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A fundamental upper limit, η̂, for the thrust efficiency of self-field magnetolpasmadynamic
thrusters (MPDTs) is derived from the generalized Ohm’s law and the minimization of the
volume integral of the square of the current density, which controls dissipation in the MPDT.
It is found that η̂ ' 1/(1 + 4/Rmci ξ

4), where ξ is the MPDT scaling number (the total cur-
rent normalized by the current at which an equipartition of power occurs between thrust and
ionization), and Rmci is the magnetic Reynolds number evaluated at ξ = 1.

I. Motivation
It would obviously be useful to have a measure of the headroom magnetolpasmadynamic thruster (MPDT) perfor-

mance has for improvement through judicious design before it reaches a fundamental limit. To this end we seek an
expression for the upper limit of MPDT thrust efficiency that does not explicitly depend on the dimensional parameters
related the design of the thruster and its operation.

II. Derivation

A. Fundamental MPDT Power Balance
We start with the generalized Ohm’s law[1], which relates the current density, j, the magnetic field B and the

electric field E ′ = E + u × B, in the form that is more useful for analyzing the MPDT:

E ′ =
1
σ

[
j +Ωe

j × B

B
+ s

B × ( j × B)
B2

]
, (1)

where σ = nee2/me ν̄e is the scalar conductivity, ne the electron density, me the electron mass, e the universal charge,
ν̄eH the electron-heavy species momentum-averaged collision frequency, Ωs = ωcs/ν̄s the electron Hall parameter
for species s, ωcs = eB/ms the electron cyclotron frequency, s = (ρn/ρ)2ΩeΩi the ion slip factor, ρ the total mass
density, and ρn the neutral mass density. For the MPDT, the high collisionality and high ionization fraction[2] insure
that the ion slip term is negligible, and we are left with

j = σE ′ −Ωe
j × B

B
.

Since our aim is to study the energetics of the MPDT, we take the dot product of the above equation with j, and note
that j · j × B = 0, to get

j2

σ
= j · E ′ = j · E − u · j × B, (2)

where, in the second equality, we have reverted to the electric field in the laboratory frame. We note the convenient fact
that, with the Hall term disappearing, we only have to deal with the scalar conductivity, without losing the generality
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that conduction in the plasma can be anisotropic. Taking the integral over the volume,V , occupied by the discharge,
we have ∫

V

j · E dV =

∫
V

u · j × B dV +

∫
V

j2

σ
dV . (3)

We now make two phenomenological arguments to express the first two integrals in forms that will help us in our
ultimate derivation of η̂:

1) The first integral,
∫
V

j · E dV , represents the power input into the plasma excluding the electrode sheaths, and
can be expressed as J (V − Ve ), where J is the total current through the thruster, and Ve = Vc + Va is the sum of
the cathode and anode sheath voltages.

2) The second integral,
∫
V
u · j × B dV , represents the work done by the Lorentz force, which acts to accelerate

the plasma and produce thrust. We expect it to be linearly related to the thrust power ṁu2
e/2, where ue = T/ṁ

is the exhaust velocity, T is the thrust, and ṁ is the mass flow rate. We will therefore take the integral to be
αT2/2ṁ, where α is the linear factor.

We will have much to say further below about the last integral,
∫
V

j2/σ dV , which represents Joule heating.
With these identifications, Eq. 3 then becomes

J (V − Ve ) − α
T2

2ṁ
=

∫
V

j2

σ
dV , (4)

and is central to our derivation of the MPDT efficiency limit. It states a power balance that is fundamental to the MPDT.
To underline the fundamental nature of this expression, we note that Villani[3] arrived at the exact equation above

after a very detailed derivation involving the MHD continuity, momentum, and energy equations, the generalized
Ohn’s law, Maxwell’s equations, the second law of thermodynamics, dimensional analysis, volume integration, and the
divergence theorema. The two phenomenological arguments we made above to quickly arrive at the same result can be
shown to reflect fundamental relations that he derived from first principles, as discussed in the Appendix.

Villani[3] also extensively verified this balance experimentally via detailed experimental measurements with 5
thrusters geometries and a wide range of operation conditions over which

∫
V

j2/σ dV varied by a factor of 370.
Moreover, he showed that the conductivity varies by no more than a factor of 1.6, while the measured value of j2 varies
by more than a factor of 100 over the discharge volume. This allows pulling the conductivity out of the volume integral.
Finally, he showed that α is in the range 1.15-1.4. Therefore, the power balance (with α set to 1) becomes

J (V − Ve ) =
T2

2ṁ
+

1
σ

∫
V

j2 dV . (5)

B. MPDT Efficiency, Thrust, and the MPDT Scaling Number
Using the basic definition of thrust efficiency, η, of electric rockets, and the above MPDT power balance, we have

η ≡
T2

2ṁV J
=

1

1 +
2ṁ
σT2

∫
V

j2 dV + βe

, (6)

where βe = Ve J/(T2/2ṁ) is the ratio of the power dissipated in the electrode sheaths to the thrust power, and quickly
becomes less than 1 as the thruster is operated at the high current levels, nearing the “onset condition", required for high
efficiency[4–7]. Setting βe = 0 is furthermore justified by our seeking an upper limit for η.

It is clear from the above expression that the volume integral represents the main source of inefficiency. We shall
call it the “dissipation integral", ID

ID ≡
∫
V

j2 dV ,

and seek to find its fundamental lower limit, in order to find the upper limit of η. Before we do so, we turn our attention
to the thrust.

It is widely established that the thrust of the MPDT when operated in the high current regime (defined as ξ ≥ 1 in
terms of the MPDT scaling number we shall define shortly) is overwhelmingly due to its electromagnetic component

aVillani’s work was documented in a PhD thesis[3] but was never published in a conference or journal paper.
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(see, for instance Ref. [8], and Table A-1 of Ref. [3], where the ratio of the electrothermal to electromagnetic components
of thrust, Tet/Tem is found to range between 3.9 and 1.7% in the high current regime.) Therefore, we take T ' Tem .

We have addressed the electromagnetic thrust of the MPDT in Ref [9]. Specifically, the “thrust coefficient", CT ,
defined as

CT ≡
4π
µo

T
J2 , (7)

and which is of order of unity, and can be measured accurately with a thrust stand and a current probe, was found to
obey the following scaling with ξ

CT =
ν

ξ4 + ln
(

ra
rc

+ ξ2
)
, (8)

where ν is a non-dimensional parameter that depends only the mass flow rate and is of order 10−2, ra/rc is the ratio of
anode to cathode radii, and ξ is the “MPDT scaling number" defined below. This scaling of CT was verified extensively
with thrust stand measurements taken with argon, krypton and xenon propellants. At ξ ' 1, CT ' ln(ra/rc ) due to the
vanishing first term and the attenuation of the log function. Therefore, we have T ' Tem = bJ2, uex = T/ṁ = bJ2/ṁ,
where, to a good approximation, b = (µo/4π) ln(ra/rc ) depends only on the thruster’s geometry, and represents its
inductance per unit length.

The “MPDT scaling number" (whose derivation was first given in Ref, [9], and which we summarize here for
convenience) is tied to the concept of nominal operation, which is the operation point at which the directed kinetic
power in the exhaust (associated with thrust) is equal to the power associated with the ionization sink when the entire
mass flow rate is at the first ionization potential, ε i :

1
2

Tuex = ṁ
ε i
M
. (9)

Here M is the atomic mass, and ε i is the first ionization potential. This equipartition is substantiated by the finding
that ionization is a significant power sink, whose magnitude, at nominal thruster operation conditions, is of the same
order as that of the power associated with acceleration[3], and by spectroscopic measurements that show that less than
10% of the power tied in ionization is recovered in the exhaust, and that as much as 85% of the internal energy is in
ionization[8] .

Defining “nominal thruster operation" in terms of this power equipartition, we have(
µo
4π

ln
ra
rc

)2

J4 = ṁ2u2
ci , (10)

where uci is defined as

uci ≡
(

2ε i
M

)1/2

, (11)

and is known as the critical ionization velocity. For xenon, krypton, argon, and lithium, uci is 4.22, 5.68, 8.72 and 12.24
km/s, respectively. The current at which the nominal operation condition is reached is called the critical ionization
current, Jci . From the above equation we have,

Jci =

( ṁuci
b

)1/2
. (12)

This characteristic current is used to normalize the total current leading us to the dimensionless parameter ξ, which we
call the MPDT scaling number:

ξ ≡
J

Jci
. (13)

More explicitly in terms of the controllable parameters of thruster operation,

ξ = J/



ṁ1/2 (2ε i/M)1/4(
µo
4π

ln
ra
rc

)1/2



. (14)
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When the MPDT scaling number is equal to unity, the thruster is said to be at its nominal operation condition, with a
nominal specific impulse Isp = uci/go , irrespective of the input power level.

Noting that T = ṁuciξ2, we can now express the efficiency in Eqn. 6 as a function of ξ:

η '
1

1 +
2

σṁu2
ciξ

4

∫
V

j2 dV
. (15)

To find the upper limit of the efficiency we now seek the lower limit of the dissipation integral.

C. The Lower Limit of the Dissipation Integral and the Upper Limit of Efficiency
We use the Lagrange multiplier method to find the lower limit of ID . From Eq. 2 we see that minimizing

∫
V

j2dV
is equivalent to minimizing σ

∫
V

j · E ′ dV , subject to the following two constraints

∇ · j = 0, (16)
∇ · E ′ = 0, (17)

and this leads us to write the functional

F (x, j,E ′) =

∫
V

(
j · E ′ + λ1∇ · j + λ2∇ · E

′) dV ,

where x represents the spatial variables, and λ1, λ2 are the two Lagrange multipliers. Hildebrand [10] describes the
method of minimizing integrals of the form

F (x,u,w) =

∫
F (x,u,u′,w,w′) dx,

(where the prime, in this context, denotes a spatial derivative) using Lagrange multipliers, and shows that the solution is
obtained by solving the associated Euler equations:

d
dx

(
∂F
∂u′

)
−
∂F
∂u

= 0, (18)

d
dx

(
∂F
∂w′

)
−
∂F
∂w

= 0. (19)

Generalizing the spatial differential operator to vector form, d/dx → ∇·, and applying the method to our particular
problem, where F = j · E ′ + λ1∇ · j + λ2∇ · E

′; u = j; w = E ′; u′ = λ1∇ · j; and w′ = λ2∇ · E
′ we find

E ′ = ∇λ1, (20)
j = ∇λ2. (21)

The first result identifies λ1 as the negative of the electric potential φE , while the second result, of more interest to our
problem, implies that also the current density can be expressed in terms of a potential λ2 = −φ j . By virtue of Eq. 16,
the current density potential satisfies Laplace’s equation ∇2φ j = 0. Since ∇ · j = −∇φJ it follows that

∇ × j = 0 (when ID is minimum). (22)

In other words, the lower limit of our dissipation integral is reached when the current pattern is irrotational, which
would be the case of uniform current conduction throughout the dischargeb.

Knowing the nature of the current pattern that minimizes the dissipation integral, we proceed to express its minimum
value, IDmin , in terms of the relevant operation and geometric parameters of a cylindrical self-field MPDT operating at

bVillani[3] makes the same statement but provides no proof. Instead he cites, erroneously, a math textbook where no such proof exists, thus
our explicit derivation. Also, it is straightforward to show that the same result, namely ∇ × j = 0, is obtained in the more general case where the
conductivity is both a tensor and spatially varying.
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a total current J. For that we take j = r̂ jr , then jr = J/(2πl jr), where l j is the axial extent of the current pattern in the
cylindrical discharge, and carry out the volume integration in cylindrical coordinates to get

IDmin =
J2

l2
j (2π)2

∫ rc

ra

∫ 2π

0

∫ l j

0

dr
r

dθ dz =
J2

2πl j
ln

ra
rc
. (23)

Using the above expression for IDmin in Eq. (15) to get the upper limit for the efficiency η̂, we find

η̂ =
1

1 +
4

σµ0uci l j ξ2

. (24)

where we recognize σµ0uci l j as the magnetic Reynolds number evaluated at ue = uci (that is ξ = 1),

Rmci ≡ σµ0uci l j , (25)

which we use to cast η̂ in its final form

η̂ =
1

1 +
4

Rmci ξ
2

. (26)

III. Discussion and Application
The physical picture reflected in the above deceptively simple expression is that of a competition between electro-

magnetic thrust power, which scales with ξ4, and Joule heating, which is invested in the ionization power sink, and is
effectively irrecoverable as thrust, and which scalesc with ξ2. This input power is equipartitioned between these two
sinks at the nominal condition where, by definition, ξ = 1.

If ξ is decreased, ID → IDmin and the current density pattern becomes more irrotational, which is a hallmark of low
dissipation, but thrust efficiency actually decreases as thrust power vanishes quicker. If ξ is increased, thrust power
eventually takes over dissipation, and η increases. The headroom the efficiency has to increase, at a given value of
ξ for a given MPDT, is manifested by how far the current density pattern is from being irrotational. Such headroom
can be used to increase performance through judicious design (e.g. lengthening the cathode[3], or contouring the
electrodes[11]) and optimized schemes (e.g. distributed mass injection[12]).

Since the extent to which the current density pattern is drawn axially (and thus made less irrotational) with the flow,
is represented by the magnetic Reynolds number, that number scales the headroom. Indeed, the value of Rm at ξ = 1,
becomes the sole measure of that headroom at the nominal operation condition,

η̂ci ≡ η̂(ξ = 1) =
Rmci

4 + Rmci

, (27)

which is 20%, at Rmci = 1, and 71% at Rmci = 10. This means there is more headroom to increase the efficiency by
judicious design and operation schemes (the realm of practical MPDT research) at higher Rmci – that is with higher
conductivity and higher values of uci .

A felicitous feature of Eq. 26, aside from its simplicity, is that η̂(ξ2) depends on a single parameter (Rm) that is
dimensionless, and which needs to be evaluated at only one condition (the nominal operation condition, ξ = 1), using
the characteristic velocity uci , which in turn depends only on the propellant’s atomic mass and ionization potential.

The axial extent of the discharge, l j , which corresponds to the length of the cylindrical conduction region when ID
is minimum, is essentially the cathode length. For operational requirements (e.g. allowable head load, required lifetime)
and system limitations (size and weight) that length is on the order of 10−1 m (typically 20 cm).

MPDTs are always operated in the more efficient high-current (ξ ≥ 1) regime. There is now clear experimental
evidence that the injected gas in the MPDT is abruptly and effectively ionized by a thin ionization front located far
upstream in the discharge and, when ξ ≥ 1, that the same high level of ionization is maintained throughout the discharge.
This justifies using the Spitzer-Härm formula to calculate the conductivity[1]:

σ ' 1.53 × 10−2 T3/2
e

lnΛ
mhos/m,

cWhile the ionization sink power scales with ξ2, the ionization fraction is shown in Ref. [2], through spectroscopic measurements, to scale with
ξ.
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where Λ is the plasma parameter and is given by

Λ = 1.24 × 107
(
T3

ne

)1/2

(with T in K, and ne in m−3).

Finally, it must be pointed out that there is another practical limit to increasing the efficiency due to the so-called “onset
condition," which is reached when the current is raised enough for a given mass flow rate, and at which significant
erosion of the anode occurs accompanied by severe hash in the voltage signal[13, 14]. We denote this condition by ξ∗.

As an illustrative example of the application of Eq. 26, we show in Table 1 calculations of η̂ for the cases of an
MPDT operated with four monatomic propellants: argon, xenon, krypton and lithium. We take l j=20 cm, and assume
that the conductivity, σ ' 5128 mhos/m, calculated from the above expressions for the experimental conditions of [3]
and verified experimentally by Villani, does not vary between the four plasmas (an assumption that holds well if the
plasmas are fully ionized and have the same lnΛ).

Xe Kr Ar Li

uci 4.22 5.68 8.72 12.24
Rmci 5.4 7.32 11.24 15.78
η̂(ξ = 1) 57.4 64.7 73.7 79.8
η̂(ξ = ξ∗) 72.6 78.2 84.6 88.5

Table 1 Calculations of the limits of MPDT efficiency for four propellants. (l j = 20 cm, ξ∗ = 1.4).

Strictly speaking, the application of our expression for η̂ is limited to monoatomic propellants since the definition
of ξ involves a single mass and a single ionization potential. The extent to which the above theory can be amended or
evolved to be applicable for molecular propellant remains to be explored.

Appendix
Villani[3] derived the following relation from first principles:

∇ · (ρuh0) = −∇ · ( jφE ), (28)

where h0 = h + u2/2 is the stagnation enthalpy, h = ε + p/ρ the enthalpy, and ε the specific energy. Then by integrating
this identity over the discharge volume he found, for the left side of the above equation,∫

V

∇ · (ρuh0) dV = ṁh0 = ṁ
u2

2
+ ṁε,

where the bars indicate mass-averaged quantities, and for the right side,

−

∫
V

∇ · ( jφE ) dV = J (V − VE ).

The above two expressions reduce Eq. 28 to the power balance

J (V − VE ) = ṁ
u2

2
+ ṁε . (29)

Then by combining the generalized Ohm’s (Eq. 2) with the MHD energy equation

ρu · ∇ε = j · E − u · j × B,

from which all other terms (viscous dissipation, heat flux, and pdV work) have been justifiably dropped through a
dimensional analysis, the following equality is found

ρu · ∇ε =
j2

σ
,
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which, as before, through a volume integration and the use of the divergence theorem yields

ṁε̄ =

∫
V

j2

σ
dV .

Finally, through a similar use of volume integration, the divergence theorem, Villani shows that the remaining term in
Eq. 29, can be expressed as

ṁu2

2
=

ṁu2
e

2
= α

T2

2ṁ
,

leading to the MPDT fundamental power balance we derived, Eq. (4).
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