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Anomalous resistivity and heating in current-driven plasma thrusters *
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A theory is presented of anomalous resistivity and particle heating in current-driven plasma
accelerators such as the magnetoplasmadynamic thruster~MPDT!. An electromagnetic dielectric
tensor is used for a current-carrying, collisional and finite-beta plasma and it is found that an
instability akin to the generalized lower hybrid drift instability~GLHDI! exists for electromagnetic
modes~i.e., with finite polarization!. Weak turbulence theory is then used to develop a second-order
description of the heating rates of particles by the waves and the electron-wave momentum
exchange rate that controls the anomalous resistivity effect. It is found that the electron Hall
parameter strongly scales the level of anomalous dissipation for the case of the MPDT plasma. This
scaling has recently been confirmed experimentally@Phys. Plasmas5, 3581 ~1997!#. Polynomial
expressions of the relevant transport coefficients cast solely in terms of macroscopic parameters are
also obtained for including microturbulence effects in numerical plasma fluid models used for
thruster flow simulation. ©1999 American Institute of Physics.@S1070-664X~99!95705-1#
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I. INTRODUCTION

Current-driven microinstabilities of a magnetize
current-carrying, and collisional plasma and their impact
transport have not been well studied in the regime where
plasma beta is finite. Aside from its fundamental value, t
problem is relevant to the understanding of dissipation
some current-driven plasma devices.

The magnetoplasmadynamic thruster~MPDT! is an elec-
tromagnetic plasma accelerator intended for spacecraft
pulsion. It is essentially a coaxial device in which a hig
current discharge ionizes a gas and accelerates it to
exhaust velocities through the action of the Lorentz fo
produced by the interaction between the current flow
through the plasma and a self-induced or applied magn
field. The MPDT can attain exhaust velocities in the range
10–80 km/s with thrust efficiencies exceeding 40%.1 Refer-
ences 1–4 give a review of research on MPDT starting fr
its inception.5 The MPDT plasma has an electron tempe
ture between 1 and 3 eV, an ion temperature between 1
10 eV and an electron density between 1013 and 1016cm23

depending on the power level. Current densities and indu
magnetic fields can reach as high as 103 A/cm2 and 1 kG
in the megawatt-class devices. The electron Hall param
and the plasma beta both range between 1 and 10. A m
detailed description of the MPDT plasma can be found
Ref. 6.

The acceleration process in Lorentz force electrom
netic plasma accelerators such as the MPDT is current-dr
with the thrust increasing with the square of the to
current.4 It is also known that the current can drive microi
stabilities in the thruster plasma which may, through induc
microturbulence, substantially increase dissipation and
versely impact the efficiency. The presence of current-dri

* !Paper F3I2.3 Bull. Am. Phys. Soc.43, 1704~1998!.
†Invited speaker.
2291070-664X/99/6(5)/2290/17/$15.00
n
e

s
n

o-
-
gh
e
g
tic
f

-
nd

ed

er
re

n

-
en
l

d
d-
n

microinstabilities in such accelerator plasmas have been
tablished experimentally in the plasma of the MPDT at bo
low and high power levels.7,8

We have previously presented in conference papers8,9 a
theoretical treatment of microinstabilities and their effects
transport. Although the transport coefficients, especially
anomalous resistivity, derived in that work proved helpful
rendering numerical fluid simulations of MPDT flows mo
realistic,10,11 a direct experimental proof of the existence
anomalous resistivity in such thrusters was not obtained u
the recent measurements of Blacket al.12 ~1997!. In that
work, the measured anomalous resistivity was found to sc
in accordance with the previous theoretical predictions
Ref. 9. This experimental confirmation prompted the pub
cation of the theoretical work in the present paper.

Previous attempts to model linear instabilities in t
MPDT ~Refs. 13, 14! and their effects on transport14 have
been limited to electrostatic modes, i.e., zero plasma bet
condition difficult to justify for the plasma of such devices

Finite-beta effects have been thought to be globa
stabilizing,15–17,14 especially for drift velocities exceedin
the Alfvén velocity. We show that, for such plasmas, a fin
beta can actually result in the excitation of finite-grow
modes with mixed polarization. These effects not only al
the character of the linear modes, but affect the magnitud
the resulting anomalous transport.

We start in Sec. II with the linear stability description o
a magnetoactive, current-carrying, collisional and finite-b
plasma and show that finite-beta effects which result in
stable modes with finite polarization are important for t
MPDT plasma. For the MPDT plasma the dominant mod
have charactersitic frequencies near the lower hybrid
quencyv lh and the instability is the collisional analog of th
collisionless case termed ‘‘generalized lower hybrid drift i
stability’’ ~GLHDI! by Hsiaet al.18

In Sec. III we outline the basic formalism we adopt f
our formulation of anomalous transport. In Sec. IV we u
0 © 1999 American Institute of Physics
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the statistical description of the previous section to der
generalfinite-beta expressions for the anomalous ion a
electron heating rates as well as for the electron-wave
mentum exchange rate that controls the anomalous resist
effect. These expressions are cast as integrals in wave v
space of quantities that depend on the various element
the linear dispersion tensor derived in Sec. II, on the root
the linear dispersion relation and on the saturation ene
density of the fluctuating~turbulent! fields denoted byE t .

We then turn our attention in Sec. V to the difficu
question of the saturation mechanism that dictates the m
nitude and dependencies ofE t . We consider four models fo
E t based on four possible saturation mechanisms.

In Sec. VI we show various calculations of the anom
lous heating and momentum exchange rates for plasma
rameters of interest and compare their magnitudes to cla
cal values.

We finally conclude in Sec. VII by using these calcul
tions to arrive at polynomial expressions of the relev
transport coefficients cast solely in terms of macroscopic
rameters for inclusion in numerical plasma fluid models u
for thruster flow simulation.

II. THE DISPERSION TENSOR OF A CURRENT-
CARRYING AND COLLISIONAL PLASMA

We seek a general kinetic description of the respons
a collisional and magnetoactive plasma carrying a cross-fi
current to small perturbations without making the elect
static assumption.

A. Stating the problem

Our entire problem can be formulated, as shown bel
to be contained in the following matrix equation:

S Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz

D S Ex
~1!

Ey
~1!

Ez
~1!
D 50, ~1!

where the superscript 1 denotes the first-order harmonic
of the linearly perturbed quantities~in this case, the compo
nents of the electric field vectorE!. In the above equation
Ri j represent the elements of thedispersion tensorR~v,k!
and are generally complex functions of the frequencyv and
wave vectork of the oscillations as well as of all the plasm
parameters of the problem. As usual the dispersion relatio
obtained from

detuRi j ~v,k!u50. ~2!

In this section we outline the derivation of explicit e
pressions for the elementsRi j needed for our study.

B. Defining the problem in terms of the conductivity,
dielectric, and dispersion tensors

The conductivity tensors and the dielectric tensorK are
defined by

j ~1!5sE~1!, ~3!
e
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KE ~1!5E~1!1
i

e0v
j ~1!. ~4!

By eliminating the perturbed current density vector,j (1) from
the above definitions we get

Ki j 5d i j 1
is i j

e0v
, ~5!

whered i j is Kronecker’s delta representing the identity te
sor. If we now recall two of Maxwell’s linearized equation

k3E~1!5vB~1!, ~6!

ik3B~1!5m0j ~1!2 im0e0vE~1!, ~7!

and eliminate the perturbed magnetic field vectorB(1) from
the second equation using the first, we obtain after divid
by k2 and using Eq.~4!,

N2S k3~k3E~1!!

k2 1KE ~1!D 50. ~8!

The above equation can be written in the form of Eq.~1!,

RE~1!50, ~9!

where we identifyR as the dispersion tensor whose eleme
can now be written in terms of those of the dielectric ten
or, more conveniently, through Eq.~5!, in terms of those of
the conductivity tensor

Ri j 5N2S kikj

k2 2d i j D1d i j 1
is i j

e0v
, ~10!

where

N[
ck

v
, ~11!

is the index of refraction.
In order to arrive at the sought expressions forRi j we

shall invoke plasma kinetic theory to find a relation betwe
the current density and the electric field which we shall p
in the form of Eq.~3! thus allowing us, through Eq.~10!, to
write the dispersion tensor explicitly.19

C. Derivation of the perturbed distribution function

Our starting point for formulating a kinetic prescriptio
relating the perturbed current density vector to the elec
field is the Vlasov equation with the collisions represen
by the Bhatnagar, Gross, and Krook~BGK! model,20

] f s

]t
1v•¹xf s1

qs

ms
@E~x,t !1v3B#•“vf s~x,v,t !

52nsS f s2
ns

ns
~0! f s

~0!D , ~12!

whereqs , ms , f s , vs are the charge, mass, velocity distr
bution function, and collision frequency of speciess, respec-
tively. We now linearize by assuming that all quantities w
spatial and temporal dependences,E, B, f s , j and the charge
densityr are perturbed about their steady-state values~su-
perscripted with 0! by harmonic quantities~superscripted
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with 1! so that for a generic quantitya we havea5a(0)

1a(1) and ua(1)/a(0)u!1. After replacing the temporal and
spatial differential operators by2 iv and ik, respectively,
the linearization of Eq.~12! results in the following expres-
sion for the perturbed distribution function:

2 i ~v1 ins2k•v! f s
~1!1

qs

ms
~v3B~0!!•¹vf s

~1!

52
qs

ms
~E~1!1v3B~1!!•¹vf s

~0!1ns

ns
~1!

ns
~0! f s

~0! . ~13!

If we choose to work with the cylindrical phase space coo
dinates,v' , f, vz , with the magnetic field aligned with the
z-axis, the above equation can be recast into a first ord
linear inhomogeneous differential equation inf s

(1) which can
be integrated once to yield

f s
~1!5

1

Y~f!vcs
E Y~f!

3H qs

ms
FE~1!1

~v–E~1!!k2~k–v!E~1!

v G
•¹vf s

~0!1ns

ns
~1!

ns
~0! f s

~0!J df1C, ~14!

where the integrating factorY~f! can be written as

Y~f!5expF i
v1 ins2kzvz

vcs
f G

3 (
n52`

`

i nJnS k'v'

vcs
Deinf, ~15!

whereJn(a) is the Bessel function of integer ordern and we
have chosen, without any loss of generality, the wave vec
to be in the y–z plane as shown in Fig. 1, namelyk
5(0,k' ,kz).

We now introduce the steady-state distribution functio
f s

(0) . We choose to carry our derivation in the laborator
frame by allowing cross-field drifts in both the ion and elec

FIG. 1. The vectorsj , B, k andude in the local Cartesian coordinate frame.
Also shown is the accelerator’s fixed cylindrical coordinate frame,r –z8–u.
-

er

or

-

tron distribution functions. For a cross-field drift in a hom
geneous plasma the steady-state distribution function
drifting Maxwellian

f s
~0!~v!5S ms

2pTs
D 3/2

3expF2
ms

2Ts
~vx

21~vy2uds!
21vz

2!G , ~16!

whereuds andTs are the cross-field drift velocity and tem
perature of speciess in the laboratory frame. The drift veloc
ity is taken to be aligned along they-axis as shown in Fig. 1

Upon substituting the above expression and Eq.~15! in
Eq. ~14!, integrating over the azimuthal angle and using t
following recursive relations:

Jn21~a!1Jn11~a!52
n

a
Jn~a!, ~17!

Jn21~a!2Jn11~a!52Jn8~a!, ~18!

where the prime denotes the derivative with respect to
argument, we obtain

f s
~1!5

iqs

vTs
~v2k'uds! f s

~0!

3
e2 inf(m52`

` i mJm~k'v' /vcs!e
imf

v1 ins1nvcs2kzvz2k'uds

3H Cn•E~1!1ns

ns
~1!Ts

ns
~0!qs

JnJ , ~19!

where the vector of coefficientsCn is defined as

Cn[ iv'Jn8êx1S vds2
nvcs

k'
D Jnêy1vzJnêz . ~20!

D. Switching to the potential formalism

We now switch from the electric field formalism exem
plified in Eq. ~1! to a formalism cast in terms of the electro
static and electromagnetic potentials,F and A defined be-
low. This has three advantages. The first advantage is a c
separation of electromagnetic and electrostatic effects in
dispersion tensor making it more natural to a discussion
electromagnetic correction to an electrostatic mode.21 This
will be especially advantageous in the context of the anom
lous transport theory in Sec. III, where it will be insightful t
separate the electrostatic and electromagnetic contribut
to the anomalous heating and momentum exchange ra
The second advantage is the fact that, in the case where
ions are taken to be unmagnetized, their contribution to
dispersion tensor is much tidier mathematically than in
electric field formalism. Finally, the third advantage is th
the effects of collisions on the purely electromagnetic mo
can be simply prescribed in the potential formalism.

The electromagnetic potentialA is defined by

B5“3A. ~21!

Any arbitrary choice ofA of the form A1¹c ~wherec is
single-valued! is, in general, possible. This ‘‘arbitrariness o
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gauge,’’ as it is customarily called in electrodynamics,
most appropriately removed by imposing the Coulomb ga
“–A50. Rewriting the ‘‘“3E’’ Maxwell equation using the
above definition we get

¹3S E1
]A

]t D50, ~22!

which implies that the quantity (E1]A/]t) can be repre-
sented by a potential gradient2¹F, and for linear harmonic
perturbations we thus have

E~1!5 ivA~1!2 ikF~1!. ~23!

Taking the divergence of the electric field, using the cor
sponding Maxwell equation and the Coulomb gauge we a
get

F~1!5
r~1!

e0k2 . ~24!

Finally, upon substituting Eqs.~84! and ~21! in Maxwell’s
‘‘ ¹3B’’ equation, the following relation results:

S k22
v2

c2 DA~1!2
v

c2 kF~1!5m0j ~1!. ~25!

The above two equations become specified once expres
for the perturbed charge and current densities,r (1) and j (1),
are found in terms ofA(1) andF (1). This will be done using
the following moments:

r~1!5(
s

qsE f s
~1!d3v, ~26!

j ~1!5(
s

qsE f s
~1!vd3v, ~27!

so that Eqs.~24! and ~25! can be written as a set of thre
homogeneous equations inF (1), Ax

(1) , and Az
(1) ~and we

have eliminatedAy
(1) with the Coulomb gauge!

S D11 D12 D13

D21 D22 D23

D31 D32 D33

D S F~1!

Ax
~1!

Az
~1!
D 50. ~28!

The above matrix equation and the dispersion tensorDi j are
the analogs of Eq.~1! and the tensorRi j , respectively, in the
potential formalism.

The perturbed distribution functionf s
(1) needed to take

the moments in Eqs.~26! and~27! and close the system ca
now be rewritten in the potential formalism

f s
~1!5

iqs

vTs
~v2k'uds! f s

~0!

3
e2 inf(m52`

` i mJm~k'v' /vcs!e
imf

v1 ins1nvcs2kzvz2k'uds

3H Cn•~ ivA~1!2 ikF~1!!1ns

k• j s
~1!Ts

vqs
2ns

~0! JnJ , ~29!

where we have also eliminatedns
(1) in favor of j s

(1) using
e

-
o

ns

ns
~1!5

k• j s
~1!

vqs
, ~30!

which can be directly obtained by taking the divergence
Maxwell’s ‘‘“3B’’ equation.

E. The resulting dispersion tensor

The next step is to carry the velocity space integrat
required by the moments in Eqs.~26! and ~27! using the
above expression forf s

(1) . The integration is carried in cy
lindrical velocity coordinates and thus takes the form

E d3v5E
0

`

v'dv'E
2`

`

dvzE
0

2p

df. ~31!

After the integration overf the parallel velocity inte-
grals are of the form

E
2`

`

G~vz!
vz

p

v1 ins1nvcs2kzvz2k'uds
dvz , ~32!

wherep50,1,2. These integrals can be expressed as lin
functions of the well known plasma dispersion function

Z~zs![
1

Ap
E

2`

` e2t2

t2zs
dt, ~33!

and its derivative with respect to its argument. The integ
tion over the perpendicular velocity transforms the Bes
functions into modified Bessel functions,I n(ms) of the first
kind and of integer ordern with the argument being the
square of the normalized perpendicular wavelengthms

[k'
2 r cs

2 /2.
After much tedious but straightforward algebra, whe

we use the following relations:

dZ

dzs
522~11zsZ!, ~34!

(
n52`

`

nIn~ms!50, (
n52`

`

I n~ms!5ems, ~35!

(
n52`

`

n2I n~ms!5mse
ms, ~36!

assume the ions to be unmagnetized but keep in full th
electromagnetic contribution~which has been demonstrate
in Ref. 22 to be important! and neglect the ion collisions
@since for the MPDT plasma,n i!v lh,ne ~Refs. 6, 23!#, the
elements of the dispersion tensorDi j can finally be written
explicitly in terms of the wave and plasma parameters,

D11511a i~11z iZi !

1aeS 11ze0e2me(n52`
` I nZen

11 i ~ne /kzv te!e
2me(n52`

` I nZen
D , ~37!

D1252 i
vpe

2

ṽ2

kz

k
ze0A2mee

2me

3 (
n52`

`

~ I n2I n8!~11 z̃e0Zen!, ~38!
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D1352
vpe

2

ṽ2

kz

k
ze0e2me

3 (
n52`

`

I nH qn
2Zen1F S ude

v te
D 2Y ze0G

1~11zenZen!S qn

k'
2 2kz

2

k'kz
2zenD J , ~39!

D22512N21
vpi

2

v2 z iZi1
vpe

2

ṽ2 ze0mee
2me

3 (
n52`

` F n2

me
2 I n12~ I n2I n8!GZen , ~40!

D2352 i
vpe

2

ṽ2 ze0A2mee
2ue (

n52`

`

~ I n2I n8!

3F11S kz

k'

qn1zenDZenG , ~41!

D33512N21
vpi

2

v2 z iZi12
vpe

2

ṽ2

k'
2

k2 F S ze02
kz

k'

ude

v te
D 2

1ze0e2me (
n52`

`

I nZenS kz

k'

qn1zenD 2G , ~42!

D2152D12, D315
k'

2

k2 D13, ~43!

D3252
k'

2

k2 D23, ~44!

where we have used the following definitions:

zen[
v1nvce2k'ude1 ine

kzv te
, z i[

v2k'udi

kv t i
, ~45!

ṽ[v1 ine , z̃e0[
ṽ

kzv te
5ze01

k'

kz

ude

v te
, ~46!

qn[
kz

k'

~zen2 z̃e0!, Zen[Z~zen!, I n[I n~me!, ~47!

and the thermal velocity, plasma frequency and cyclot
frequency of speciess are, respectively, given by

v ts5~2Ts /ms!
1/2, vps[S qs

2n0s

e0ms
D 1/2

; vcs[
qsB0

ms
.

~48!

It is also useful to note that the refraction indexN ap-
pearing in the above dispersion tensor can be related to
plasma parameters through the following relation:

N2[
c2k2

v2 52
vpi

2

v2

me

be

mi

me

k2

k'
2 , ~49!

where we have introducedbs , the beta of speciess, ~s in the
above equation is set toe for electrons! defined as the ratio o
thermal pressure to magnetic pressure
n

he

bs[
nskTs

B0
2/2m0

. ~50!

Finally, by writing

vpi
2

v2 5
a i

2z i
2 and

vpe
2

v2 5
k2

k'
2

ae

2ze
2 , ~51!

where

as[
k'

2 vps
2

k2vcs
2 ms

5
2vps

2

k2v ts
2 5

1

k2lds
2 , ~52!

~lds is the Debye length for speciess! and by defining a
nondimensional parameterC related to the propagation
angleu ~see Fig. 1! scaled by the mass ratio

C[~me /mi !
1/2

k

kz
5

~me /mi !
1/2

cosu
, ~53!

it can be verified that the following set of seven dimensio
less parameters

Ti

Te
,

ude

v t i
, C, be ,

vpe

vce
,

mi

me
,

ne

v lh
, ~54!

completely specify the problem such that, for a given r
wave number,krce ~wherer ce is the electron cyclotron ra
dius! we seek the roots,v/v lh and g/v lh of the dispersion
relation24

detuDi j u50. ~55!

It is also worth mentioning that the electrostatic dispers
relation ~obtained in the limitb→0! is simply D1150.

Dominant modes. We now show the results of calcula
tions using the above dispersion relation to illustrate some
the characteristics of the unstable modes and their param
dependencies. The solutions shown in Fig. 2 have b
growth-maximized over wavelength and thus represent
dominant modes. The parameterUde represents the ratio
ude/v t i .

FIG. 2. Normalized temporal growth rates for collisional and collisionle
unstable modes in argon as a function of the anisotropy parameter an
electron beta. The solutions are growth-maximized over wavelength.
stars on the curves denote the dominant~doubly-maximized! modes.
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The enhancement of electromagnetic coupling with
creasingbe results in a damping of the dominant mode
can be seen from that figure.

The damping is not drastic since more than a three o
of magnitude increase inbe corresponds to only a factor of
decrease in the growth rate of the dominant modes. The
stability not only persists under finite-beta effects but, as
be seen from thebe51 ~andne /v lh51! curve in that figure,
encompasses a somewhat wider range of propagation a
than it did for the purely electrostatic case.

The finite-beta effects therefore arenot globally stabiliz-
ing as was previously speculated,15–17,14 even for drift ve-
locities exceeding the Alfve´n velocity, but rather result in the
excitation of finite-growth modes with mixed polarizatio
This corroborates the findings of Refs. 25, 18, 26 and
tends the validity of their argument to the collisional case

The collisionless solutions are also shown in the sa
figure for both thebe50 ~electrostatic! andbe51 cases. It
is obvious that the effects of finite beta are qualitatively d
ferent for the collisionless and collisional dominated case

In the absence of collisions the electromagnetic effe
result in a shifting of the instability to more oblique prop
gation. For argon withbe51 andUde520, for instance, the
dominant mode shifts by more than 6° towards the magn
field vector from the orientation of the purely electrosta
dominant mode. The shift is more pronounced for ligh
atoms~approaching 50° for hydrogen!. This effect was first
discovered by Wuet al.26 who noted that electromagnet
effects actually stabilize nearly perpendicular waves and
stabilize more oblique ones. Since many of the preced
studies that addressed the finite-beta effects on the ele
static modified two-stream instability focused on either p
pendicular or nearly perpendicular propagation, electrom
netic effects~which become important whenude.vA! were
generally thought to be stabilizing.

The frequencies of the unstable modes, grow
maximized over wavelength, are of the order of the low
hybrid frequency as shown in Fig. 3. The dotted curves r
resent the collisionless case that corresponds to the gen

FIG. 3. Normalized frequencies for collisional and collisionless unsta
modes in argon as a function of the anisotropy parameter and the ele
beta. The solutions are growth-maximized over wavelength. The stars o
curves denote the dominant~doubly-maximized! modes.
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ized lower hybrid drift instability~GLHDI! previously dis-
cussed in Refs. 15–17, 26.

Consistent with the above results, we find that the an
lar dependence of the frequencies of the collisional mix
polarization modes resembles more that of the electros
collisionless modes than that of the collisionless mixed
larization modes. This indicates that unstable electrost
oscillations couple differently with electromagnetic oscill
tions when collisions are important.

We conclude from the above linear stability analysis th
plasma parameters typical of the collisional and transve
current-carrying plasma of a Lorentz force plasma accele
tor, 10<Ude<100, Ti /Te5O(1), ns,vce and b;O~1!, a
mixed polarization mode can be easily driven unstable by
cross-field current. The stability boundaries are bro
enough and the evolution time scales are fast enough tha
energy associated with the unstable oscillating electric
magnetic field spectra may be expected to significantly a
basic transport processes as will be seen next.

III. WEAK TURBULENCE KINETIC FORMALISM FOR
ANOMALOUS TRANSPORT

The kinetic theory of weak turbulence was first dev
oped by Vedenov, Velikhov, and Sagdeev27 ~1961!, as well
as Drummond, Pines and Rosenbluth28 ~1962!. A good treat-
ment is given by Galeev and Sagdeev in Ref. 29~1982!.

The use of weak turbulence theory is generally justifi
when

Et

(snsTs
!1. ~56!

We can relateEt /n0Ti to the experimentally measurable de
sity fluctuationñ/n0 , where the tilde denotes a fluctuatin
quantity by noting thatñ/n0'ef̃/Te andef̃'eẼ/k,

Et

n0Ti
'

Te

Ti

~krce!
2

4 S ñ

n0
U

rms
D 2

. ~57!

Experimental evidence of turbulent fluctuations caused
cross-field current-driven instabilities was recently found
the low-power steady-state MPDT plasma at various con
tions and locations in the plume.7 These measured turbulen
fluctuations had most of their power in the lower hybr
mode with some power appearing sometimes in the elec
cyclotron harmonics. Measured values of (ñ/n0)rms when
such turbulence was observed were on the order of 0.1 w
magnitudes ranging between 0.05 and 0.7. For these va
with 1<Ti /Te<6, Et5e0uẼku2/2 and assuming the doubl
growth-maximized (krce)** '0.1, we obtain from Eq.~57!
an estimate forEt /n0Ti ranging between 1023 and 1026 im-
plying that the weak turbulence assumption is genera
valid.

A. Governing equations: The moment-generating
equation

In this subsection we present an outline of the derivat
of the general form of fluid-like equations governing the ev
lution of macroscopic quantities under the conditions

e
on
he
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weak turbulence. Detailed discussions of such a deriva
have already been presented in numerous articles~see Refs.
30, 31, for instance, for a tutorial review!. We do this in
preparation to our derivation of anomalous transport p
sented in the following sections.

We should mention at the outset that our interest lies
in the evolution equation itself but rather in its use as
moment-generating equation. Therefore, for the sake of s
plicity and in order to keep a connection with the literatu
we shall neglect collisions in the kinetic evolution equatio
The effects of collisions will be reintroduced later when w
use the explicit form of the dispersion tensor elements.

The underlying idea32 is to consider the distribution
function of thes species,f s , as the sum of a slowly varying
ensemble-average part and a rapidly varying fluctuating

f s~x,v,t !5Fs~v,t !1 f̃ s~x,v,t !, ~58!

where Fs(v,t)5^ f s(x,v,t)& and ^ & denotes an ensemble
average while the tilde denotes a quantity fluctuating due
the effects of unstable waves. When similar partitions
effected on the electric and magnetic field vectors, the kin
~Vlasov! equation for a spatially uniform equilibrium yield

]Fs

]t
2vcs

]Fs

]f
1

qs

ms
@Ẽ1v3B̃#•¹vFs

52S ] f̃ s

]t
1v•¹ f̃ s2vcs

] f̃ s

]f
1

qs

ms
@Ẽ1v3B̃#•¹v f̃ sD ,

~59!

where, like in Sec. II we have chosen to work with the c
lindrical phase space coordinatesv' , f, vz . Taking the
ensemble-average of the above equation, while noting
^ f̃ s&50, results in

]Fs

]t
2vcs

]Fs

]f
5S ]Fs

]t D
AN

, ~60!

where the right-hand side represents the anomalous cont
tion that is the response of the average distribution func
to the microturbulent fluctuations and can be written exp
itly as

S ]Fs

]t D
AN

5 K 2
qs

ms
@Ẽ1v3B̃#•¹v f̃ sL . ~61!

By subtracting Eq.~61! from Eq. ~59! and, in the spirit of
weak turbulence theory, neglecting all terms that are q
dratic in the fluctuation amplitude~which is tantamount to
the neglect ofnonlinear wave–particle and wave–wave in
teractions! the following governing equation is obtained for
weakly turbulent plasma:

] f̃ s

]t
1v•¹ f̃ s2vcs

] f̃ s

]f
52

qs

ms
@Ẽ1v3B̃#•¹vFs . ~62!

The standard procedure in weak turbulence theory~ex-
pounded in Ref. 32 for instance! is to solve Eq.~62! along
with Maxwell’s equations forẼ, B̃, and f̃ s then substitute the
result into Eq.~60! to obtain the evolution ofFs in the pres-
ence of microturbulence. We shall not, however, need to
n
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t
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-
,
.

rt

to
e
ic
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o

all that for our particular problem of deriving expressions f
the momentum and energy exchange rates. Such expres
can be arrived at by taking moments of the governing eq
tion @Eq. ~60!# as outlined below.

B. Evolution of average macroscopic properties
under microturbulence

To obtain the macroscopic evolution equations we ta
moments of Eq.~60!, i.e., we multiply the equation by the
generic quantity of transportQ ~which could represent mass
momentum or energy! and integrate over velocity space
get

]

]t E QFsdv2qsmsE ~v3B0•¹vQ!Fsdv

5
qs

ms
K E @~Ẽ1v3B̃!•¹vQ# f̃ sdvL , ~63!

where we have used integration by parts in order to move
distribution functions outside the operators. Taking succ
sive moments of Eq.~60! is equivalent to substitutingQ51,
v, vv ~for mass, momentum and energy, respectively! in Eq.
~63! and integrating overv-space. This yields

]^ns&
]t

50, ~64!

]^Gs&
]t

1~vcsez!3^Gs&5
qs

ms
^Ẽñs1G̃s3B̃&, ~65!

]^Ws&
]t

12~vcsez!3^Ws&52
qs

ms
^ẼG̃s1W̃s3B̃&, ~66!

whereez is the unit vector along thez-axis, and we have use
the following definitions:

ns5E f sdv, ~67!

Gs5nsvds5E vf sdv, ~68!

Ws5msE vvf sdv, ~69!

for the average number density, the particle flux density,
the kinetic energy density tensor, respectively~with vds as
the drift velocity vector of speciess!.

IV. MOMENTUM EXCHANGE AND HEATING RATES

We now proceed to define and derive explicit relatio
for the anomalous rates of interest.

The right-hand side of Eq.~65! represents the rate o
momentum exchange (]Ps /]t)AN ~where the momentum
density vector isPs5msGs! between the particles and th
fluctuating fields. Since we shall be interested in the mom
tum exchange along the drift velocity vector, we write

S ]Ps

]t D
AN

•vds52~ns
p!ANPs•vds , ~70!
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where we have defined (ns
p)AN as the effective anomalou

momentum exchange rate~or frequency! between speciess
and the fluctuating fields. Using the explicit expression
(]Ps /]t)AN from Eq. ~65! in the above equation we obtain

~ns
p!AN52

qs

nsmsvds
K Ẽ•vdsñs

vds
1

vds•~G̃s3B̃!

vds
L , ~71!

where, unlike most derivations in the literature, we are
taining the full electromagnetic character of the microturb
lence.

We now specialize the above expression for our parti
lar problem according to the MPDT configuration shown
Fig. 1.

We thus obtain the effective anomalous momentum
change rate for electrons along the current after settins
5e, staying in the ion reference frame and aligning the re
tive drift ude along they-axis,

~ne
p!AN5

e

n0meude
^Ẽyñe1n0ũdez

B̃x2n0ũdex
B̃z&, ~72!

where we have used the relationG̃s5ñsvds1n0ṽds .
The frequency (ne

p)AN can be thought of as an effectiv
‘‘collision’’ frequency between the electrons and the fluct
ating fields and can thus be associated with a resisti
called ‘‘anomalous resistivity’’ the same way that the co
lomb collision frequencynei is associated with the classic
Spitzer resistivity. By analogy the anomalous resistiv
(h)AN is proportional to (ne

p)AN and is given by

~h!AN5
me~ne

p!AN

n0e2 . ~73!

The effective collision frequency (ne
p)AN is therefore a direct

measure of anomalous resistivity.
Similarly, for the temperature

Ts5
ms

3ns
E ~v2vds!

2f sdv ~74!

we define a heating rate for speciess by

ns
T[

1

Ts

]Ts

]t
, ~75!

and obtain, after combining Eqs.~65! and ~66! and special-
izing for the MPDT configuration,

~n i
T!AN5

2e

3n0Ti
^n0Ẽ•ũdi&, ~76!

for the ions and

~ne
T!AN5

22e

3n0Te
^n0Ẽ•ũde2n0ude~ ũdez

B̃x2ũdex
B̃z!&,

~77!

for the electrons.
Equations~72!, ~76!, and ~77! will be the focus of our

remaining analysis and calculations.
In order to proceed with more useful forms for the

expressions we need to eliminate the fluctuating density,
locity and magnetic field in favor of the fluctuating electr
r

-
-

-

-

-

-
ty
-

e-

field. For this purpose we invoke, in the spirit of a quasili
ear description, relations between the fluctuating quanti
and the fluctuating electric field that follow those of the
linearly oscillating counterparts. From a generalized Ohm
law we can write for speciess,

j̃ sk
52 i e0vR~s!Ẽk , ~78!

~where j is the current density,R(s) is the dispersion tenso
of speciess andv is the wave frequency! which, combined
with the continuity relation,

ns
~1!5

k• j s
~1!

vqs
, ~79!

gives a useful expression for the fluctuating density of s
ciess

ñsk
5

k• j̃ s

vqs
52 i

e0

qs
(

l
kl(

m
Rlm

~s!Ẽmk
, ~80!

where the subscriptk is a reminder that these relations are f
the spectrally resolved~i.e., Fourier transformed! fluctua-
tions. In this expression,Rlm

(s) are the elements of the tenso
representing the dielectric response of speciess and can be
readily obtained from Eqs.~37!–~44! through transforma-
tions that will be described further below.

In a similar fashion we can derive an expression forũds

from the following relation:

j̃ s5qs~n0ũds1ñsuds!, ~81!

and Eq.~80!, yielding

ũsk
52

i e0vR~s!Ẽk

qsn0
1F i

e0

qsn0
k•~R~s!Ẽk!Guds . ~82!

We shall not need to worry about the second term on
right-hand side of the above equation in the context of
MPDT configuration shown in Fig. 1, because this term va
ishes for the ions~udi50, having chosen to stay in the io
rest frame! and for the electrons it is also zero for the com
ponents that figure in Eqs.~72! and ~77! ~i.e., thex and z
components! so that we are left with

ũdsl k
52 i

e0

qsn0
v(

m
Rlm

~s!Ẽmk
, ~83!

wherel 5x,z for s5e; and l 5x,y,z for s5 i .
Having related the fluctuating density and velocity to t

fluctuating electric field we need to do the same forB̃. To
this end, the following equation

Ẽ5 ivÃ2 ikF̃, ~84!

gives, for our particular configuration,

Ẽxk
5 ivÃxk

, ~85!

Ẽyk
52 ik'F̃k2 iv

kz

k'

Ãzk
, ~86!

Ẽzk
52 ikzF̃k1 ivÃzk

. ~87!



n

qs
ing
-
tra
in

ity
ub
r

in
is

to
r

la

-

g

tric

al-
or-
lous
in-
ting
te-
be

m

ions
one

d
f

2298 Phys. Plasmas, Vol. 6, No. 5, May 1999 E. Y. Choueiri
Furthermore, combining the above equations with the defi
tion of the electromagnetic potential, Eq.~21!, and Cou-
lomb’s gauge, yields the desired relations

B̃xk
5

1

v
~k'Ẽzk

2kzẼyk
!, ~88!

B̃yk
5

kz

v
Ẽxk

, ~89!

B̃zk
52

k'

v
Ẽxk

. ~90!

We are now in a position to evaluate the terms of E
~72!, ~77!, and~76! by carrying the ensemble-averages us
the random phase approximation~which is a standard tech
nique of statistical physics commonly used in the spec
resolution of fluctuations, see Ref. 33, pp. 371–373, for
stance!. For the first term in Eq.~72! using Eq.~80! we have,

^Ẽyñe&5K E E i e0

e (
l

kl( Rlm
~e!

3Ẽmk
Ẽy

k8
ei ~k•x1k8•x!dkk 8L , ~91!

which yields, under the assumption of random phase,

^Ẽyñe&52
e0

e E JH(
l

kl(
m

Rlm
~e!ẼmẼyJ dk, ~92!

whereJ$ % denotes the imaginary part of a complex quant
and, for the sake of simplicity, we have dropped the s
scriptk from the fluctuating quantities. Similarly, we find fo
the other two terms in Eq.~72!,

^ũdez
B̃x&52

e0

e E JH S (
m

Rzm
~e!ẼmD

3~k'Ẽz2kzẼy!J dk, ~93!

^ũdex
B̃z&5

e0

e E JH S (
m

Rxm
~e!ẼmD k'ẼxJ dk. ~94!

If we now substitute the above three equations in Eq.~72!,
expand and collect the terms in the summations while tak
advantage of the following symmetry properties of the d
persion tensor:

Rxy
~s!52Rxy

~s! , Rxz
~s!52Rzx

~s! , Ryz
~s!5Rzy

~s! , ~95!

we arrive at

~ne
p!AN52

e0

udemene
E JH k'F S (

l
Rll

~e!uẼl u2D
12Ryz

~e!uẼyẼzuG J dk. ~96!

We shall find it convenient, for our particular instability,
cast the the above expression in terms of the spectrally
solved fluctuating field energy density in the perpendicu
i-

.

l
-

-

g
-

e-
r

direction,Ek'
. This can be done by using the following re

lations obtained from Eq.~95! and Eq.~9! to yield

A[
Ẽx

Ẽy

5
RyyRxz2RxyRyz

RxyRxz1RxxRyz
, ~97!

B[
Ẽz

Ẽy

52
RxyRxz2RxxRyz

RxxRzz1RxzRxz
~98!

~where each elementRlm is the sum of the correspondin
contributions from the electrons, ions and vacuum! to elimi-
nateẼx and Ẽz and give

~ne
p!AN52

2

udemene
E Ek'

k'J$Rxx
~e!A21Ryy

~e!1Rzz
~e!B2

12Ryz
~e!B%dk. ~99!

We have carried out the derivation above under the elec
field formalism where the relevant dispersion tensor isR @see
Eq. ~9!#. The dispersion tensorD that we derived explicitly
in Sec. II, however, was obtained under the potential form
ism. As stated in that section, switching to the potential f
malism has some advantages. In the context of anoma
transport, the potential formalism allows a more physical
sight by expressing the momentum exchange and hea
rates in terms of an electrostatic contribution plus a fini
beta correction. The results obtained so far can readily
recast in terms of the elementsDlm of Eqs. ~37!–~44!,
through the following linear transformations obtained fro
combining Eqs.~9!, ~85!, ~86!, and~87!,

Rxx5D22, ~100!

Rxy52Ryx5
k'

k S kz

k
D232D12D , ~101!

Rxz52Rzx52
k'

2

k2 D232
kz

k
D12, ~102!

Ryy5
k'

2

k2 S D1112
kz

k
D13D1

kz
2

k2 D33, ~103!

Ryz5Rzy5
k'

k Fkz
2

k22
k'

2

k2GD13 nonumber ~104!

1
k'kz

k2 ~D112D33!, ~105!

Rzz5
k'

2

k2 D331
kz

2

k2 D1122
k'

2

k2

kz

k
D13. ~106!

We also need to separate the contributions of electrons,
and vacuum in the dispersion tensor, which can be d
following

Dlm
~e!5Dlm2Dlm

~0!2Dlm
~ i ! , ~107!

where subscriptsl and m cover the indices 1, 2, and 3 an
where the superscript~0! denotes the contribution o
vacuum. The elementsDlm

(0) andDlm
( i ) are given by
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D11
~0!51, D22

~0!5D33
~0!512N2, D12

~0!5D13
~0!5D23

~0!50,
~108!

and

D11
~ i !5

2vpi
2

k2v t l i
2 ~11z iZi !, ~109!

D22
~ i !5D33

~ i !5
vpi

2

v2 z iZi , ~110!

D12
~ i !5D13

~ i !5D23
~ i !50. ~111!

When the above transformations@Eqs.~100!–~111!# are used
in Eq. ~99! to eliminateRlm

(e) in favor of Dlm
(e) , we finally

obtain after some straightforward algebra

~ne
p!AN5@~ne

p!AN#L2
2

udemene
E Ek'

k'

3JH D11
~e!FB2

kz
2

k22
kz

2

k2 12B
k'kz

k2 G1D22
~e!A2

1D33
~e!Fkz

2

k2 1
k'

2

k2 B222B
k'kz

k2 G12D13
~e!

3FB
k'

k S kz
2

k22
k'

2

k2 D 2
k'

2 kz
2

k4 B21
k'

2 kz

k3 G J dk,

~112!

where@(ne
p)AN#L is the well-known electrostatic~longitudi-

nal! contribution to the anomalous electron momentum
change rate

@~ne
p!AN#L52

2

udemene
E Ek'

k'J$xe%dk, ~113!

and xe5D11
(e) is the electrostatic susceptibility of the ele

trons. In the electrostatic limit~b→0! it can be verified that
the integrand in Eq.~112! vanishes so that we are left wit
(ne

p)AN→@(ne
p)AN#L and

J$xe%5J$D11
~e!%5J$2D11

~ i !%5J$2x i%. ~114!

We shall demonstrate through the calculations of Sec.
that the transverse~electromagnetic! or finite-beta correction
to (np

e)AN in Eq. ~112! can be substantial, especially for
finite-beta plasma like that of the MPDT.

Equations~99! and ~112! are equivalent but, for the
present analytical discussion, we prefer from here on to
the former~i.e., the electric field formalism! because the re
sulting expressions are more compact. For our numerical
culations we shall apply the transformations in Eqs.~100!–
~111! in order to obtain theR tensor from theD tensor de-
rived in Sec. II E.

It is convenient to express (ne
p)AN in units of a natural

frequency. We choose, as we did in Sec. II, the lower hyb
frequency,v lh.Avcivce, and normalize Eq.~99! to get
-

I

se

l-

d

~ne
p!AN

v lh
52

v t i

ude
S Ti

Te
D 1/2mi

me
E Ek'

n0Ti

3J$k'r ce@Rxx
~e!A21Ryy

~e!1Rzz
~e!B2

12Ryz
~e!B#%dk. ~115!

We have focused, above, on the anomalous electron
mentum exchange rate. Similar derivations, with no conc
tual difference, start from Eqs.~76! and~82! and lead to the
following expressions for the ion and electron heating ra
(n i

T)AN and (ne
T)AN :

~n i
T!AN

v lh
5

4

3 E
Ek'

n0Ti
JH v

v lh
@Rxx

~ i !A21Ryy
~ i !1Rzz

~ i !B2

12Ryz
~ i !B#J dk, ~116!

~ne
T!AN

v lh
5

4

3

Ti

Te
E Ek'

n0Ti
JH F v

v lh
2k'r ceS Ti

Te
D 1/2ude

v t i
G

3@Rxx
~e!A21Ryz

~e!B1Rzz
~e!B2#1

kz

k

ude

v t i
k'r ceS Ti

Te
D 1/2

3@Rzx
~e!A1Rzy

~e!1Rzz
~e!B#1

v

v lh
@Ryy

~e!1Ryz
~e!B#

2Ak'r ceS Ti

Te
D 1/2ude

v t i
Rxy

~e!J dk. ~117!

The above three equations are the sought expression
our analysis of anomalous transport.35

V. SATURATION MECHANISMS

For the numerical analysis of anomalous transport in
MPDT plasma, the last three equations, along with the ten
elements in Eqs.~37!–~44!, the linear dispersion relation in
Eq. ~2! and the transformations in Eqs.~100!–~111! form an
almostcomplete set of equations in terms ofkrce , v/v lh ,
g/v lh and the seven parameters in Eq.~54!. The only lacking
equation is one that relates the level of saturated microtu
lenceEk /n0Ti to those parameters.

The rigorous formulation of this relation is difficult as
concerns the nonlinear saturation mechanism through w
the fluctuations, initiated by the instability, reach a stea
state. The saturation mechanism dictates the magnitude
dependencies of the corresponding fluctuating energy d
sity. Since the question of which saturation mechanism
relevant is usually best answered by computer particle si
lations and since these simulations have yet to be made
the particular instability studied here, we consider and co
pare four different saturation mechanisms; ion trapping, e
tron trapping, ion resonance broadening, and thermodyna
bound. For our purposes here we only quote the resul
expression for each of these saturation models.

A. Thermodynamic limit: The Fowler bound

An upper limit for Et was first derived by Fowler36

~1968! from thermodynamic arguments,
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~Et!FB< 1
2nemeude

2 , ~118!

and simply states that the energy in the turbulent fields c
not exceed the kinetic energy of the electron drift that
fueling the instability. For a convenient incorporation in o
particular formulation, we recast the inequality above
terms of the problem’s dimensionless parameters and ge

~Et!FB

n0Ti
<

me

mi
S ude

v t i
D 2

. ~119!

B. Saturation by ion trapping

When the excited wave spectrum is narrow due to
dominance of a single wave mode, a monochromatic w
saturation model, such as that behind particle trapping,
prove to be a viable mechanism for saturation. In such a c
the saturation dynamics can be governed by the trappin
the particles in the potential wells of the growing mode th
limiting its growth. At saturation one can simply write

ef̃5
1

2
mi S v r

k D 2

, ~120!

wherev r /k is the phase velocity of the dominant mode a
we have assumed that the ions are the particles b
trapped. Again, we normalize the saturation model for co
patibility with transport theory so that, usingef̃'eẼ/k and
Ek5e0uẼku2/2, the above equation can be rewritten as

~Ek! IT

n0Ti
5

1

4~krce!
2 S vce

vpe
D 2 Te

Ti
S v r

v lh
D 4

. ~121!

C. Saturation by electron trapping

Electron trapping is probably not a viable saturati
mechanism for an instability in which electrons are co
sional and are in broad-resonance with the unstable wa
We shall, however, include a model for electron trapp
saturation in our calculations for the sake of reference.
analogy with ion trapping, we can write for the electrons
viewed from the ion rest frame

ef̃5
1

2
meS v r

kz
2udeD 2

, ~122!

and after some algebraic manipulations,

~Ek!ET

n0Ti
5

1

4~krce!
2 S vce

vpe
D 2 Te

Ti
FC v r

v lh
2krce

ude

v te
G4

.

~123!

D. Saturation by resonance broadening

This mechanism relies on the broadening of wav
particle resonances by the random motion of particles in
turbulent electric field setup by the microinstability.

If resonance broadening is to be important in our case
would most probably rely on ion dynamics, since the el
trons are already broadly resonant with the waves due
collisions and finite-beta effects while the ions are ve
narrowly-resonant.
n-
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Following Gary and Sanderson37 who applied the Dum–
Dupree resonance broadening formula38 to the ions and
found, after taking the velocity average*Dv f i 0

dv/* f i 0
dv,

~Ek! IRB5
1

2
e0B0

2S v r

k D 2

, ~124!

we specialize the ion resonance broadening model for
dimensionless parameters and obtain

~Ek! IRB

n0Ti
5

me /mi

~krce!
2

Te

Ti
S vce

vpe
D 2S v r

v lh
D 2

. ~125!

VI. CALCULATIONS OF ANOMALOUS TRANSPORT

Armed with the expressions for anomalous transport
Eqs. ~115!, ~116!, and ~117! along with the tensor element
in Eqs. ~37!–~44!, the linear dispersion relation in Eq.~2!,
the transformations in Eqs.~100!–~111! and the saturation
models in Eqs.~119!, ~121!, ~123!, ~125!, we can now con-
duct a comparative numerical study of anomalous diss
tion.

A. Classical benchmarks

For benchmarks we shall use the following classical
pressions for the momentum and energy exchange rates

For the momentum exchange rate we take the class
Coulomb ~electron–ion! collision frequency19 for momen-
tum relaxation (ne

p)CL

~ne
p!CL5

nee
4 ln L

3~2p!3/2e0me
1/2Te

3/2, ~126!

whereL59(4/3)pn0lde
3 is the plasma parameter. This co

lision frequency determines the classical Spitzer resistivi

~h!CL5
me~ne

p!CL

n0e2 . ~127!

For compatibility, we normalize with the lower hybrid fre
quency and cast the result in terms of our dimensionl
parameters, to get

~ne
p!CL

v lh
5

2

A2p
S mi

me
D 1/2vpe

vce

ln L

L
. ~128!

For a heating rate benchmark we define a classical h
ing rate, (ne

T)CL , for Joule heating

~ne
T!CL[

1

n0Te

]

]t
neTe5

2

3
~h!CL

j 2

n0Te
, ~129!

which yields

~nT!CL

v lh
5

8

3A2p
S ude

v t i
D 2 Ti

Te
S me

mi
D 1/2vpe

vce

ln L

L

5
4

3 S ude

v t i
D 2 Ti

Te

me

mi

~ne
p!CL

v lh
, ~130!

where the second equation shows the explicit dependenc
the collision frequency.
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Finally, we note that in calculating the anomalous ra
we approximate the integrals, as commonly done in the
erature, by the contribution of the dominant mode only~i.e.,
for k** !, meaning that all the Fourier-decomposed prop
ties are estimated at the doubly maximized growth~i.e.,
maximized over wavelength and propagation angle!.

B. Numerical results

Sincebc and ude /v t i are the two parameters that va
most within the plasma of the MPDT, they were chosen
the varying parameters of the calculations. Whenbe is var-
ied, ude /v t i is kept at 20, and whenude /v t i is varied,be is
set at unity. The other parameters aremi /me573,300 ~for
argon!, Ti /Te51, ne /v lh51, andvpe /vce5100 for conti-
nuity with the calculations in Sec. II.

1. Effects of plasma beta

The effects of plasma beta on the resistivity are shown
Fig. 4, where the ratio of anomalous to classical momen
exchange frequency$which is essentially the ratio of the co
responding resistivities@Eqs. ~73! and ~127!#% is plotted vs
beta for the parameters listed above. We note from that
that with increasingbe , the curves corresponding to th
trapping models significantly deviate from theirbe→0 as-
ymptotes ~which are practically reached atbe50.001!.
These deviations are due to the electromagnetic correct
to the electrostatic limits, as separated in Eq.~112!.

The ion trapping model is of special interest as discus
in Sec. V B especially since it was the only one assumed
the purely electrostatic study of Ref. 14. We see that, w
be is on the order of unity or greater, as is commonly t
case of the MPDT plasma, the anomalous resistivity is
order of magnitude less than that predicted by the pu
electrostatic limit.

The reason the anomalous resistivity decreases with
creasing beta according to trapping models can be trace
the coupling with the finite polarization modes we discuss
in Sec. II E 1. As beta increases, the disturbances to the m

FIG. 4. The anomalous momentum exchange frequency, (ne
p)AN , normal-

ized by its classical counterpart and plotted vs the electron beta accordi
four saturation models. Argon withude /v t i520, Ti /Te51, ne /v lh51, and
vpe /vce5100.
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netic field do not have the time to dissipate~low Alfvén
velocity! and significant electromagnetic coupling arise
The unstable waves acquire some of the characteristics o
more electromagnetic modes and consequently the mos
stable modes shift to lower frequencies. Since the satura
level due to trapping scales with frequency to the fou
power @see Eq.~121!#, the end effect is a substantial redu
tion in the anomalous resistivity.

We note from the plot that the Fowler bound on t
calculated rates allows, in principle, for a wide latitude f
anomalous resistivity to be important.

We should not expect the electron trapping model
dictate the transport as per arguments already made in
vious sections. Furthermore, we should mention that m
careful studies of resonance broadening than those mad
the time the mechanism was first proposed, have shown
its effects are limited to a redistribution of energy ink-space
at low plasma beta, and that it does not result in enou
dissipation to saturate instabilities such as those being c
sidered here. Therefore, for lowbe , ion trapping seems to be
the most viable mechanism.

At these conditions, the anomalous resistivity can
quite dominant~as is observed in Fig. 4!, more than two
orders of magnitude larger than the classical value, in ag
ment with the findings of Ref. 14. Asbe increases, saturation
by resonance broadening can become more viable espec
since the turbulent saturation levels are considerably lo
than those for ion trapping~as is clear from the same plot!.
Whether one or the other mechanism controls saturation
pends, at least partly, on whether the spectrum is narrow
broad. Even though experimental data on turbulent fluct
tions in the MPDT~Ref. 7! give evidence of a dominan
narrow ~peaked! spectrum of turbulence in the lower hybri
range, the considerably lower levels of saturation energy
plied by the ion resonance broadening mechanism warran
consideration as a contender in the control of turbulent tra
port. Of course, this question is perhaps best answered
computer particle simulations.

If ion resonance broadening does take over the contro
saturation, anomalous transport can, for the parameters in
above calculations, be brought down below classical lev
One should therefore expect, by virtue of the substan
variability of the plasma beta within the MPD thrust
plasma, that there are regions where anomalous resist
dominates over its classical analog as there are regions w
the converse is true.

The same comments we made above also apply for
anomalous electron heating rates that were normalized by
Joule heating rate and plotted in Fig. 5.

It is clear from this plot that when ion trapping dom
nates, the anomalous heating rate is substantially larger
the electron Joule heating rate. Ion heating rates are
shown here but were found to be similar in both magnitu
and dependence to their electron counterparts.

To compare the two rates we have calculated their ra
and plotted the result in Fig. 6.

There is only one curve in this figure because the vari
saturation models cancel out in the division. Since this ra
is independent of the saturation details, it is more accu

to
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than the other quantities we have calculated. We note f
this figure that, in the electrostatic limit, the two anomalo
heating rates are basically equal. This feature is in contra
the way electrons and ions are heated classically~especially
for a heavy atom like argon! and is a well-known character
istic of the ~electrostatic! modified two-stream instability a
noted in Refs. 15, 16. Since the ions, are heated by
instability-induced turbulence at rates comparable to thos
the electrons, and since in the MPDT, the electron energ
strongly tied to excitation and ionization through inelas
collisions, anomalous heating may offer an answer to
long standing question of why the ion temperature in th
thrusters is often higher than the electron temperature.
course, for this argument to be true not only (ne

T)AN must be
comparable to (n i

T)AN , but the saturation level must be hig
enough to warrant the dominance of anomalous heating
classical heating. Such is the case when the instability s
rates by trapping ions.

The above argument about the relative temperature
strongest in the electrostatic limit and is in agreement w
Ref. 14. When electromagnetic effects start to become

FIG. 5. The anomalous electron heating rate, (ne
T)AN , normalized by the

Joule heating rate and plotted versus the electron beta according to
saturation models. Argon withude /v t i520, Ti /Te51, ne /v lh51, and
vpe /vce5100.

FIG. 6. The anomalous electron heating rate, (ne
T)AN , normalized by the

anomalous ion heating rate, (n i
T)AN , plotted vs the electron beta. Argo

with ude /v t i520, Ti /Te51, ne /v lh51, andvpe /vce5100.
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portant with increasing beta, the same figure shows a de
dation of the heating parity towards a progressively pref
ential heating of electrons. This finding is in agreement w
that of Ref. 34, where only the collisionless limit was stu
ied. This degradation in heating parity is not strong enou
however, to weaken the grounds for the above argument c
cerning the relative temperatures, especially for a he
atom like argon. Indeed, we see from the same figure th
four-octave increase in beta does not change the orde
magnitude of the relative heating ratio.

The increase of preferential electron heating with
creasing beta may be partly due to the fact that, at low b
the instability has its dominant modes oriented at sm
angles to the magnetic field@kz /k.(me /mi)

1/2 or C.1# and
consequently ‘‘perceives’’ the electron with an effectiv
mass comparable to that of the ions.16 As beta increases
electromagnetic coupling with oblique more electromagne
modes causes the dominant modes to propagate more
liquely, as first noted by Refs. 26 and 39 for the collisionle
case. This is also the case when collisions are importan
seen from Fig. 2. Consequently, the effective electron m
decreases and the electrons become much easier to hea
the ions.

2. Effects of the drift velocity

The effects of the drift velocity are illustrated in the plo
of Figs. 7 and 8 for the same parameters as above but
be set to unity andude /v t i varying between 10 and 100.

In reference to Fig. 7 we note that the general decreas
trend of anomalous resistivity with the drift velocity, onc
the instability is onset is not intuitive~theude /v t i thresholds
for the onset of the instability are not marked on these p
because they are on the order of unity!. One would expect
that an increase in the free energy source of the instab
would enhance the anomalous resistivity effect. In Ref.
the same trend was found but no explanation was given

This trend can be understood once we realize that
scaling of the linear growth rate of the dominant mo

ur
FIG. 7. The anomalous momentum exchange frequency, (ne

p)AN , normal-
ized by its classical counterpart and plotted vs the normalized drift velo
according to four saturation models. Argon withbe51, Ti /Te51, ne /v lh

51, andvpe /vce5100.
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~which does increase with the drift velocity! does notneces-
sarily reflect in weak turbulence~quasilinear! transport scal-
ing since the dependencies of the saturation mechan
~which is extraneous to linear theory! can overwhelm linear
trends. This becomes clearer by noting that although an
crease in the drift velocity does enhance the linear gro
rate of the dominant mode, it also shifts the modes to m
oblique propagation and lowers their frequencies.13 Even
though the instability goes to longer wavelength, the dep
dence of the saturation level for a trapping mechanism@see
Eq. ~121!# scales with the frequency to the fourth power
that the frequency scaling of the saturation mechanism o
powers the growth scaling of the linear modes. This tren
further accentuated for saturation by electron trapping
cause, in addition to the above arguments, the satura
level scales withC4 andC decreases considerably~oblique
propagation! with increasing drift velocity. At very high
drift, the Doppler shift term in the saturation model@see Eq.
~123!# becomes more significant and reverts the trend, wh
explains the rise of the electron trapping curve in Fig. 7
high values ofude /v t i .

As expected from the above beta-dependence st
anomalous electron heating rates exceed those of the ion
the present case ofbe51. The preferential electron heatin
is further enhanced by increasing drift velocity as can
seen in Fig. 8. The reason for this behavior is similar to
one given above in the context of electromagnetic enhan
ment of electron preferential heating. This is so because b
increasing beta and increasing drift velocity act to shift
instability toward more oblique propagation thus reduc
the largem̄e-effect ~wherem̄e is the effective electron mas
that scales with the square ofc! and subjecting the now
‘‘lighter’’ electrons to more heating.

C. MPD thruster calculations

We have, in the above calculations, chosen a set of
rameters that is generally representative of the MP
plasma. There is, however, one exception. It is the value
ne /v lh which we have set equal to unity as a comprom
between having to represent a collisional plasma and pro
ing a link with previous studies. Moreover, many of the co

FIG. 8. The anomalous electron heating rate, (ne
T)AN , normalized by the

anomalous ion heating rate, and plotted for the same conditions as in F
m
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plex interactions between the natural plasma modes, the
energy source and collisions are most pronounced when
collision frequency is on the order of the oscillating fr
quency. We now, supplement our calculations with resu
obtained at collisional levels more appropriate of the MPD
plasma.

In order to approximate a typical range for MPD
plasma collisionality, we consider the typical range for t
variation of temperature and density. For more detail on h
the various parameters of interest vary within the MPD
discharge the reader is referred to the parameter review
Ref. 6. Assuming thatTe varies between 1.5 and 3 eV, whil
n0 ranges between 1020 and 1.531022m23, we can calculate
a lower and upper bound forne /v lh in argon from Eq.~128!
to be 25 and 500, respectively, where we have fixedvpe /vce

at 100 for compatibility with the above calculations.
For the results shown in Fig. 9 we have chosen to

beta at unity to preserve electromagnetic effects and va
ude /v t i from 100 down to the threshold of the instability
which, although slightly exaggerated in the figure~vertical
hashed region!, was atude /v t i.1.5. For each of the three
considered mechanisms the plot shows a band whose u
line corresponds to the moderately collisional conditi
ne /v lh525 ~Te53 eV, n051020m23! and whose lower
~broken! line corresponds to the strongly collisional cond
tion ne /v lh5500 ~Te51.5 eV, n051.531022m23!.

We note from the figure that, although the Fowler bou
allows for a large microturbulent contribution to the resist
ity, ion resonance broadening might cause the instability
saturate at low levels. Even though arguments have b
advanced recently discounting the importance of such
mechanism, it should not be totally discounted pend
strong evidence from computer particle simulations and
dedicated experiments.

We furthermore see that, in the case of ion trapping sa
ration, once the instability is onset, the importance of anom
lous resistivity in the MPDT plasma is not as much dictat

7.

FIG. 9. The anomalous momentum exchange frequency, (ne
p)AN , normal-

ized by its classical counterpart and plotted vs the normalized electron
velocity according to three saturation models. The upper line of each b
corresponds to the moderately collisional conditionne /v lh525 ~Te

53 eV, n051020 m23! and the lower~broken! line corresponds to the
strongly collisional condition ne /v lh5500 ~Te51.5 eV, n051.5
31022 m23!. Argon with be51, Ti /Te51, andvpe /vce5100.
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by the drift velocity~since the two limiting curves are quit
flat!, as one would intuitively suspect, as it is dictated by
level of collisionality. Indeed, if collisionality is strong
anomalous resistivity can be kept below classical levels e
if the instability is excited and even if ion trapping is respo
sible for saturation, as is clear from the plot. It must be sa
however, that even in the case of high collisional
(ne /v lh.500) where anomalous resistivity is kept belo
classical levels, it is still a finite fraction of its classical cou
terpart~about 25% in the above calculations!, as can be seen
from the same plot~again, assuming ion trapping saturation!.
This implies that low density regions of the MPDT di
charge, such as regions depleted from charge due to thej zBu

Lorentz force component, tend to be more vulnerable
anomalous resistivity than denser~or more collisionally
dominated! regions. This trend is in agreement with the we
known fact that dissipation in charged-depleted regions
the device, like the anode vicinity,40 is enhanced by weak
collisionality.

Stated differently, under MPDT plasma conditions a
for the microinstabilities in question, the level of anomalo
contribution to resistivity is dictated to a large extent by t
parameterne /v lh . It is interesting to note that this paramet
is directly related to the electron Hall parameterVHe

. In-
deed, it is just the inverse of the electron Hall parame
scaled by the square root of the mass ratio

VHe
[

vce

ne
5

~mi /me!
1/2

ne /v lh
. ~131!

The known scaling of the anode voltage drop with the H
parameter~see for instance the measurements in Ref. 40! that
constitutes one of the most dissipative sinks for the lo
power MPDT is thus another invariant behavioral trait of t
accelerator that could possibly be explained by the effect
microinstabilities.

The anomalous ion and electron heating rates were
calculated and found to have the same general trends as
of the anomalous resistivity.

VII. ANOMALOUS TRANSPORT MODELS FOR
INCLUSION IN FLUID CODES

We now seek anomalous transport expressions
would be suitable for inclusion in fluid codes for the nume
cal simulation of MPDT flows. This may be accomplish
by carryinga priori calculations of the relevant anomalou
transport for the expected parameter-space covered by
cal numerical simulations then fitting the calculations w
polynomial expressions.

In general the description of microstability~and hence
microturbulence in our model! depends on the following se
of eight independent macroscopic parameters:

krce , C,
mi

me
,

vpe

vce
, be ,

ude

v t i
,

Ti

Te
, VHe

. ~132!

The first two parameters are varied to growth-maximize
solutions. Since all anomalous transport rates used here
calculated at maximum growth these two parameters d
out of the final models. The mass ratiomi /me is that of
e

n
-
,

o

f

s

r

ll

-

of

so
ose

at

pi-

e
ere
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argon. All solutions were found to be very insensitive to t
fourth parameter, namelyvpe /vce , as long as that ratio ex
ceeded 10 which was the case for the simulations condu
so far.10,11Similarly, the solutions were weakly dependent
be as long as the electron Hall parameter,VHe

did not ex-
ceed 10.

The last three parameters are the most important for
problem. First,ude /v t i must reach a threshold for the inst
bility to be excited and hence for anomalous transport to
operative. For the entire region of the investigat
parameter-space that threshold was very near 1.5. Sec
the ion to electron temperature ratio plays a role in scal
the level of turbulence. Invariably for our parameter-space
was found that increasingTi /Te causes a devaluation o
anomalous transport. The most important of all the mac
scopic parameters turned out to be the last one namely
electron Hall parameterVHe

.
The anomalous resistivityhAN

hAN[
me~ne!AN

e2ne
, ~133!

calculated using the theory presented in the above secti
and normalized by its classic counterparthCL[mene /e2ne is
shown in Fig. 10. It is important to note that an increase
the electron Hall parameter for typical values ofTi /Te leads
to a very significant increase in the anomalous resistivityif
the parameterude /v t i is above the stability threshold. It i
interesting to note that the scaling of this ratio with the H
parameter is in general agreement with that inferred by G
limore et al.40 from measurements in the anode region a
the more direct and recent measurements of Blacket al.12

A similar plot is shown in Fig. 11 for the ion heating ra
(n i

T)AN normalized by the Coulomb frequency.
A two-parameter, variable cross-term, least square

was made to the calculated rates shown in Figs. 10 and 1
order to make them suitable for inclusion in plasma flu
flow codes.

The resulting two-parameter interpolating polynom
for (n i

T)AN /nei has an average accuracy of 15% and read41

FIG. 10. Ratio of anomalous resistivity to classical resistivity for argon a
function of the electron Hall parameter andTi /Te with ude /v t i exceeding
1.5.
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~n i
T!AN

nei
55.363102511.2931025VHe16.0331026VHe

2

19.4431028VHe
3 1

Ti

Te
~27.553102725.41

31026VHe23.9331026VHe
2 !. ~134!

The ions are heated by the turbulent fluctuations at a
(Qi)AN5 3

2(n i
T)ANTh .

The effective conductivity introducing the anomalous
sistivity effect to a flow simulation code is

seff5
e2ne

me~nei1~ne
P!AN!

, ~135!

where (ne
P)AN is the electron-wave momentum exchange f

quency, which is again computed through an interpolat
polynomial of average accuracy of 10%,

~ne
P!AN

nei
50.19213.3331022VHe10.212VHe

2 28.27

31025VHe
3 1

Ti

Te
~1.233102321.5831022VHe

27.8931023VHe
2 !. ~136!

The use of these models in a plasma fluid flow code m
proceed in the following way. At all the gridpoints in th
simulation domain whereude /v t i,1.5 both, (ne

P)AN and
(n i

T)AN are set to zero and all transport is assumed pu
classical. Otherwise, the anomalous rates are computed
the above polynomials using the instantaneous macrosc
parameters and folded back into the flow equations at ev
time step thus insuring self-consistency. This was done
Refs. 10 and 11.

VIII. CONCLUSIONS

The dielectric tensor for a magnetoactive, curre
carrying, collisional and finite-beta plasma was derived us
kinetic theory without making the electrostatic assumptio

FIG. 11. Anomalous ion heating rate for argon normalized by the Coulo
frequency as a function of the electron Hall andTi /Te with ude /v t i exceed-
ing 1.5.
te
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A parametric study of the resulting linear dispersion
lation for plasma parameters typical of the MPDT show
that a mixed polarization mode can be easily driven unsta
by the cross-field current. Collisions and finite-beta effe
were found to change the character of the instability fro
previous collisionless and/or electrostatic treatments.

Using the linear description and plasma weak turbule
theory, a second-order model of wave–particle transport
anomalous dissipation was developed. Assuming ion tr
ping to be the saturation mechanism, our calculations sh
that the saturation of the collisional generalized lower hyb
drift instability ~GLHDI!, which has been observed in th
MPDT plasma,7,8 can cause a severe enhancement to
local resistivity and the bulk heating rate of both ions a
electrons. It can also cause a preferential effective heatin
the ions and enhance both heating and resistivity in regi
of low collisionality ~high electron Hall parameters!.

Polynomial expressions of the relevant transport coe
cients cast solely in terms of macroscopic parameters w
also obtained for inclusion in plasma fluid codes. T
anomalous resistivity was shown to be most sensitive to
electron Hall parameter. This theoretically predicted scal
was recently confirmed by independent experimen
measurements.12
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