By setting the
downstream end of the channel to be at the section
where both the magnetic and thermal pressure be-
come equal, and the upstream end to be at a section
immediately behind all the enclosed current, he de-
rives the following simple expression for CT ,

CT =
γ + 1

2
+

α−2
o

2
, (4)

where αo is a dimensionless parameter evaluated at
the upstream end of the channel,

αo =
γµo

8πao

J2

ṁ
, (5)

γ is the specific heat ratio of the propellant and ao

is the ion acoustic speed evaluated at the upstream
end. Notably, the expression is independent of the
thruster’s ra/rc, the propellant ionization potential
and much of the geometrical details of the electrodes.
Furthermore, it states that when J2/ṁ becomes high,
the thrust coefficient is simply

CT � γ + 1
2

when αo � 1, (6)

which for a monatomic gas has a value of 1.33.
It is obvious from Fig. (2) that this formula under-

predicts CT . It is interesting to note, however, that
the Tikhonov model clearly shows the trend of in-
creasing CT with decreasing current and specifically
a scaling of J−4 for the thrust coefficient as the cur-
rent is decreased.

Figure 2: Comparison of the Tikhonov thrust coeffi-
cient with the measured thrust coefficient of the PBT
plotted versus the measured current for two different
argon mass flow rates. Also shown is the constant
Maecker CT . (The ion acoustic speed was calculated
for a temperature of 1 eV)

Using the results of theoretical and experimental
research carried at EPPDyL over the span of two
decades, we explore the scaling and dependencies of
the thrust and its departure from the simple prescrip-
tions described above. The insight is then used to
formulate a more accurate empirically-based model
for the scaling of the thrust of the PBT.



2 Detailed Analysis of the
Thrust of an MPDT

First-principles model. It was Rudolph[6] who
analytically treated the thrust of the Princeton
benchmark thruster (PBT) starting from first prin-
ciples. At the time of that work in 1980, there were
no direct thrust measurements available on the PBT.
The extensive database available now, will allow us to
confirm the predicted trends and better understand
the differences between measured thrust and the pre-
dictions of the simpler models. We will follow the
analysis in ref. [6] and include some effects neglected
in that work. These additional effects are essential
to explain the departures of the data from the simple
models such as the Maecker formula.

Figure 3 shows a schematic of the PBT configu-
ration with a central cathode (10 cm long), and an
outer anode (5.1 cm inner radius). The neutral gas
is injected from ports in the backplate (left side of
that figure), which like the chamber walls, is an in-
sulator. Also shown in the figure are the cylindrical
coordinate system and the boundary (dashed line) of
the control volume adopted for the analysis.

Figure 3: Control volume used in deriving a thrust
equation for the Princeton benchmark thruster[6].
The dashed line represents the boundary of the con-
trol volume used in the thrust analysis. For the
particular thruster used in the thrust experiments
we have rc = .95 cm, ra = 5.1 cm, rao = 9.3 cm,
rch = 6.4 cm, ta = .95 cm and lc = 10 cm.

The control volume denotes the region where elec-
tromagnetic, gasdynamic and viscous shear forces act
on the propellant thus producing a momentum flux.
The thrust is equal to the net momentum flux car-
ried away by the propellant flow. The control volume
is chosen such that all of its free boundaries are far
enough from the thruster as to warrant setting the
magnetic field there to zero and the pressure equal to
the ambient pressure. With these boundary condi-
tions, the only forces that need to be considered are

those on the thrust surfaces and inside the control
volume. Since we are interested in thrust as the axial
component of the force, we can write∫

S

ρuz (u · dS) = +
∫
V

jrBθdV −
∫
S

p (z · dS) , (7)

where S and V are the surface and volume of the
control volume, z is the unit vector and the rest of
the symbols have their usual meaning. The left side of
the above equation is the net momentum flux which
is the difference between the thrust and the “cold”
thrust Tc due to the cold slow gas entering the control
volume. We therefore have,

T = Tc +
∫
V

jrBθdV −
∫
S

p (z · dS) , (8)

The second term on the right hand side represents
the contribution of jrBθ, the axial component of
the Lorentz force density, which acts to “blow” the
plasma out. This term will be referred to as Tb, the
“blowing” contribution to thrust. The radial compo-
nent of the Lorentz force density, jzBθ acts to pinch
the plasma and contributes to axial thrust through
the unbalanced effect of the gasdynamic pressure on
some surfaces of the accelerator. Consequently the
second integral on the right hand side is an integral of
the gasdynamic pressure and represents the “pinch-
ing” contribution of the Lorentz force to the axial
thrust and is termed Tp. This integral contains, im-
plicitly, the effects of jzBθ.

The cold gas contribution Tc is typically much
smaller than the total thrust and will be neglected
in this analysis. Also neglected in the above equa-
tion are viscous effects. In SI units, a typical plasma
viscosity of 10−5, a velocity of 104 and a boundary
layer thickness of about 1 mm yield a viscous force of
10−2N/cm2[7]. For a thruster whose total wall surface
area is on the order of 100 cm2, the viscous force is
negligible compared to the thrust of the PBT which
is typically on the order of 100 Newtons.

Blowing Contributions. The evaluation of Tb

through volume integration, as prescribed by the sec-
ond term on the right hand side of Eq. (8), requires
a knowledge of the details of the current distribution
inside the chamber. However, by using the concept
of the magnetic stress tensor, the volume integral can
be replaced by a far more useful surface integral[2, 6].
By definition, the Maxwell stress sensor, β̃ , satisfies
the following equation,

∇ · β̃ = j × B +
B(∇ · B)

µo
, (9)

which when combined with Maxwell’s equations for
the divergence and curl of the magnetic field, yields

∇ · β̃ =
(∇× B) × B

µo
. (10)

This equation allows us to relate the volume integral
of the Lorentz body force density to a surface integral



through the divergence theorem:

Tb =
∫
V

jrBθdV =
∫
V

(
∇ · β̃

)
z
dV =

∫
S

(
β̃ · dS

)
z
.

(11)
For a coaxial self-field MPDT with a symmetric dis-
charge, the magnetic field has only an azimuthal com-
ponent and the magnetic stress tensor takes the form

β̃ =
1
µo




−B2
θ

2
0 0

0 −B2
θ

2r2 0

0 0 −B2
θ

2



. (12)

The only areas of the control volume surface shown
in Fig. (3) that contribute to the surface integral
in Eq. (11) are the four that are perpendicular to
the thrust axis and over which the magnetic field is fi-
nite. These are the backplate, the anode front (down-
stream) surface, the anode back (upstream) surface
and the tip of the cathode. The anode lip, which
in reality is rounded, will be approximated by a flat
surface as shown in Fig. (3) where all the physical
dimensions of the PBT that are needed for the eval-
uation of the integral are defined.

The resulting contributions of the four surfaces to
Tb are quoted below. Details of the integration can
be found in ref. [6].

Backplate blowing contribution:

[Tb]BP =
µo

4π
ln

rch
rc

. (13)

Anode inner face blowing contribution: As-
suming a uniform current density, ji, on the inner
face of the anode, this contribution is:

[Tb]AIF = −µo

4π

[(
J2 − 2πr2

chjiJ + π2r4
chj

2
i

)
ln

rch
ra

+
(
πJji − π2r2

chj
2
i

) (
r2
ch − r2

a

)

+
π2j2

i

4
(
r4
ch − r4

a

)]
. (14)

Anode outer face blowing contribution:

[Tb]AOF =
µo

4π

[
π2r4

aoj
2
o ln

rao
ra

− π2r2
aoj

2
o

(
r2
ao − r2

a

)

+
π2j2

o

4
(
r4
ao − r4

a

)]
(15)

where jo is the current density on the outer face of
the anode.

Cathode tip blowing contribution:

[Tb]CT =
µoφ

2J2

4π

[
3
2
− 2 ln 2

]
. (16)

where φ is the fraction of the total current attached
at the hemispherical tip of the cathode.

The final expression for Tb is be obtained by sum-
ming all four contributions given by Eqs. (13), (14),
(15) and (16).

Pinching Contributions In order to evaluate the
surface integral of the gasdynamic pressure in Eq. (8),
we consider the radial momentum balance:

ρur
∂ur

∂r
= −∂p

∂r
− jzBθ (17)

where the term ρuz∂ur/∂z does not appear because
uz is zero on the solid surfaces over which the integral
will be evaluated (backplate, inner and outer anode
faces and the cathode tip). This yields the following
expression for p(r, z) along the surfaces of the control
volume,

p(r, z) =
∫ ro

r

ρur
∂ur

∂r
dr +

∫ ro

r

Bθ

µor

∂rBθ

∂r
dr + p(ro, z)

(18)
where Maxwell’s ∇ × B equation was used to elim-
inate jz. The last term, p(ro, z), is the integration
constant taken as the gasdynamic pressure at an ar-
bitrary radius ro.

The magnitude of the integrand in the first inte-
gral can be estimated to be on the order of 104N/m3

using an upper limit on the plasma density (1022m−3

(which gives ρ = 6.6 × 10−4kg/m3 for argon), veloc-
ities of 104 m/s and a characteristic length of 5 cm.
This magnitude is typically quite lower than that of
the radial pinching force density as estimated from
measurements by Rudolph[6]. Consequently Rudolph
assumes the radial flow term to be negligible in his
analysis. We shall see that in order to explain the rise
in CT at lower currents the radial flow term should
not be neglected at least for the case of the backplate
pinching contribution to thrust.

Backplate pinching contribution. The pinching
contribution of the backplate part of the control vol-
ume presents an interesting singularity as the second
integral in Eq. (18) vanishes because all the current is
downstream of that boundary and that rBθ is a con-
stant there. This implies that the pressure gradient
on that surface is balanced by the radial flow term
only. This gives a thrust contribution of

[Tp]BP =
[
−

∫
S

p (z · dS)
]
BP

(19)

= p(rch, zo)π
(
r2
ch − r2

c

)
+

∫ rch

rc

2πr
[∫ rch

r

ρur
∂ur

∂r
dr

]
dr,

where zo refers to the axial position of the backplate.
The pressure p(rch, zo) was measured at the backplate
by Cory[7] and we will use his measurements in the
calculations below. We lack, however, an experimen-
tal characterization that would allow us to estimate
the radial flow term in the above equation. If this



flow term is neglected, as was done by Rudolph[6],
the pressure profile is flat and the thrust contribu-
tion is a constant given by p(rch, zo)π

(
r2
ch − r2

c

)
. A fi-

nite (non-uniform) radial velocity profile, on the other
hand, would induce a pressure radial profile at that
surface that is peaked at the cathode. Consequently,
a better approximation than a flat profile would be
a parabolic one centered at the cathode and modeled
as

p(r, zo) = b− ar2, (20)

where

a =
p(rc) − p(rch)

r2
ch − r2

c

; b = p(rc) +
p(rc) − p(rch)

r2
ch − r2

c

r2
c ,

(21)
and where, for the case of the backplate, the pressures
are those at z = zo. After integration, this yields the
following thrust contribution

[Tp]BP = bπ
(
r2
ch − r2

c

)
− aπ

2
(
r4
ch − r4

c

)
. (22)

While the measurements of Cory[7] will be used for
p(rch, zo), the unknown term p(rc, zo) becomes the
only free parameter of the model. The value for
p(rc, zo) will be inferred from the thrust data as will
be shown further below. Rudolph’s approximation
of neglecting the radial flow term is equivalent to set-
ting p(rc, zo) equal to p(rch, zo). This would lead to an
underestimate of the pinching contribution to thrust
and cannot account for the rise of CT with decreasing
current as will be shown in the evaluation at the end
of this section.

Anode inner face pinching contribution.
Downstream of the backplate end of the control vol-
ume, the second integral in Eq. (18) quickly domi-
nates over the radial flow term and consequently, the
pressure profile may be assumed to be induced mainly
by the Lorentz term. Using the same assumptions as
for the blowing contribution in Eq. (14), the integra-
tion yields[6]:

[Tp]AIF =
µo

4π
[(

j2
i π

2r4
ch + j2

i π
2r2

chr
2
a

− 2Jjiπrch2 )
r2
ch − r2

a

2r2
ch

−
(
2r2

aj
2
i π

2r2
ch − 2Jjiπr

2
a

)
ln

ra
rc

]

− π
(
r2
ch − r2

a

)
p(rch, zo). (23)

Where we have assumed again the pressure constant
to be p(rch, zo).

Anode outer face pinching contribution. The
plasma density on the 200 cm2 anode of the PBT does
not exceed an upper bound of 1020 m−3[7] so that even
for a temperature as high as 5 eV, the pressure force
will be less than 2N and can be neglected.

Cathode tip pinching contribution. This con-
tribution is also quite small because typically φ is on
the order of 10%. Following the prescriptions used
above to get the blowing contribution at the cathode
tip, and neglecting the radial flow term, the integra-
tion of Eq. (20) yields[6]:

[Tp]CT =
µo

4π
φ2J2

12
+ p (rc, ztip)πr2

c , (24)

where p (rc, ztip) is the pressure at the cathode tip
available from experiments.

The total thrust is the total sum of the blowing
contribution expressed in Eqs. (13), (14), (15), (16)
and the pinching contributions expressed in Eqs. (22),
(23) and (24).

Comparison to the Maecker formula. The
Maecker formula as derived and discussed by Jahn[2]
can be obtained by applying the Maxwell stress ten-
sor approach to a simple cylindrical control volume
(shown in Fig. 8-19 of ref. [2]). This choice of control
volume is equivalent to considering the thruster as an
infinite cylinder without a backplate.

The differences between the resulting simple for-
mula and the detailed model derived above can be
attributed to the following: 1) The Maecker formula
does not include the effects of current attachment on
surfaces that are not parallel to the thruster axis.
2) While the Maecker formula assumes that all the
current attaches uniformly at the cathode tip, the
treatment above allows for a more diffusive current
attachment over the cathode length with a fraction
φJ attaching at the tip. 3) In the Maecker for-
mula, the blowing component contributes a term of
(ln ra/rc+1/4) to CT assuming a uniform current den-
sity on the cathode surface, and a constant of 1/2
from the pinching pressure on the cathode tip giv-
ing a constant equal to 3/4. It does not include the
effects of pinching pressure on the backplate of the
thruster.

For the PBT at high currents, the blowing contri-
bution at the backplate, dominates while the terms
for blowing and pinching at the cathode tip , even if φ
is near unity, contribute a thrust coefficient below .2,
which is far lower than the corresponding 3/4 term in
the Maecker formula. We shall see below that at high
currents, the pinching contribution at the backplate
is not high enough to exceed the CT of the Maecker
formula. At low currents, however, the pinching pres-
sure effects on the backplate cause an enhancement
in CT above the Maecker value.

Semi-empirical evaluation. So far the thrust
model, represented by Eqs. (13), (14), (15), (16),
(22), (23) is purely analytical from first principles.
However, it cannot inform us on how CT varies with
the current since we lack a prescription of how the
parameters

ji, jo, φ, P (rc, ztip) and p(rch, zo), (25)
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vary with the total current J . A prescription of
this sort can be obtained from experimental measure-
ments of current distribution along the electrodes as
a function of J and pressure measurements. The use
of an experimental prescription of these parameters
will render the model semi-empirical and applicable
only for the conditions (e.g. ṁ, propellant type) un-
der which the thruster, used for the experiments, was
operated. Such a semi-empirical evaluation of the
model is useful in showing the general thrust scaling
trends and will be of guidance to our efforts to for-
mulate a more generalized thrust scaling relation in
section 3.

Using the current density measurements reported
in Refs. [6, 9, 10], the evolution of ji and jo (along the
anode inner and outer faces) with the total current J
was deduced to have the following general trend. Be-
low a first transition current Jt1, the current attaches
entirely on the inner face of the anode. Above Jt1,
but below another transition current Jt2, ji on the
inner face stays constant while jlip on the anode lip
becomes finite and increases with increasing J until
Jt2 is reached. Above this limit, any additional in-
crease in J is attached at the outside face of the an-
ode while both ji and jlip stay constant. By requiring
that J = jiSi + jlipSlip + joSo (where S is the area of
each surface) and assuming the current densities to
be uniform over these areas, we can write:

J ≤ Jt1 : ji =
J

Si
; jlip = 0; jo = 0

Jt1 ≤ J ≤ Jt2 : ji =
Jt1

Si
; jlip =

J − Jt1

Slip
; jo = 0

Jt2 < J : ji =
Jt1

Si
; jlip =

Jt2 − Jt1

Slip
;

jo =
J − Jt2

So
. (26)

For the PBT operating with 6 g/s of argon, we can
deduce from ref. [6], Jt1 = 3.7 kA and Jt2 = 14 kA.

The dependence of p (rch, zo) on the current was
measured by Cory[7] and is given by

p (rch, zo) = 6.5 × 10−4J1.5 N/m2 (27)

for 6 g/s of argon. Finally, from current density mea-
surements and momentum balance considerations[6]
we have:

p (rc, ztip) = .263J N/m2, (28)

and φ is essentially constant at .2.
With these empirical specifications all the compo-

nents of thrust can be calculated with the exception
of [Tp]BP which requires knowledge of the dependence
of p (rc, zo) on J . Consequently, we calculated all the
other components of thrust and subtracted their sum
from the measured (total) thrust data at 6 g/s. The
remaining contribution represents the pinching con-
tribution at the backplate end of the control volume.
Figure 4 shows the evolution of p (rc, zo) vs J that
is required for Eq. (2) to fit the backplate pinching
contribution inferred from the data. It can be noted

Figure 4: Evolution of the gasdynamic pressure on
the backplate at the cathode (r = rc) inferred from
the measured data. Also shown is the pressure at a
radius (r = rch) as measured by Cory[7] (cf. empirical
formula in Eq. (27))

that as the current is increased beyond about 14 kA,
the pressure on that boundary at the cathode radius
becomes essentially equal to the pressure at a radius
rch and is given by Cory’s empirical formula. This
means that, above this current, the pressure radial
profile is flat as assumed by Rudoplh[6]. However,
below that current level, a substantial difference be-
tween the pressure at rc and that at rch is required to
explain the data. The pressure radial profiles cor-
responding to the curves in Fig. (4) are shown in
Fig. (5) for four different current levels.

Figure 5: Radial profiles of the pressure at the back-
plate corresponding to the curves shown in Fig. (4),
for four different current levels.

Figure 6 shows the contributions of the various
blowing and pinching components to CT along with
their total sum. It is clear from this figure that
at high current levels, the main contribution to the
thrust is from the blowing component at the back-
plate with a small contribution from the pinching
component which, from Fig. (4), can be seen to be
fully accounted for by Cory’s pressure measurements
at r = rch. As the current is decreased, the pressure
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at the cathode end of the backplate must increase
above its value at higher radii in order to account for
the rise in CT .

Figure 6: Contributions of the various blowing and
pinching components to CT along with their total sum
for the PBT operated with 6 g/s of argon. Also shown
are the measured data.

The rise in CT at lower current, according to this
picture, should not be termed an “electrothermal”
effect as it is not simply due to an expansion of an
ohmically heated gas but the result of the evolution
of gasdynamic pressure distributions induced by the
pinching effect of the volumetric Lorentz force densi-
ties.

3 Generalization to a Simple
Scaling Relation

We now use the insight gained so far to formulate
a simple scaling relation that embodies the effects
described above and that would also be valid for other
mass flow rates and propellants (than 6 g/s of argon).

The critical ionization velocity and the dimen-
sionless current ξ. Numerous experiments (see
the citations in ref. [8]) on the MPDT have shown
that the following dimensionless parameter

ξ = J/



ṁ1/2 (2εi/mi)

1/4

(
µo

4π
ln

ra
rc

)1/2


 (29)

(where ma and εi are the mass and the first ionization
potential of the neutral atom) scales various aspects
of MPDT behavior. The first scaling relations for
MPDT characteristics (voltage and thrust) based on
this parameter were derived in 1987[11].

A physical interpretation for the scaling with ξ can
be made as follows. In the MPDT, ionization is a sig-

nificant energy sink whose scaling, under nominal op-
eration of the thruster, is strongly tied to the magni-
tude of the energy in the acceleration (useful) “sink”.
The strong tie between these two sinks is suspected
to be related to the role of plasma instabilities in con-
trolling and enhancing ionization. (Evidence on the
role of plasma instabilities in MPDT ionization was
presented in ref. [12].) Since instabilities in MPDTs
are of the current-driven type[13], and since acceler-
ation in the MPDT is also current-driven, both sinks
are sharing the same source, namely the current. A
nominal regime for MPDT operation can thus be de-
fined in terms of this “equipartition” of energy (or
power) sinks which can be stated, in terms of power,
as

1
2
Tuex = ṁ

εi
M

, (30)

which by definition, only holds near the nominal op-
eration point. The velocity uex in this expression is
that of the plasma exhaust. Since T = (µo/4π)CTJ

2,
the above relation gives

µo

4π
CTJ

2uex = ṁu2
ci, (31)

where uci is defined as

uci ≡
(

2εi
ma

)1/2

, (32)

and is generally known as the critical ionization ve-
locity. For xenon, argon and lithium, uci is 4.22, 8.72
and 12.24 km/s respectively.

We define “nominal operation” to be that for a
thruster current that produces an exhaust velocity
equal to the critical ionization velocity. That current
is termed the critical ionization current, Jci. From
the above equation we have,

Jci =


 ṁuci

µo

4π
CT




1/2

. (33)

This characteristic current is used to nondimension-
alize the thruster current giving us the dimensionless
parameter ξ defined as

ξ ≡ J

Jci
, (34)

which is written more explicitly in Eq. (29) where the
thrust coefficient CT was taken, to a first order, to be
ln

ra
rc

. (For ξ near 1, a better approximation for CT ,

as will be seen later, is ln
(
ra
rc

+ 1
)

).

The parameter ξ can be thought of as a similar-
ity parameter in the sense that two thrusters oper-
ating at the same value of ξ are expected to exhibit
some similar characteristics. Since this similarity is
borne out by numerous experiments, we shall adopt
it axiomatically in our formulation of a thrust scaling
relation and verify its applicability by testing the re-
sulting scaling formula with experimental data over
a wide range of parameters.
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Formulation of a thrust scaling relation From
thrust data, the results of the analysis in section 2
and from the Tikhonov formula, we expect CT at low
current levels to scale with J−n where n is about 4.
Therefore for small values of ξ, we expect the follow-
ing scaling

CT ∼ ξ−4 (for ξ < 1). (35)

At high current levels (ξ > 1), we know from the
above discussions that CT scales weakly with the
current but is not constant as in the Maecker for-
mula. This is due to both the dominance of the back-
plate blowing contribution and the finiteness of all
the other terms which provide the dependence on the
current. This dependence is too complex to model as
it relates to how the current densities distribute over
the electrodes and how that distribution evolves with
changing current. It would be much more useful to
have a less entangled, albeit empirical, characteriza-
tion of the scaling of this effect. Fortunately such a
study does exist in the form of an experimental in-
vestigation carried by Kaplan[10] who found that the
scaling the thrust coefficient at high current levels is
such that eCT vs J2/ṁ can be represented by a line
whose intercept is very close to the physical value of
ra/rc.

Based on these considerations and the fact that
J2/ṁ scales as ξ2 we expect the following scaling for
the thrust coefficient at high values of ξ,

CT ∼ ln
(
ra
rc

+ ξ2
)

(for ξ > 1). (36)

In light of all of the above we can formulate a scal-
ing model that is a combination of Eqs. (35) and (36)
in the form of

CT =
ν

ξ4 + ln
(
ra
rc

+ ξ2
)

, (37)

where ν is a dimensionless mass flow rate that cor-
rects for mass flow rate effects:

ν ≡ ṁ

ṁ∗ , (38)

and where ṁ∗ is a reference mass flow rate presumed
to be a constant and is obtained empirically from the
data. Using the expression

CT =
ṁ/ṁ∗

ξ4 + ln
(
ra
rc

+ ξ2
)

, (39)

with the 6 g/s argon data, yielded

ṁ∗ = 66 g/s. (40)

In the narrow sense of applying to data at three mass
flow rates of both argon and xenon as well as for
two similar thrusters with different length scales, this
value for ṁ∗ is “universal” as shown by the compar-
ison of the model to these data.

The plots in Fig. (7) show a comparison of the
model to argon and xenon thrust measurements at

Figure 7: Comparison of the scaling formula in
Eq. (39) with argon and xenon thrust measurements
for various mass flow rates.

various mass flow rates (the xenon data were obtained
recently at EPPDyL by Ziemer) showing that the
trends in the data are well accounted for. The agree-
ment was far worse for attempts to model hydrogen
data. This could be partly related to the fact that
the critical ionization velocity of hydrogen is both
very high and ill-defined (diatomic molecule).

REFERENCES
[1] H. Maecker. Z. Phys., 141(1):198–216, 1955.
[2] R.G. Jahn. Physics of Electric Propulsion.

McGraw-Hill, New York, 1968.
[3] J.H. Gilland. Master’s thesis, Princeton Uni-

versity, 1988.
[4] V.B. Tikhonov, et. al. IEPC-93-076.
[5] N.V. Belan, et. al. Stationary Plasma Thrusters

(in Russian). KHAI, Kharkov, pp. 985, 1989.
[6] L.K. Rudolph. PhD thesis, Princeton Univer-

sity, 1981.
[7] J.S. Cory. PhD thesis, Princeton University,

1971.
[8] E. Choueiri. 3rd International Symposium on

Space Propulsion, Beijing, China, 1997. paper-24.
[9] A.J. Saber. PhD thesis, Princeton University,

1974.
[10] D.I. Kaplan. Master’s thesis, Princeton Uni-

versity, 1982.
[11] E.Y. Choueiri, et. al. AIAA-87-1067.
[12] E.Y. Choueiri and H. Okuda. IEPC-93-067.
[13] E.Y. Choueiri, et. al. IEPC-91-100.



References

[1] H. Maecker. Plasma jets in arcs in a process
of self-induced magnetic compression. Z. Phys.,
141(1):198–216, 1955.

[2] R.G. Jahn. Physics of Electric Propulsion.
McGraw-Hill, New York, 1968.

[3] J.H. Gilland. The effect of geometrical scale
upon MPD thruster behavior. Master’s thesis,
Princeton University, Princeton, NJ, USA, 1988.

[4] V.B. Tikhonov, S.A. Semenihin, V.A. Alexan-
drov, G.A. Dyakonov, and G.A. Popov. Research
of plasma acceleration processes in self-field and
applied magnetic field thrusters. In 23rd Inter-
national Electric Propulsion Conference, Seattle,
WA, USA, 1993. IEPC-93-076.

[5] N.V. Belan, V. Kim, A.I. Oranstky, and V.B.
Tikhonov. Stationary Plasma Thrusters (in Rus-
sian). KHAI, Kharkov, pp. 985, 1989.

[6] L.K. Rudolph. The MPD Thruster Onset
Current Performance Limitation. PhD thesis,
Princeton University, Princeton, NJ, USA, 1981.

[7] J.S. Cory. Mass, Momentum and Energy Flow
from an MPD Accelerator. PhD thesis, Prince-
ton University, Princeton, NJ, USA, 1971.

[8] E. Choueiri. The scaling of thrust in self-field
MPD thrusters. In 3rd International Sympo-
sium on Space Propulsion, Beijing, China, 1997.
paper-24.

[9] A.J. Saber. Anode Power in a Quasi-Steady
MPD Thruster. PhD thesis, Princeton Univer-
sity, Princeton, NJ, USA, 1974.

[10] D.I. Kaplan. Performance characteristics of geo-
metrically scaled MPD thrusters. Master’s the-
sis, Princeton University, Princeton, NJ, USA,
1982.

[11] E.Y. Choueiri, A.J. Kelly, and R.G. Jahn. MPD
thruster instability studies. In 19th Interna-
tional Electric Propulsion Conference, Colorado
Springs, CO, USA, 1987. AIAA-87-1067.

[12] E.Y. Choueiri and H. Okuda. Anomalous ion-
ization in the MPD thruster. In 23rd Interna-
tional Electric Propulsion Conference, Seattle,
WA, USA, 1993. IEPC-93-067.

[13] E.Y. Choueiri, A. J. Kelly, and R. G.
Jahn. Current-driven plasma acceleration ver-
sus current-driven energy dissipation part II :
Electromagnetic wave stability theory and ex-
periments. In 22nd International Electric Propul-
sion Conference, Viareggio, Italy, 1991. IEPC-
91-100.


