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Nomenclature

PEMij
= maxwell stress tensor

T = thrust

P = power

η = efficiency

E,B,A = electric, magnetic, vector potential field

Ja = wave-launching antenna current

CT , Reff = thrust and resistive loss coefficients

ṁ = total mass flow rate

ω, k = wave frequency and wavenumber

ρ̃, ṽ, B̃ = oscillation amplitudes of density, velocity, and magnetic field

c, µ0 = speed of light and permeability of free space

ρ,P, E = mass, momentum, and energy density

Ṁ, Ṗ, Ė = mass, momentum, and energy fluxes

p = pressure

x, y, z = coordinates

L,W,H = thruster length, width, height in the x, y, z coordinates

σ, ε = conductivity and dielectric constant

νe = Electron collision frequency

γ = antenna-plasma coupling parameter

Pec = Péclet number

D⊥ = cross-field diffusion coefficient
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I. Introduction

The Direct Wave-Drive Thruster (DWDT) is a new propulsion concept that utilizes waves for direct
momentum transfer to a plasma.1,2 Like other waves-based and inductive accelerators,3–7 it is electrodeless,
and therefore can avoid potentially life-limiting erosion processes. Previous waves-based thruster concepts
have used various waves to heat a plasma and obtain thrust via expansion through a magnetic nozzle.3–5

In contrast, a DWDT attempts to avoid limitations associated with magnetic nozzles by coupling wave
momentum directly into a plasma for acceleration. In general, this momentum coupling can be done via an
inductive antenna, which is qualitatively similar to antennas used in Pulsed Inductive Thrusters (PIT).6,7

However, instead of discharging in a single pulse, the wave-launching antenna operates continuously to inject
momentum directly into the plasma.

Previous work has examined the potential for RF energy to directly accelerate or confine a plasma,2,8, 9

but until recently, little effort has gone in to the development of a feasible thruster concept. Most recently,
we examined a DWDT in its simplest form in terms of the antenna-plasma interaction for the reflected
ordinary wave and found that efficiencies of 50% were theoretically possible at moderate power levels of 5
kW.1 However, that simplified analysis ignored any effects from a confining magnetic field, as well as any
relevant propagating wave dynamics.

Some work on DWDTs has focused on propagating electrostatic waves in the context of the ponderomotive
thruster.2 However, this work did not include the effects of mass continuity in the plasma exhaust plume
or any antenna-plasma interactions. Additionally, the most effective wave modes for acceleration have not
been identified.

In order to present a comprehensive picture of a DWDT in preparation for a proof-of-concept experi-
ment, we will layout the generalized scaling relations for thrust and efficiency and motivate the use of the
magnetosonic mode as an ideal wave mode for driving this accelerator. We then identify key parameters that
govern the performance of the magnetosonic mode driven DWDT, including the scaling of the thrust coeffi-
cient and the critical power at which wave-driven mass advection dominates wall losses. Finally, we describe
the plasma dynamics in the exhaust plume and demonstrate that the wave momentum is not reflected.

The layout for this paper will proceed as follows. In Section II, we describe the DWDT concept and
generalized scaling laws. In Section III, we motivate the magnetosonic wave as particularly suited for plasma
acceleration. In Section IV, we layout an idealized geometry for launching the magnetosonic wave and
calculate the scaling of the thrust coefficients in the limits of large and small wavelengths. In Section V,
we describe the wave behavior in the exhaust plume and the eventual wave absorption mechanism. In
Section VI, we calculate an anisotropic Péclet number relating the wave-driven mass advection to diffusive
wall losses. In Section VII, we summarize the design considerations stemming for this analysis for a future
proof-of-concept experiment.

II. DWDT Scaling Behavior

In its simplest form, the DWDT consists of a confining background magnetic field and a wave-launching
antenna. A simple 1D channel is shown in Figure 1. The background B-field confines plasma away from
the walls and also can be tuned to create modes of interest inside of the thruster that can be coupled to
by the wave-launching antenna. This antenna is responsible for all momentum transferred to the plasma
and acquired by the exhaust. We previously modeled the antenna-plasma interaction for a specific annular
geometry and the non-propagating ordinary mode.1 However, the general scaling relations can be described
for arbitrary configurations.

We can calculate the total thrust by time-averaging the electromagnetic pressure exerted on the plasma,
i.e.:

T =

∫
S

〈PEMij 〉 · dA, (1)

where PEMij
is the maxwell stress tensor:

PEMij
= ε0(EiEj −

1

2
δijE

2) +
1

µ0
(BiBj −

1

2
δijB

2). (2)

In general, the electromagnetic pressure is dependent on the geometry of the system, excitation frequency,
and the plasma response. However, in a linear response, the magnitudes of the oscillating electric and
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Figure 1. The Direct Wave-Drive Thruster. Plasma is confined in a thruster channel by way of a background
magnetic field in the ẑ-direction. A wave-launching antenna structure is placed behind the channel, which
generates a propagating mode in the positive x̂-direction. In steady state, the propagating mode accelerates
the plasma across field lines and out of the thruster.

magnetic fields are proportional to the magnitude of the exciting current in the wave-launching antenna, Ja.
Therefore, the total pressure, and also total thrust, must be proportional to current squared:

T = CTJ
2
a , (3)

where CT is a thrust coefficient that includes the effects of geometry and plasma response.
We calculate the scaling of thrust efficiency by determining the total thrust power and the dissipation

due to various loss mechanisms. Thrust power is given by

PT =
T 2

2ṁ
. (4)

The dominant loss mechanisms are resistive and radiative, which scale as

PL = ReffJ
2
a . (5)

Therefore, efficiency can be modeled as

η =
PT

PT + PL
=

1

1 + 2ṁReff

C2
T J

2
a

, (6)

where ṁ is the mass flow, and Reff is the effective total resistance associated with heating and radiative loss
mechanisms, which like CT can have a complicated dependence on the geometry and plasma dynamics.

III. The Magnetosonic Wave

Previous work has suggested driving DWDTs with electrostatic modes.1,2 These waves have a high ratio
of momentum to energy density and therefore are capable of driving high thrust-to-power accelerators. This
is also the case for the compressional Alfvén (or magnetosonic) wave. However, unlike electrostatic modes,
the magnetosonic wave can transmit significant momentum while remaining linear.

A. Thrust-to-Power Ratio

The most promising waves of interest for DWDTs are those capable of producing exhaust velocities useful
for propulsive applications, typically between 10-100 km/s for electric accelerators. Since the momentum
and energy in the exhaust come entirely from the driving wave, the thrust-to-power ratio for a DWDT is
controlled by the wave momentum and energy, given by:

P = h̄k, (7)
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E = h̄ω. (8)

Therefore, the equivalent thrust-to-power ratio for a propagating mode is

T

P
=
k

ω
=

1

vp
. (9)

Since T/P also scales as 1/vex, the final exhaust velocity of the plume will be proportional to the phase
velocity of our targeted wave mode. In general, wave modes with appropriate phase velocities are those
targeting acoustic ion motion.

B. Momentum Density in Ion Acoustic and Magnetosonic Waves

Electrostatic and magnetosonic modes can both reach phase velocities of interest. However, while electro-
static waves carry momentum via a thermal restoring force, magnetosonic waves rely on the background
magnetic field to propagate. The reliance on thermal energy for wave propagation limits the achievable
thrust for electrostatic waves. This is readily seen by comparing the momentum flux of the electrostatic ion
cyclotron and magnetosonic waves to the background plasma pressure.

The momentum flux of a given wave is a product of the group velocity and the momentum density. Since
the momentum is primarily contained in the oscillating particles,10 the momentum density is

P = 〈ρv〉 = 〈ρ̃ṽ〉. (10)

From the linearized continuity equation,
−iωρ̃+ ikρ̄ṽ = 0, (11)

we can time average and rewrite Equation 10 as

P =
1

2

ρ̃2

ρ̄

ω

k
. (12)

The phase and group velocities of the electrostatic ion cyclotron and magnetosonic waves can be calculated
from their respective dispersion relations

ω2 = Ω2
i + v2

sk
2, (13)

ω2 = v2
Ak

2 =
B̄2

µ0ρ̄
k2. (14)

Therefore the momentum flux, Ṗ = vgP, for each wave is

ṖEIC =
1

2

ρ̃2

ρ̄
v2
s , (15)

ṖMS =
1

2

ρ̃2

ρ̄
v2
A, (16)

which can be simplified to

ṖEIC =
1

2
pth

ρ̃2

ρ̄2
, (17)

ṖMS =
1

2
pB
ρ̃2

ρ̄2
. (18)

For linear modes, ρ̃/ρ̄� 1. As a result, the momentum flux of the linear electrostatic ion cyclotron wave
is necessarily smaller than the thermal pressure already present in the plasma. In order to reach a regime
where the wave propagation dominates the momentum transfer, the wave must be highly non-linear, and
the density rarefactions will be large compared to the background density. This average lower density will
tend to result in worse coupling between the wave-launching antenna and the plasma.1

However, the magnetosonic wave does not rely on thermal energy to propagate. With sufficiently large
applied magnetic fields, this mode can carry significant momentum flux while remaining linear. Moreover,
since we have direct control over the background magnetic strength and topology, we can tune the wave
parameters as desired. This makes the magnetosonic wave ideal for driving a confined Direct Wave-Drive
Thruster.
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IV. Thrust Coefficient Scaling for the Magnetosonic DWDT

Previous work on the DWDT calculated CT and Reff for the evanescing ordinary mode and included a
complicated annular geometry and resistive losses in the plasma itself.1 We will proceed along the same path
to determine the thrust coefficient for a magnetosonic mode driven DWDT in a simplified linear geometry,
which will elucidate important nondimensional parameters that govern the antenna-plasma coupling.

The idealized geometry, shown in Figure 2, is uniform and infinite in the ŷ-direction. A constant back-
ground magnetic field is applied in the ẑ-direction with magnitude B0. The wave-launching antenna is
located at the x = 0 plane with a width of 2H and current in the ŷ-direction, oscillating with frequency ω
and magnitude Ja. A semi-infinite slab of plasma is located at x > l with density n0 and an ion mass M .
Additionally, we relax some of the constraints from our previous analysis1 to allow electromagnetic modes
to propagate both inside and outside the plasma. In this configuration, compressional Alfvén waves will be
launched in the positive-x̂ direction.

Figure 2. Simplified magnetosonic mode driven DWDT geometry. A semi-infinite plasma slab is placed at
x > l in a constant background magnetic field, B0ẑ. A wave-launching antenna is located at x = 0 with a height,
2H, in the ẑ-direction, and a total current in the ŷ-direction oscillating with frequency, ω, and magnitude, Ja.
The geometry is assumed to be uniform and infinite in the ŷ-direction.

To determine the total force, we simply calculate the total electromagnetic fields and integrate the
electromagnetic pressure over the surface of the plasma slab. These fields are most easily calculated via the
wave equation for the magnetic vector potential,

∇2A =
1

c2
∂2

∂t2
A + µ0σω ·

∂

∂t
A, (19)

where σω is the complex, frequency-dependent conductivity of the plasma. In our simplified geometry, A
has components in only the ŷ-direction, and we can further reduce the equation with a Fourier transform in
the time domain by assuming A = Aye

−iωt, such that

∇2Ay +
ω2

c2
ε⊥Ay = 0, (20)

where ε⊥ is the cross field dielectric. In vacuum, ε⊥ is unity, and inside the plasma, ε⊥ = 1 + c2

v2A
.11 Before

solving, we will follow previous convention1 and nondimensionalize the domain by the antenna length scale,
H, and the excitation frequency, ω, such that

x̄ = x
H z̄ = z

H l̄ = l
H k̄v = ωH

c k̄a = ωH
vA

Ā = A
µ0Ja

τ = ωt ∇̄ = H∇,

and Equation 20 becomes
∇̄2Āy + K̄2Āy = 0, (21)
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where

K̄2 =

{
k̄2
v x̄ < l̄

k̄2
v + k̄2

a x̄ > l̄
. (22)

The full derivation for the spatial solution in the ˆ̄x − ˆ̄z plane is in Appendix A and follows closely
techniques used in previous works.1,12,13 The result is a piecewise solution across the three regions behind
the antenna, between the antenna and plasma, and in the plasma itself:

Āy1(x̄, z̄, k̄v, k̄a, l̄) =

∞∫
0

C1e
−ik̄1x̄ cos(az̄)da, (23)

Āy2(x̄, z̄, k̄v, k̄a, l̄) =

∞∫
0

(C2e
ik̄1x̄ + C3e

−ik̄1x̄) cos(az̄)da, (24)

Āy3(x̄, z̄, k̄v, k̄a, l̄) =

∞∫
0

C4e
ik̄2x̄ cos(az̄)da, (25)

where

k̄1 =
√
k̄2
v − a2, (26)

k̄2 =
√
k̄2
v + k̄2

a − a2, (27)

and a is the spatial separation constant. The coefficients, Ci, are derived in Appendix A:

C1 =
1

iπ

sin a

a

1

k̄1

(
1 +

k̄1 − k̄2

k̄1 + k̄2
e2ik̄1 l̄

)
, (28)

C2 =
1

iπ

sin a

a

1

k̄1
(29)

C3 =
1

iπ

sin a

a

e2ik̄1 l̄

k̄1

k̄1 − k̄2

k̄1 + k̄2
, (30)

C4 =
2

iπ

sin a

a

ei(k̄1−k̄2)l̄

k̄1 + k̄2
. (31)

The magnitude of Āy represents the size of the propagating wave mode, and thus the total electromagnetic
pressure, which can be integrated at the plasma surface and time-averaged to determine a total thrust:

T =
1

8
µ0J

2
a

∫∫
k̄2
a

1

2
‖Āy(x̄ = l̄)‖2dȳdz̄. (32)

Combining Equations 25, 27, 31, and 32, the total force on the plasma is

T =
1

8
µ0J

2
a

∫∫
1

2

∥∥∥∥
∞∫

0

2

π

sin a

a

k̄a
k̄1 + k̄2

eik̄1 l̄ cos(az̄)da

∥∥∥∥2

dȳdz̄. (33)

We now take the thruster to have finite width, W , such that the total thrust becomes

T = CTJ
2
a , (34)

where

CT =
1

8
µ0W · γ(k̄a, k̄v, l̄), (35)

W = W/H, and γ is a coupling coefficient between 0 and 1 given by

γ(k̄a, k̄v, l̄) =
1

2

∞∫
−∞

∥∥∥∥
∞∫

0

2

π

sin a

a

k̄a
k̄1 + k̄2

eik̄1 l̄ cos(az̄)da

∥∥∥∥2

dz̄. (36)
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We proceed with a parameter space investigation of γ by varying the relevant non-dimensional quantities,
k̄a, k̄v, and l̄, and numerically integrating Equation 36. The normalized vacuum wavenumber, k̄v, is relatively
small in any configuration and only varies with the overall size of the system. Additionally, our previous work
has shown that the normalized stand-off length for the antenna, l̄, should remain small for good coupling.1

The normalized Alfvén wavenumber, k̄a, however, has not yet been investigated and is therefore the primary
quantity of interest.

Figure 3. γ vs. k̄a . The coupling parameter, γ, is plotted against the normalized magnetosonic wavenumber,
k̄a, for various normalized stand-off lengths, l̄. Coupling (and therefore the total thrust coefficient), decrease
for smaller wavenumbers. Coupling improves for larger wavenumbers and reaches a maximum dependent on
the stand-off length, l̄.

The scaling behavior of γ, and thus the thrust coefficient, with respect k̄a is shown in Figure 3. For
varying stand-off lengths, we see that coupling is always maximized for k̄a � 1 and that γ → 0 as k̄a
becomes small. That is, the best coupling occurs when the wavelength of the targeted mode is smaller than
the size of the thruster. However, we have shown previously that values of γ as low as 1/20 can still result in
efficient operation for moderate power levels below 5 kW.1 As result, even as we leave the ray optic regime,
reasonable values of γ can be achieved.

V. Magnetosonic Wave Propagation and Absorption

While the magnetosonic wave is well-suited for transferring momentum to a plasma, an effective accel-
erator must couple this momentum into the bulk particles to create high exhaust velocity. However, major
collisionless absorption mechanisms for the magnetosonic wave occur in high beta plasmas,14 whereas our
device is designed to operated with pB � pth, i.e., β � 1. This necessitates an understanding of how the
wave propagates into the exit region of the thruster to ensure that wave momentum is not reflected and can
be transferred into the exhaust.

Since the regime of best coupling corresponds to small wavelengths, we will restrict our analysis to 1D ray
optics of the cold magnetosonic wave initially well below the lower hybrid frequency, where the dispersion
relation is given by Equation 14. We can then determine the plume structure by calculating the steady
state energy and mass fluxes, which must remain constant. A previous attempt to examine waves-based
thrusters through the ponderomotive force2 ignored this mass continuity, which must be taken into account
to generate an accurate description of the wave propagation.

The energy flux of the wave is
Ė = vgE = vAE , (37)

where the energy density is

E =
|B̃|2

2µ0
. (38)
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The mass flux driven by the wave is
Ṁ = 〈ρ̃ṽ〉, (39)

which neglects any wall losses and assumes the wave dynamics dominate the system. Time-averaging and
combining with Equation 11, we find

Ṁ =
1

2
ρ0vA

|B̃|2

B̄2
=

1

vA

|B̃|2

2µ0
. (40)

Because Ė and Ṁ are constant throughout the channel, B̃ and vA must remain constant as well. Thus,
if the background magnetic field is also constant throughout the channel, the background density remains
uniform, which is simply the case of a plane wave propagating through a uniform medium.

However, as the background magnetic field decays into the exhaust region, the plasma density must
decay as well to preserve a constant vA. In effect, when the plume dynamics are governed primarily by the
propagating wave, the plasma configuration maintains a constant impedance. This tendency is particularly
beneficial, as it allows the wave momentum and energy to propagate into the plume without adverse re-
flections on the confining magnetic field structure that might prevent momentum transfer into the exhaust.
Additionally, since plasma flows across field lines primarily when c � vA,15 it is beneficial that the Alfvén
velocity does not increase in the plume.

From the linearized equations, we can also calculate the perturbed plasma velocity and density:

ṽ = vA
|B̃|
B̄

(41)

ρ̃/ρ̄ =
|B̃|
B̄
. (42)

As the background field decays, ṽ and ρ̃/ρ̄ both increase, and the wave eventually becomes nonlinear when
B̄ approaches B̃. However, the channel can be constructed such that this occurs far from the wave-launching
antenna, preventing adverse effects on antenna-plasma coupling. As the non-linear regime is reached, the
plasma oscillations consist of high density regions with velocities near vA and low density rarefactions with
corresponding negative velocities. This scenario is qualitatively similar to a magnetic beach.11

As the wave propagates into the region with lower background B̄, it can also reach the lower hybrid
resonance where it will be absorbed by the bulk of the plasma. This can be seen in Figure 4, in which we
plot the index of refraction for a magnetosonic wave at a given frequency as a function of the background
magnetic field at a fixed Alfvén velocity. Initially, at higher magnetic fields in the channel, the index of
refraction - and thus the phase velocity - remains constant. As the background magnetic field decays, the
lower hybrid frequency shifts towards the excitation frequency, and the index of refraction increases rapidly
towards the resonance condition.

VI. Peclet Number for Confinement and Acceleration

In the previous section, we assumed that the wave dynamics were the dominant effect responsible for
mass flow in the system. This can be achieved when wave-driven mass advection is large compared to wall
losses inside the thruster channel. An anisotropic Péclet number relating these quantities can be defined as

Pec =
veff/L

D⊥/W 2
, (43)

where D⊥ is the cross-field diffusion coefficient, veff is the effective velocity associated with wave-driven mass
flow, and L and W are the channel length and height respectively. Effectively, the Péclet number is a ratio
of the typical time it takes for a particle to reach the walls compared to the time it takes to be pushed by
the wave processes out of the thruster. Thus, for waves to dominate the channel dynamics,

Pec� 1. (44)

The cross-field diffusion coefficient can be calculated classically16–18 such that

D⊥ =
pe

σeB2
0

, (45)
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Figure 4. Index of Refraction vs. Magnetic Field for the cold magnetosonic wave. The density is assumed to
vary with the magnetic field so that vA = 105 m/s remains constant. Away from resonance, n = 3000. For high
frequencies, as B is decreased, the lower hybrid resonance is reached sooner.

where σe = e2ne

meνe
. The effective velocity can be calculated by the total particle flux associated with the

propagating wave-mode divided by the background density, i.e.,

veff = Ṁwave/ρ0. (46)

From the linearized continuity equation and Equation 39, we find

Ṁwave =
1

2
vA
ρ̃2

ρ0
. (47)

Therefore,

veff =
1

2
vA
ρ̃2

ρ2
0

=
1

2
vA
B̃2

B2
0

. (48)

Combining Equations 43, 45, and 48, we get

Pec =
1

2

W 2

L
vA
σeB̃

2

pe
. (49)

Qualitatively, there is a minimum wave amplitude, B̃, for which Equation 44 is satisfied, and the channel
flow becomes wave dominated. This can be related directly to the total power required by noting that wave
energy flux is

Ė = vAE = vA
B̃2

2µ0
, (50)

and the total wave power is

P = WH Ė = WHvA
B̃2

2µ0
. (51)

To satisfy Equation 44, the wave power must be greater than a critical value. That is, P � P ∗, where

P ∗ =
LH

W

pe
µ0σe

=
LH

W

Temeνe
µ0e2

. (52)

For a 10 cm thruster with Te = 5 eV and ne = 1018 m−3, this corresponds to a critical power level of only
6 W.
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VII. DWDT Design Considerations

In this paper, we have analyzed a magnetosonic mode driven DWDT to determine the relevant critical
parameters for effective operation. First, we have shown that the the antenna-plasma coupling is strongly
dependent on, k̄a, the ratio of the magnetosonic wavelength to the size of the thruster. The coupling is
uniform and maximized in the limit of the ray optic regime where k̄a � 1. However, efficient thruster
operation can still theoretically be achieved for k̄a ∼ 1.

Because the acceleration mechanism is naturally directed across magnetic field lines, it is important that
we ensure the that flow successfully detaches from the applied field. In their ponderomotive DWDT concept,
Jorns and Choueiri proposed that charge separation in the channel could allow for the momentum to be
transferred across magnetic field lines.2 This has been shown previously by Peter and Rostoker15 to be
possible, as long as the ε⊥ � 1, which corresponds to vA � c. The magnetosonic mode driven DWDT
operates at exhaust velocities appropriate for propulsive applications only when this criterion is satisfied.
Moreover, since the Alfvén velocity remains constant in a wave-dominated thruster, this criterion remains
satisfied into the exhaust plume.

Finally, we have shown an appropriate condition for a wave-dominated thruster can be described by an
anisotropic Péclet number which compares the wave-advected mass flux to the diffusion losses to the walls.
Pec depends primarily on the electron temperature and collision frequency, and is therefore not a parameter
we can strongly control. However, for reasonable expected plasma parameters of an electric propulsion
device, the total power required to reach a wave-dominated condition is easily achievable.

This paper laid out the framework for analyzing a general DWDT. The analysis performed for the mag-
netosonic wave was deliberately simplified to elucidate key criteria for thruster performance. The immediate
goal is to validate these models and scaling behaviors with a proof-of-concept experiment. From there, future
efforts can focus on fully kinetic descriptions of the plasma response, in order to improve the model further.

Appendix A

We will present the derivation of the solution to the normalized vector potential. Starting from Equation
21,

∇̄2Āy + K̄2Āy = 0, (53)

and applying separation of variables, such that Āy(x̄, z̄) = X(x̄) · Z(z̄), we have

X ′′(x̄) = (−K̄2 + a2)X, (54)

Z ′′(z̄) = −a2Z, (55)

where a is a separation constant which must be integrated over to form a complete solution. From the
symmetry of the geometry given,

Z ∼ cos(az̄), (56)

X ∼ e±i
√
K2−a2x̄, (57)

where X can take on either mode in region 2, but can only represent outward propagating modes in regions
1 and 3. That is, no energy is coming into the system from infinity. Therefore, the piecewise solution of
Āy is generated by integrating over all possible separation constants and takes the form given in Equations
23-25,

Āy1(x̄, z̄, k̄v, k̄a, l̄) =

∞∫
0

C1e
−ik̄1x̄ cos(az̄)da, (58)

Āy2(x̄, z̄, k̄v, k̄a, l̄) =

∞∫
0

(C2e
ik̄1x̄ + C3e

−ik̄1x̄) cos(az̄)da, (59)

Āy3(x̄, z̄, k̄v, k̄a, l̄) =

∞∫
0

C4e
ik̄2x̄ cos(az̄)da. (60)
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A solution is found by matching boundary conditions between each region. At each interface, Āy and its
derivative must be continuous, except for a jump discontinuity across the wave-launching antenna. To form
the full antenna, we start with a pair of wires at heights, z̄ = ±h̄. After finding the individual solution, we
then integrate over a continuous current density in an antenna of size H. For wires at z̄ = ±h̄, the boundary
conditions are:

∞∫
0

D1 cos(az̄)da =

∞∫
0

D2 cos(az̄)da+

∞∫
0

D3 cos(az̄)da, (61)

∞∫
0

−ik̄1D1 cos(az̄)da =

∞∫
0

ik̄1D2 cos(az̄)da+

∞∫
0

−ik̄1D3 cos(az̄)da− δ(z̄ − h̄)− δ(z̄ + h̄), (62)

∞∫
0

D2 cos(az̄)eik̄1 l̄da+

∞∫
0

D3 cos(az̄)e−ik̄1 l̄da =

∞∫
0

D4 cos(az̄)eik̄2 l̄da, (63)

∞∫
0

ik̄1D2 cos(az̄)eik̄1 l̄da+

∞∫
0

−ik̄1D3 cos(az̄)e−ik̄1 l̄da =

∞∫
0

ik̄2D4 cos(az̄)eik̄2 l̄da, (64)

where Di represents the constants associated with a wire pair and Ci represents the constants associated
with the full antenna.

Noting that
∞∫
0

cos(az̄)da = πδ(z̄), we can solve this system to find that:

D1 =
1

iπ
cos(ah̄)

1

k̄1

(
1 +

k̄1 − k̄2

k̄1 + k̄2
e2ik̄1 l̄

)
, (65)

D2 =
1

iπ
cos(ah̄)

1

k̄1
(66)

D3 =
1

iπ
cos(ah̄)

e2ik̄1 l̄

k̄1

k̄1 − k̄2

k̄1 + k̄2
, (67)

D4 =
2

iπ
cos(ah̄)

ei(k̄1−k̄2)l̄

k̄1 + k̄2
. (68)

The Ci coefficients can then be found by integrating the current density over an infinite stack of wire pairs
for h between 0 and H (or 0 and 1 in the normalized h̄ coordinate). Using

Ci =

1∫
0

Didh̄, (69)

we obtain the results given in Equations 28-31, i.e.,

C1 =
1

iπ

sin a

a

1

k̄1

(
1 +

k̄1 − k̄2

k̄1 + k̄2
e2ik̄1 l̄

)
, (70)

C2 =
1

iπ

sin a

a

1

k̄1
(71)

C3 =
1

iπ

sin a

a

e2ik̄1 l̄

k̄1

k̄1 − k̄2

k̄1 + k̄2
, (72)

C4 =
2

iπ

sin a

a

ei(k̄1−k̄2)l̄

k̄1 + k̄2
. (73)

12
Joint Conference of 30th ISTS, 34th IEPC and 6th NSAT, Hyogo-Kobe, Japan

July 4–10, 2015



Acknowledgments

This research was supported by a Strategic University Partnership Research (SURP) grant provided
by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National
Aeronautics and Space Administration, as well as the Program in Plasma Science and Technology (PPST)
at Princeton University.

References

1Feldman, M.S., Choueiri, E.Y. “The Direct Wave-Drive Thruster,” 50th Joint Propulsion Conference, Cleveland, OH,
Number AIAA-2014-4025, July 28-30, 2014.

2Jorns, B. and Choueiri, E.Y., “Thruster concept for transverse acceleration by the beating electrostatic waves pondero-
motive force,” 32nd International Electric Propulsion Conference, Number IEPC-2011-214, September 11-15, 2011.

3Stallard, B.W., Hooper, E.B., Power, J.L., “Whistler-driven, electron-cyclotron-resonance-heated thruster - Experimental
status,” Journal of Propulsion and Power, Volume 12, No. 4, 1996.

4Diaz, F.R.C., “The Vasimr Rocket,” Scientific American, Volume 283, pp90-97, November 2000.
5Pavarin, D., Ferri, F., et. al., “Design of a 50W Helicon Plasma Thruster,” 31st International Electric Propulsion Con-

ference, Number IEPC-2009-205. September 20 - 24, 2009.
6Lovberg, R. H., Dailey, C. L., “PIT Mark V Design.” Number AIAA 1991-3571, September 1991.
7Choueiri, E., Polzin, K., “Faraday Accelerator with Radio-frequency Assisted Discharge (FARAD).” Number AIAA

2004-3940, July 2004.
8Motz, H., Watson, C.J.H., Advances in Electronics and Electron Physics, Volume 23, Academic Press, “The Radio-

frequency Confinement of Plasmas,” p264-282, 1967.
9Jorns, B. and Choueiri, E.Y., “A Plasma Propulsion Concept Based on Direct Ion Acceleration with Beating Electrostatic

Waves,” 46th Jnt. Prop. Conf. Number AIAA-2010-7107, July 2010.
10Dodin, I.Y., and Fisch, N.J., “Axiomatic Geometrical Optics, Abraham-Minkowski controversy and photon properties

derived classically,” Phys. Rev. A, Vol 86 Issue 5, Number 053834. November 2012.
11Stix, T.H., Waves in Plasmas AIP Press, p342-343, 1992.
12Dodd, C.V., Deeds, W.E., “Analytical Solutions to the EddyCurrent ProbeCoil Problems,” Journal of Applied Physics,

Volume 39, 1968.
13Skiff, F., Ono, M., Wong, K.L., “Excitation of ion Bernstein waves from loop antennas,” Physics of Fluids Volume 31,

2030, 1988.
14Barnes, A., “Collisionless Damping of Hydromagnetic Waves,” Physics of Fluids, Volume 9, 8, 1966.
15Peter, W., Roster, N., “Theory of plasma injection into a magnetic field,” Physics of Fluids Volume 25, 730, 1982.
16Chen, F.F., Introduction to Plasma Physics and Controlled Fusion, 2nd ed., Springer 1984.
17Little, J.M., “Critical Condition for Plasma Confinement in the Source of a Magnetic Nozzle Flow,” IEEE Transactions

on Plasma Science, Volume 43, 1, Jan. 2015, p277-286.
18Chen, F.F., “Experiments on helicon plasma sources,” Journal of Vacuum Science Technology A, Volume 10, 4, 1992.

13
Joint Conference of 30th ISTS, 34th IEPC and 6th NSAT, Hyogo-Kobe, Japan

July 4–10, 2015


