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Abstract

We analyze a recently discovered coherent ion acceler-
ation mechanism that relies on the nonlinear interac-
tion of a magnetized ion with multiple electrostatic
waves, at least two of which differ in frequency by
an integer multiple of the cyclotron frequency. The
mechanism does not require the ion to be in reso-
nance and can accelerate an ion with an arbitrarily
low initial energy, hence its basic importance to prac-
tical applications. We illustrate the fundamental fea-
tures of the mechanism through a parametric numer-
ical study of the ion’s nonlinear interaction with two
electrostatic waves. Compared to the wave frequen-
cies, the wave amplitudes were found to have a weak
effect on setting the energy bound of the coherent
portion of the acceleration but have a strong impact
on the nature of the acceleration as they control the
connectivity between the coherent and stochastic do-
mains of phase space. The lack of requirements on
the initial ion energy and other fundamental proper-
ties of the mechanism point to its promise as an ion
energization method for plasma propulsion.

1 Introduction

The natural phenomenon of ion acceleration trans-
verse to the geomagnetic field by localized lower-
hybrid waves in the topside ionosphere has been pro-
posed to be the first evidence of a recently discov-
ered ion acceleration mechanism[1]. Fundamentally,
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the new mechanism[2, 3] relies on the nonlinear in-
teraction between a magnetized ion and electrostatic
waves that are transverse to the magnetic field and
requires that the wave spectrum contains at least two
waves whose frequencies differ by an amount close to
an integer multiple of the cyclotron frequency. The
resulting nonlinear beating of the waves produces a
slowly varying force that coherently accelerates the
ions.

Unlike energization by resonant waves, the new
mechanism does not require the ion thermal veloc-
ity to be close to the phase velocity of the wave, nor
does it require that the ion velocity be above a certain
threshold as in the case of the well-documented[4, 5,
6, 7, 8] energization of an ion by a single wave. In-
stead, the new mechanism can accelerate ions hav-
ing arbitrarily low energies offering the potential of
highly effective and adaptable means by which to ef-
fect and control the energization of ions for many ap-
plications, particularly in plasma propulsion where
the efficiency of the acceleration mechanism is of
prime value.

This is the first in a series of papers in which we
explore this new mechanism with an eye on its ap-
plication for plasma propulsion. In this first paper
we will focus on describing the formalism required
to study this phenomenon (Section 2), and after a re-
view of the single-wave results (Section 3), we present
a numerical study of the two-wave problem aimed at
illustrating a number of the fundamental properties
and complex features of the acceleration (Section 4).
In subsequent papers we will explore particular as-
pects of the mechanism using analytical tools such
as perturbation theory, evaluate more explicitly its
potential for plasma propulsion and describe possible
experiments to aid in this evaluation.
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2 Hamiltonian of Motion in
Action-Angle Variables

Since this is the first paper in a series of forthcoming
papers on the subject and since it is a new one to the
plasma propulsion community, we provide a relatively
detailed derivation of the Hamiltonian.

Our focus is the motion of an ion in a uniform mag-
netic field subject to the electric field of two electro-
static waves whose wave vectors are transverse to the
magnetic field. For the sake of simplicity and clarity,
we follow the nomenclature of Karney[6] to derive the
Hamiltonian for the case of a single wave then gen-
eralize the result to the case of multiple waves[2, 9].

Without loss of generality, we take the magnetic
field to be along the z-axis of a cartesian coordinate
system and the wave vector to be aligned with the
y-axis

B = B0ẑ, φ = −E0

k
sin(ky − ωt), (1)

where φ is the electrostatic potential E = −∇φ =
−∂φ/∂y corresponding to the wave’s electric field
E = E0 cos(ky − ωt)ŷ with E0, ω and k =
2π/λ denoting the wave’s amplitude, frequency and
wavenumber respectively. The potential energy, U ,
of a particle in such fields is velocity dependent and
is given by[10]

U = qφ− qv · A, (2)

where A is the magnetic potential vector (B =
∇ × A). The Lagrangian, L, of this system can thus
be written as

L =
m

(
ẋ2 + ẏ2

)
2

+ qẋAx − qφ, (3)

(where the dot represents a time derivative) and can
be used to define the generalized momenta px and py

px =
∂L

∂ẋ
= mẋ + qAx (4)

py =
∂L

∂ẏ
= mẏ. (5)

with pz = 0 since there is nothing to accelerate the
particle along the magnetic field. The last two equa-
tions can be inverted to give

ẋ = (px − qAx)/m, ẏ = py/m (6)

which can be interpreted as the time derivatives of the
conjugate generalized coordinates needed to evaluate

the Hamiltonian, h, of the motion

h =
∑

i

piq̇i − L. (7)

where the summation is over the number of general-
ized coordinates (i = 2) and qi are the generalized
coordinates (to be differentiated from the ion charge
q). Using Eq. (6) in the above equation, expanding
and collecting terms, the resulting Hamiltonian is:

h =
1

2m

[
(px − qAx)2 + p2

y

]
+ qφ. (8)

Noting that Ax = −yBo and using φ as explicitly
expressed in Eq. (1), we have

h =
1

2m

[
(px − qyBo)

2 + p2
y

]
− E0

k
sin(ky−ωt). (9)

The Hamiltonian is now an explicit function of one
generalized coordinate, two generalized momenta and
time, i.e. h = h(y, px, py, t).

We now normalize the wave frequency to the cy-
clotron frequency ωc ≡ qB0/m, time to the cyclotron
period tc = 1/ωc, the coordinate to the inverse of
the wavenumber, the momenta to the characteristic
momentum mωc/k and the Hamiltonian to the char-
acteristic energy mω2

c/k
2 thus defining the following

nondimensional parameters

ν ≡ ω

ωc
, τ ≡ ωct, y′ ≡ yk, (10)

p′i ≡
pik

mωc
, h′ ≡ hk2

mω2
c

. (11)

In terms of these normalized parameters, the Hamil-
tonian h′ = (y′, p′x, p

′
y, τ) becomes

h′ =
1
2

[
(p′x + y′)2 + p′2y

]
− ε [sin (y′ − ντ)] (12)

where the non-dimensional parameter ε is given by

ε = E0
qk

mω2
(13)

and thus represents the normalized wave amplitude.
It will be the primary varying parameter in the nu-
merical investigations reported in Section 5. Note
that ε can also be expressed as the ratio of two char-
acteristic velocities, (E0/B0)/(ωc/k).

The study of the Hamiltonian can be simplified if
we can treat the time variable as any of the other
generalized coordinates or momenta. In other words,
we seek a canonical transformation

h′ = h′(y′, p′x, p
′
y, τ) → H = H(Q1, Q2, Px, Py).

(14)
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where Qx and Qy are the new generalized coordi-
nates with Px and Py their conjugate momenta. This
can be effected by using a generating function of the
“second type”[10, 11], i.e. one that mixes the old co-
ordinate y′ with the new momenta (Px, Py), that is
F2 = F2(y′, Px, Py). If the following generating func-
tion is chosen

F2 = (Px − ντ)x + Py(y − ντPx), (15)

the canonical transformation equations

p′i =
∂F2

∂q′i
(16)

Qi =
∂F2

∂Pi
(17)

H = h′ +
∂F2

∂τ
(18)

yield
Qx = x′ + py, , Qy = y′ + p′x (19)

Px = p′x + ντ, Py = p′y (20)

and
H = h′ − νQx. (21)

Therefore, as we sought, the time variable is now
transformed into a generalized momentum. The new
Hamiltonian resulting from this canonical transfor-
mation can thus be written as

H =
1
2

(
Q2

y + P 2
y

)
− νQx − ε sin (Qy − Px) . (22)

We now seek one further transformation that will
express the Hamiltonian in terms of action-angle
variables[11] which provide a more natural link to the
represented dynamics. For that we seek a canonical
transformation

H = H(Q1, Q2, Px, Py) → H = H(ψ1, ψ2, I1, I2)
(23)

where (ψ1, ψ2, I1, I2) are the action-angle variables,
whose physical meaning will be elucidated shortly. To
effect this transformation we use a generating func-
tion of the first type, i.e. one that mixes the old co-
ordinates Qx, Qy with the new ones (ψ1, ψ2), that is
F1 = F1(Qx, Qy, ψ1, ψ2). If we choose

F1 = F1(Qx, Qy, ψ1, ψ2) =
1
2
Q2

y cotψ1 + Qxψ2 (24)

the corresponding canonical transformation equa-
tions

Pi =
∂F1

∂Qi
, Ii = −∂F1

∂ψi
(25)

will yield

Qx = −I2, Qy = (2I1)1/2 sinψ1, (26)

PX = ψ2, Py = (2I1)1/2 cosψ2 (27)

and the Hamiltonian becomes

H = I1 + νI2 − ε sin
[
(2I1)

1/2 sinψ1 − ψ2

]
. (28)

We now provide a physical interpretation of the
various terms. First, the angle variable ψ2 can be
obtained directly from Hamilton’s equations since the
action and angle variables form a canonical set of
coordinates and conjugate momenta, therefore

ψ̇2 =
∂H

∂I2
= ν (29)

and ψ2 = ντ takes on the physical meaning of time
(multiplied by 2π) measured in units of wave periods
(instead of cyclotron periods).

We note that the original Hamiltonian in Eq. (9)
is explicitly independent of the x coordinate. (In the
parlance of Hamiltonian mechanics, the x-coordinate
is called “cyclic”.) Therefore ∂h/∂x = 0 and,
since from Hamilton’s equations −∂h/∂x is the time
derivative of the conjugate momenta px, we have
px = α where α is a constant of the motion.

In a reference frame fixed at the guiding center of
the cyclotron motion, the x-component of the velocity
is linearly related to the y position by ẋ = ωcy, which
implies that mẋ − qB0y = 0 and from Eq. (4) we
have px = 0. Therefore shifting our derivation to
the reference frame of the guiding center corresponds
to setting the constant α to zero. We do so from
here on without loss of generality. By symmetry, the
reference frame shift also corresponds to setting mẏ−
qB0x = 0 which, from the first equation in (19), gives
Qx = 0 which in turn leads, through Eq. (26), to
I2 = 0.

To find the physical meaning of the action I1, we
use Eqns. (19) and (26), to relate x′ and y′ to the
action:

x′ = − (2I1)
1/2 sinψ1 (30)

y′ = (2I1)
1/2 cosψ1 (31)

which show that x′2 + y′2 = 2I1 and as the Larmor
radius (normalized by the wavenumber) ρ is equal
to (x′2 + y′2)1/2 we have ρ = (2I1)

1/2. Since for a
constant magnetic field the larmor radius is the ion’s
velocity multiplied by a constant, ρ is a measure of
the velocity of the ion and the action I1 is a measure
of its energy .
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From the last two equations we have x′ = ẏ′ =
−ρ cosψ1 and y′ = ẋ′ = ρ sinψ which show that
the angle variable ψ1 represents the phase of the cy-
clotron motion.

We finally summarize the relations between all
the dimensional, non-dimensional, original and trans-
formed coordinates and momenta

Py = p′y =
pyk

mωc
= (2I1)

1/2 cosψ1 (32)

Px = ντ = ωt = ψ2 (33)

Qy = y′ = ky = (2I1)
1/2 cosψ1 (34)

Qx = x′ + p′y = kx +
kpy

mωc
= −I2 = 0 (35)

ρ = (2I1)
1/2

, ψ1 = tan−1 ẋ′

x′ (36)

The Hamiltonian can therefore be written in the fol-
lowing compact form

H = I + ε sin (ρ sinψ1 − ντ) . (37)

where we have dropped the subscript 1 from the ac-
tion.

Further generalizing the above expression for the
Hamiltonian to interactions with multiple waves is
straightforward and results in the following expres-
sion

H =
ρ2

2
+

N∑
i=1

εi

κi
sin (κiρ sin θ − νiτ + φi) (38)

where N is the number of waves, κi ≡ ki/k1, k1 is
the wavenumber of the first wave and where we have
replaced ψ1 by the symbol θ, and introduced a phase
shift angle φ in order to make the expression more
general and compatible with the formulation used in
ref. [2].

3 Numerical Methods

Given initial conditions ρ0 and θ0, at time τ = 0
we numerically integrate the differential equation of
motion resulting from the Hamiltonian using the
symplectic integration algorithm of ref. [12]. The
method is accurate to fourth order in the time step
and proved, as claimed, superior in computational
efficiency and global stability to the more popular
fourth-order Runge-Kutta algorithms.

The results, are plotted in two forms. The first, ρ
vs τ , is essentially a time history of the ion’s velocity

and gives a measure of the acceleration undergone
by the ion. Since much insight can be obtained by
looking at the motion in phase space, the second form
of data presentation is the Poincaré surface of section.
Such a plot is constructed by marking on a plane,
specified by setting to a constant one of the three
generalized coordinates of phase space, the crossings
of the particle’s trajectory in phase space in a given
direction across the plane’s surface. Each crossing
results in a dot on the Poincaré surface of section as
the trajectory unfolds, and the dots can cluster in
finite points, open curves or closed smooth curves for
the case of coherent or regular motion or randomly
fill an area of the cross section plane for the case of
stochastic motion. The partitioning of the Poincaré
surface of section into areas filled with random dots,
islands where no trajectories can cross, smooth curves
and speratrices provide a powerful visual analysis tool
for nonlinear dynamics[11]. For our particular case,
the Poincaré surface of section will be made up with
the crossings of the particle’s phase space trajectory
with a plane whose coordinates are ρ, θ taken at a
fixed (ντ)mod 2π.

4 Review of One-Wave Results

As mentioned in the introduction, the case of an in-
teraction of an ion in a magnetic field with a single
transverse electrostatic wave has been studied exten-
sively using numerical calculations as well as first and
second-order perturbation theories[4, 5, 6, 7, 8]. We
summarize here the findings of these studies that are
relevant to our discussion. There are two classes of
problems in this context corresponding to 1) The off-
resonance wave case, which means that the wave fre-
quency is not an integer multiple of ωc, i.e. ν �= n and
2) the on-resonance wave case, where the converse is
true1.

In either case the following statement is true for
the case of a single wave. An ion can only be heated
chaotically. In other words, no coherent motion can
lead to a net increase of the ion’s energy irrespec-
tive of the wave’s amplitude, frequency and the par-
ticle’s initial conditions. Furthermore, depending on
whether the wave is on or off resonance we distinguish
the following features of the interaction.

Off-resonance (ν �= n)

1“On-resonance” here refers to the wave frequency being at
or close to a cyclotron harmonic and not the phase velocity of
the ion.
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• Chaotic dynamics can only occur if the wave’s
amplitude is above a certain threshold given by

εth � ν3/4

4
(39)

• For ε > εth, the chaotic domain is only accessible
if the initial ion normalized Larmor radius2 (or
velocity) is above a lower bound given by

ρ∗ � ν − (ε)1/2. (40)

This means that an ion whose initial energy is
below that corresponding to this threshold, will
not receive a net acceleration by the wave, since
it will not reach the chaotic domain. Note that
an increase in amplitude will decrease the thresh-
old, therefore for a sufficiently high wave ampli-
tude, an ion’s motion can be made chaotic. This
is also intuitive.

• The chaotic domain has also an upper bound ρub,

ρub �
(

2
π

)1/3

(4εν)2/3. (41)

If an ion is above that threshold its dynamics will
not be chaotic even if the wave energy is above
εth and thus cannot be accelerated.

On-resonance (ν = n)

• Instead of a purely stochastic region in phase
space there is a web structure in which stochastic
regions connect regular trajectories. This web
structure is not strictly bounded on the high ion
energy side but becomes thinner at high energies.

• Like the stochastic region of the off-resonance
case, this web structure also has a lower bound
on ρ0 given essentially by Eq. (40) when ν is
sufficiently large.

• At lower values of ν, however, the bound takes
on a form that has a far more complicated depen-
dence on ν and ε[8] but has the essential feature
that, unlike in Eq. (40), it increases with increas-
ing energy. This leads to the counter-intuitive
result that by decreasing the wave’s amplitude
an ion’s motion can be made to become chaotic.

2The Larmor radius is actually a measure of the ion’s veloc-
ity. Since ρ is uniquely related to the action I it is sometimes
talked of as being an index of the energy.

Figure 1: Acceleration history and Poincaré surface
of section for three cases of an ion interacting with
a single wave having ν = 24, ε = 10. The initial
conditions ρ0 for the ions are marked on the plots
and θ0 = 0 for all three cases. The dashed (lower)
and dotted (upper) horizontal lines denote the values
of ρ∗ and ρub given by Eqs. (40) and (41) respectively.
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Figure 2: Close up on the Poincaré surface of section
of Fig. (1) showing the web structure.

We now illustrate some of these features with a nu-
merical study of an ion interacting with a single wave.
Since our two-wave study will focus on on-resonance
waves, we consider here also an on-resonance wave
with ν = 24 and ε = 10. We calculate the motion
for three test ions (θ0 = 0). The first is chosen with
ρ0 = 10, that is an initial energy that is below that
required by Eq. (40) and therefore we should expect
the ion’s motion to be regular without any accelera-
tion by the wave. This is indeed the case as can be
seen from both plots in Fig. (1).

The ion with the highest initial energy was chosen
with ρ0 = 125 so that it is above the upper threshold
given by Eq. (41). The evolution of its subsequent
Larmor radius in time shows no net change in en-
ergy. On the Poincaré surface of section, the phase
space trajectory leaves small circular “islands” which
are visited alternatively in time. These islands are
centered around ρ = ρ0. The ion with the interme-
diate initial energy (ρ0 = 40) shows a net increase
in energy. Its signature in the Poincaré surface of
section shows an intricate web of interconnecting ar-
eas of stochasticity and regular motion as mentioned
in the discussion above. This web is shown in more
detail in the close-up plot of Fig. (2).

It is interesting to note from Fig. (1) that the web
extends a little below ρ∗ as given by Eq. (40) and
denoted by a dashed horizontal line on that plot.

5 Interaction with Two Waves

We now proceed to our numerical study of the in-
teraction of a magnetized ion with two waves and
illustrate some striking differences with the previous
single-wave results.

The fundamental effect occurs when at least two
waves are present having frequencies that differ from
each other by an integer number times the cyclotron
frequency[2]. In the following we present a numerical
study that will bring forth some of the fundamental
aspects of this nonlinear interaction. We will post-
pone to another paper our attempts to explain the
results analytically and instead limit ourselves to a
phenomenological discussion based on the results of
the numerical simulations.

5.1 Parameters

We choose the wave amplitude ε as the primary vary-
ing parameter for our study because we see from the
Hamiltonian, Eq. (38), that it is ε that scales the
degree of coupling between the two harmonic oscil-
lators (the cyclotron motion and the wave motion)
and consequently we expect it to have a strong ef-
fect on the character of the motion. Furthermore,
since the largest acceleration in previous studies[2]
was found to occur when the two waves have the same
amplitude, we set ε1 = ε2 = ε. We also choose two
on-resonance waves whose normalized frequencies ν1

and ν2 differ by 1. We choose ν1 to be large enough
that we can expect the boundary conditions discussed
in the previous section approximately hold but small
enough that we may expect some interesting depar-
tures. Specifically, we take ν1 = 24 and ν2 = 25.
Finally, we start all the ions we consider from the
initial conditions ρ0 = 1 and θ0 = 0 and set the wave
phase shifts φ1 = φ2 = 0.

5.2 Coherent Acceleration and Con-
nection to Stochastic Domain

We immediately see from Fig. (3) the primary feature
that the ion, although starting well below the chaotic
domain, picks up energy steadily and accelerates co-
herently exceeding the bound ρ∗. For each of the time
traces, we note a steady acceleration mode followed
by a fluctuating mode in which the ion velocity fluc-
tuates widely reaching values as high as two orders
of magnitudes larger than the initial velocity. The
two modes are also differentiated by their disparate
time scales. Increasing the wave amplitudes greatly
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Figure 3: Motion history at three different wave am-
plitudes, ε = 5, 10 and 30. With ν1 = 24, ν2 = 25,
κ = 1, φ1 = φ2 = 0, and the initial conditions ρ0 = 1
and θ0 = 0.

enhances the acceleration. Specifically, we note from
the plots that that the acceleration time scales in-
versely with the square of the wave amplitudes. All
ions, however, accelerate coherently up to roughly the
same energy level before entering the chaotic domain.
This coherent acceleration from an arbitrarily low en-
ergy is impossible in the case of an interaction with a
single wave.

The character of this motion can be further eluci-
dated from the Poincaré sections shown in Fig. (4)
From these plots we note the fundamental feature
that the coherent and stochastic parts of phase space
are connected and the orbit of an ion can take it from
one domain to the other. This is in complete contrast
to the single-wave case we illustrated in Fig. (1).

On all Poincaré section plots, the dashed (lower)
and dotted (upper) horizontal lines denote the val-
ues of ρ∗ and ρub given by Eqs. (40) and (41) re-
spectively calculated with the lower of the the two
frequencies[2].

We see that for the low wave amplitude, ε = 5, the
ion reaches the edge of the coherent domain and en-
ters a domain that is not completely stochastic, but
rather, in a manner reminiscent of the web structure

Figure 4: Poincaré sections corresponding to the
three cases shown in Fig. (3).
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Figure 5: Close up of the Poincaré section at the
bottom of the previous figure.

of Fig. (2), consists of webs of stochasticity relating
essentially coherent orbits. A close up of that in-
tricate structure is shown in Fig. (5). From the
corresponding motion history in Fig. (3), this type
of motion can be seen to be characterized by quasi-
periodic excursions into the high ρ part of the ion
energy range followed by quick deceleration to ener-
gies near those corresponding to ρ∗.

As the wave amplitude is further increased, these
webs of stochasticity quickly enlarge to engulf any
vestiges of coherence in regions above ρ∗ as can be
seen from the top two plots of Fig. (4).

It is apparent from these plots that the connec-
tion between the coherent and stochastic domains is
not uni-directional, i.e. just as a particle in coherent
motion can be accelerated to the stochastic realm, a
particle in stochastic motion can fall into the coher-
ent range when it reaches the lower boundary with
the appropriate conditions. Had the traces shown
in Fig. (3) not been truncated (in time) for the dis-
play, randomly distributed excursions of the particle
orbits between the stochastic and coherent domains
would have been apparent. The smooth curves on
both sides of θ = π at the bottom part of the plots
in Fig. (4) are the Poincaré section signatures of the
these excursions. Figure 6: Motion histories and Poincaré sections for

ε = 49 and ε = 50. Other parameters are the same
as those for Fig. (3).
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5.3 Stochastic Domain Inaccessibility

If we further increase the amplitude of the waves we
eventually come to a condition where the stochastic
part of phase space becomes suddenly inaccessible.
This “locking” of stochastic phase space happens at
a certain threshold in ε as illustrated in Fig. (6). As
ε in that figure is raised from 49 to 50, the ion is
effectively locked out of stochastic phase space and
its energy oscillates bounded by ρ∗. While the ion
in the higher amplitude wave attains on the average
a velocity half as high as that corresponding to ρ∗,
an ion in a wave having an amplitude just below this
threshold, can “escape” to the stochastic domain and
may be accelerated to significantly higher energies as
shown in that plot.

This sudden inaccessibility to the stochastic realm,
may be related to a raising of the effective lower
bound of the stochastic region with the wave am-
plitude which is reminiscent of the effect discussed in
the previous section in the context of an interaction
with the on-resonance single wave. While an analyt-
ical method for calculating that lower boundary has
been developed using second-order Lie perturbation
theory[8], it is strictly valid for an interaction with a
single wave. One would expect, however, that for the
two-wave case, this phenomenon is also related to a
raising of this boundary with wave amplitude to levels
just above those attained by coherent acceleration.

The difference between these two levels however,
seems to remain small as implicitly implied by the
results shown in Fig. (7), where we see in the top two
panels that a further increase in the amplitude of the
waves above the inaccessibility threshold, leads to a
“re-opening” of the stochastic part of phase-space.
This re-accessibility, for a given set of conditions, oc-
curs at a time τ which decreases with wave amplitude
as indicated by the two cases shown in Fig. (7) for
ε = 75 and ε = 80.

It is also interesting to note from the motion histo-
ries shown in Fig. (3) and the top panels of Figs. (6)
and (7) that a certain level of periodicity develops in
the coherent part of the motion as the wave ampli-
tude is increased. This is reflected in the apparent
thickening of the part of the curves that corresponds
to coherent motion. This thickening, when viewed
on a finer time scale, is essentially an increase in the
periodic structure of the motion history curve which
corresponds to progressive tightening, with increas-
ing ε, of the mushroom-like structure in the coherent
parts of Poincaré sections. This is seen clearly in
Fig. (8) where we show the superimposed Poincaré
sections for the coherent parts of the ion orbits for

Figure 7: Motion histories and Poincaré sections for
ε = 75 and ε = 80. Other parameters are the same
as those for Fig. (3).
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Figure 8: Superimposed Poincaré sections for the co-
herent parts of the ion orbits for the three cases cor-
responding to ε = 30, 50 and 70.

the three cases corresponding to ε = 30, 50 and 70.
As the wave amplitude is increased, the ion enters
the stochastic domain (or exits it, or is reflected by
its lower boundary) at a cyclotron phase angle pro-
gressively closer to π. In this sense the accessibility
to stochasticity becomes limited to ions with θ near
π.

5.4 Lower Boundary of Stochasticity

We note that although the lower boundary of the
stochastic domain, given by Eq. (40), is roughly in
agreement with the calculated boundary as seen from
the Poincaré sections of the previous figures, it can
differ by more than 20% for the conditions we stud-
ied. Specifically, at and moderately above the values
of ε for which the stochastic region becomes largely
inaccessible, the boundary predicted by Eq. (40) is
noticeably below the actual limit as defined by the
maximum value that ρ acquires coherently in the
Poincaré section. This is illustrated in Fig. (9) for
ε = 70 which corresponds to a case where the stochas-
tic regime remains inaccessible, until a later time.
Unlike in the case where the coherent and stochastic
domain are connected, the numerical determination
of the boundary becomes unambiguous in the case
where the stochastic region becomes largely inacces-
sible, since then the coherent orbit on the Poincaré

Figure 9: Poincaré section for the coherent part of
the ion orbit for ε = 70 which corresponds to a case
where the stochastic regime remains inaccessible, un-
til a later time. The lower dashed line shows the
boundary predicted by Eq. (40) and the solid line
shows the empirical model given by Eq. (42)

section has an effective upper bound in ρ. For these
conditions we found, by conducting a number of nu-
merical simulations, that the following “empirical”
model better fits the results

ρ∗ = ν − ε1/3. (42)

The extent of agreement of both Eq. (40) and
Eq. (42) with the numerically determined boundary
for six cases with differing values of ν and ε, is shown
in Fig. (10). It is clear form the plot that both pre-
dictions are equally good at large ρ∗ (i.e. large ν or
small ε) but the empirical model is better at lower
wave frequencies.

6 Conclusions

After an explicit derivation of the Hamiltonian for a
magnetized particle interacting with multiple waves
transverse to the magnetic field, and a review of the
well-documented one-wave case, we focused on the
case of two waves as a more manageable illustration of
the fundamental features of the recently discovered[2,
3] ion mechanism by multiple waves. The mechanism
relies on the nonlinear interaction of a magnetized
ion with multiple electrostatic waves, at least two of
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Figure 10: Extent of agreement of Eq. (40) and
Eq. (42) with the calculated value of the boundary
ρ∗.

which differ in frequency by an integer multiple of
the cyclotron frequency. The resulting rich dynamics
were illustrated through numerical “experiments” in
which the amplitude of the two waves was the varying
parameter. The following fundamental features were
noted:

1. An ion, arbitrarily below the (stochastic) ener-
gization threshold required for single-wave accel-
eration, can pick up energy steadily and acceler-
ate coherently.

2. The coherent and stochastic motion domains in
phase space are connected unlike in the case of
an interaction with a single wave.

3. Depending on the amplitude and frequency of
the waves and the ion initial conditions, the ion
can accelerate through the low energy boundary
of the stochastic domain and be energized fur-
ther stochastically.

4. The coherent acceleration time scales inversely
with the square of the wave amplitudes.

5. At low enough wave amplitudes, the motion of
the ion above the single-wave stochastic bound-
ary, is not purely stochastic but rather consti-
tutes of motion along coherent orbits connected
in phase space by regions of stochasticity. As

the wave amplitude is increased, these stochas-
tic webs engulf the coherent orbits above the
stochastic low energy boundary but the accel-
eration below that boundary remains coherent.

6. At a certain wave amplitude, the stochastic do-
main becomes inaccessible and the ion undergoes
successive coherent acceleration and deceleration
cycles (maintaining on the average a velocity
half as high as that corresponding to the bound-
ary) until conditions favoring its reentry into the
stochastic domain become available. These con-
ditions include a higher wave amplitude and/or
a longer time period through which the ion can
eventually visit dynamical states that allow ac-
cessibility.

7. At least for conditions where the stochastic do-
main is not readily accessible, the highest ve-
locity the ion acquires does not scale accord-
ing to the one-wave stochastic boundary limit
i.e. ρ∗ � ν − ε1/2. For the cases we studied, an
empirical scaling was found to be ρ∗ � ν − ε1/3.

8. With increasing wave amplitude, the ion’s coher-
ent motion acquires a periodic modulation and
the accessibility to stochasticity becomes limited
to ions with a narrow distribution of cyclotron
phase angles.

This fundamental understanding paves the way
for future analytical and experimental studies of the
mechanism and the evaluation of its potential for
plasma propulsion applications.
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