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A propulsion concept relying on the direct acceleration of a plasma by momentum
injection associated with the excitation of electrostatic waves is presented. The interaction
between the wave-launching antenna and the plasma is investigated in order to evaluate the
potential of this concept for propulsion. The total force from an annular antenna on a finite
conductivity plasma slab is modeled analytically and determined to be a function of three
non-dimensional parameters: the ratio of the electron collision frequency to the excitation
frequency, the ratio of the antenna size to the antenna-plasma stand-off length, and the
plasma skin-depth normalized by the size of the antenna. Calculations from the model
show that total thrust improves for smaller electron collision frequencies, skin-depths, and
stand-off distances. Thrust efficiency is also modeled and is dependent on the same non-
dimensional parameters. The efficiency improves for smaller electron collision frequencies
and stand-off lengths. The effect of the skin depth depends on whether the resistive losses in
the exciting antenna are large or small, with smaller skin depths increasing efficiency when
antenna losses are large. A sample evaluation is performed with the model to illustrate
potential performance for a thruster operating at 5kW with a mass flow rate of 1 mg/s and
found that for typical plasma parameters, the maximum efficiency is bounded near 50%.

Nomenclature

E,B Electric and Magnetic Field
J Current Density Vector
A Magnetic Vector Potential
T Thrust
ṁ Mass Flow Rate
P Power
σ Complex Frequency Dependent Plasma Conductivity
e Elementary Charge
ne Plasma Electron Density
me Mass of Electron
ω Applied Excitation Frequency
ωpe Plasma Frequency
c Speed of Light
µ0, ε0, Z0 Permeability, Permittivity, and Impedance of Free Space
r0 Antenna Length Scale
l Antenna Plasma Separation Distance
νe Electron Collision Frequency
δ, k Skin Depth and inverse Skin Depth
I Current
γ, α Non-dimensional Coupling Parameters
θ Phase
R Resistance
η Thruster Efficiency
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I. Introduction

The Direct Wave-Drive Thruster (DWDT) is a propulsion concept that utilizes electrostatic waves for
direct momentum transfer to a plasma. Many previous waves-based thruster concepts have used various
waves to heat a plasma and obtain thrust via expansion through a magnetic nozzle.1–3 In contrast, a DWDT
avoids some of the efficiency limitations associated with a magnetic nozzle4,5 by coupling wave momentum
directly into a plasma for acceleration.

While both electromagnetic and electrostatic waves can be used to heat a plasma,1–3,6, 7 electromagnetic
waves are not suited for a DWDT because they contain very little momentum. However, unlike their electro-
magnetic counterparts, electrostatic waves have substantial momentum, and importantly, that momentum
is carried primarily by the plasma particles themselves rather than the electromagnetic fields.8 A DWDT,
such as the recently proposed ponderomotive (PM) concept with beating electrostatic waves,9 can couple
the embedded momentum from an electrostatic wave directly into the plasma to achieve thrust without a
nozzle.

While electrostatic waves can be excited with an antenna immersed in a plasma,10 this would eliminate
a key benefit of a waves-based thruster - that it operates without exposing surfaces to potentially life-
limiting erosion processes. Therefore, an attractive option is to couple to the plasma inductively, as done in
experiments by Jorns and Choueiri.11,12 Such an inductive antenna is qualitatively similar to the inductive
antennas used in Pulsed Inductive Thrusters (PIT).13,14 However, instead of discharging a single large pulse,
the wave-launching antenna operates continuously.

The ponderomotive DWDT concept9 described above has already been explored from the perspective of
wave damping and plasma acceleration due to the electrostatic PM potential. However, this analysis lacks
the thrust and efficiency-limiting behavior associated with the antenna-plasma interaction. Similar to a PIT,
all of the momentum contained in the excited waves - and subsequently the bulk plasma - must be obtained
from this inductive coupling. By analyzing this coupling, and ignoring the subsequent wave dynamics, we
can derive upper bounds on the scaling of thrust and thrust efficiency for a DWDT in order to evaluate its
potential as a propulsion concept.

The layout for this paper will proceed as follows. In Section II, we describe the thrust and loss mechanisms
and define the key assumptions in our model. In Section III, we set up a general solution in terms of the
magnetic vector potential generated by the antenna and solve for the force and dissipation in an annular
geometry. In Section IV, we complete a parameter space investigation of the scaling of both the thrust and
thrust efficiency. In Section V, we summarize the implications for the design criteria of DWDTs.

II. DWDT Modeling Assumptions

The goal of this paper is to investigate the thrust and thrust efficiency scaling of a DWDT. This can
be accomplished by analyzing the momentum imparted to a plasma by an inductive antenna and the loss
mechanisms associated with this momentum transfer. For an inductive antenna, the net rate of momentum
transfer is the sum of all J×B forces in the plasma;

F =

∫
Re[J]× Re[B]dV. (1)

We calculate the thrust efficiency scaling by determining the power losses incurred from the inductive mo-
mentum transfer. Radiative electromagnetic losses are negligible at the frequencies of interest, so the primary
losses are resistive heating in the antenna and plasma. The former scales with the antenna resistance and
the square of antenna current, and the plasma losses are calculated from the dissipation integral;

Ploss,plasma =

∫
(Re[J] · Re[E])dV. (2)

The explicit equations for thrust and efficiency are functions of the antenna current’s amplitude and
frequency, the geometry of the system, and the plasma response. In this paper, we will bound the thruster
performance with the simplifying assumptions. We assume the antenna has a fixed geometry based on a
single length scale. We treat the plasma as a semi-infinite slab occupying a half-space at a fixed distance
from the antenna. While the infinite extent is unphysical, the effects far from the antenna are negligible for
the high plasma conductivities needed for efficient performance. The currents and fields in the plasma are
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determined by the frequency-dependent plasma conductivity, which is primarily a function of the plasma
density and electron collision frequency. Finally, we assume the plasma slab near the antenna has a constant
density in space and time, which holds only if the plasma generation source can replenish accelerated plasma
sufficiency fast.

III. Magnetic Vector Potential Solution

For many geometries of interest, the magnetic vector potential will allow us to simplify the forces and
losses. For example, the magnetic field of a current loop has components in both the axial and radial
directions, whereas the associated A-field is only in the azimuthal direction. The evolution of the magnetic
vector potential can be described by combining Maxwell’s equations and Ohm’s Law to get

∇2A− 1

c2
∂2A

∂t2
− µ0σ

∂A

∂t
= µ0J0, (3)

where σ is the frequency dependent conductivity, which is 0 in free space, J0 is the excitation current density
in the antenna, µ0 is the permeability of free space, and c is the speed of light. Once we have solved for A,
we can use the following relationships to solve for the force and dissipation:

B = ∇×A, (4)

E = −∂A

∂t
, (5)

J = −σ∂A

∂t
. (6)

We now allow all quantities to vary sinusoidally with a given frequency, such that, A = As e
iωt, where

As is the spatially-varying part of A and is complex-valued. Therefore, the complex, frequency dependent
conductivity, σ, can be obtained from the electron momentum equation;

σ =
e2ne

m(νe + iω)
=

1

µ0

ω2
pe

c2
1

νe + iω
, (7)

where me is the mass of an electron, ne is the electron density, νe is the electron collision frequency.
Finally, we assume that the input frequencies are sufficiently small that the second-order derivative is

negligible, such that

∇2A−
ω2
pe

c2
iω

νe + iω
A = µ0J0. (8)

Once we know A, we can combine Eqs. 1, 2, and 4-6 to get the following equations for the net force and
power dissipation:

F =

∫
Re[−

ω2
pe

µ0c2
iω

νe + iω
A]× Re[∇×A]dV, (9)

Ploss,plasma =

∫
(Re[−

ω2
pe

µ0c2
iω

νe + iω
A] · Re[−iωA])dV. (10)

A. Vector Potential Solution in an Annular Geometry

We will solve for the magnetic vector potential in an annular geometry, based on the PM concept proposed
by Jorns and Choueiri.9 The antenna is assumed to be a flat annulus with inner radius r0 and outer radius
2r0 and is positioned parallel to a flat plasma surface at a stand-off distance l as shown in Figure 1. Due to
the azimuthal symmetry, A has components only in the θ̂ direction.

The general method we use for solving for A follows closely that used by Dodd and Deeds.15 However,
we use a frequency-dependent conductivity instead of a purely real conductivity and a flat annular antenna
instead of a single coil loop. This method splits the solution into three separate domains corresponding to
z < −L, −L < z < 0, and z > 0, solves each domain separately, then matches boundary conditions in order
to stitch together a unique self-consistent solution, noting that σ is zero outside the plasma. The solution
domains are shown in Figure 1. To proceed, we non-dimensionalize Eq. 16 using the following scheme based
on the geometry described above
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Figure 1. Antenna and Plasma Geometry. The antenna is assumed to be an annulus with inner and outer
radii r0 and 2r0 respectively and a total current Ia evenly distributed along the radius. The antenna is position
a distance l from the surface of the plasma, which is assumed to occupy the infinite half-space z > 0. The
geometry is therefore cylindrically symmetric about the ẑ-axis.

r̄ = r
r0

z̄ = z
r0

l̄ = l
r0

δs = c
ωpe

δ̄s = δs
r0

ν̄ = νe
ω τ = ωt,

where r̄, z̄ are the normalized coordinates of the system, l̄ is the normalized antenna-plasma separation
distance, δs is the classical plasma skin depth, and ν̄ is the electron collision frequency normalized by the
excitation frequency, ω.

In region I and II in Figure 1, there is no plasma, so the vector potential diffusion equation becomes

∇2A = 0, (11)

where ∇ is now the spatial gradient with respect to the normalized coordinate system. In region III, the
equation becomes

∇2As − δ̄ -2
s

1√
1 + ν̄2

ei tan -1 ν̄As = 0. (12)

Finally, we can define one more simplifying non-dimensional parameter, θν = tan−1 ν̄, where θν is between
0 and π

2 , so that

∇2As − δ̄ -2
s cos θνe

iθνAs = 0, (13)

which can be expanded in our cylindrical coordinate system as

1

r̄

∂

∂r̄
(r̄
∂As

∂r̄
)− As

r̄2
+
∂2As

∂z̄2
− δ̄ -2

s cos θνe
iθνAs = 0. (14)

In order to calculate the forces and dissipation, we only need to know A in region III, but we need to
solve the equations in all three regions simultaneously. The full derivation is performed in Appendix A for
a single plasma layer and a full annular antenna with our complex conductivity and normalization inserted
such that

A3s = µ0Ia

∞∫
0

2∫
1

xJ1(ax)J1(ar̄)
a

a+
√
a2 + δ̄ -2

s cos θνeiθν
e−al̄e−

√
a2+δ̄ -2

s cos θνeiθν z̄dxda, (15)

where Ia is the amplitude of the total azimuthal current in the antenna, J1 is a Bessel function of the first
kind, a represents the integration over the spatial separation constant, and x represents the integration over
the full surface of the generating antenna in normalized coordinates. The time-dependent solution is further
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normalized by defining Ā = A
µ0Ia

, such that

Ā(r̄, z̄, k̄s, l̄, θν , τ) = eiτ
∞∫

0

2∫
1

xJ1(ax)J1(ar̄)
a

a+
√
a2 + δ̄ -2

s cos θνeiθν
e−al̄e−

√
a2+δ̄ -2

s cos θνeiθν z̄dxda. (16)

B. Force and Power Dissipation

The net force generated is given by Eq. 9, and can be re-expressed through the normalization scheme given
in the previous section

F = µ0I
2
a

∫
Re[−δ̄ -2

s cos θνe
iθν Ā]× Re[∇× Ā]dV̄ . (17)

Since A is only in the θ̂ direction, we can rewrite the force into components as

Fr = −µ0I
2
a δ̄

-2
s cos θν

∫
Re[eiθν Ā] · Re[

1

r̄

∂

∂r̄
(r̄Ā)]dV̄ , (18)

Fz = −µ0I
2
a δ̄

-2
s cos θν

∫
Re[eiθν Ā] · Re[

∂Ā

∂z̄
]dV̄ , (19)

where we are primarily concerned with the thrust direction, ẑ. Time-averaging the total axial force gives us
the net thrust;

T = 〈Fz〉 =
1

2π

2π∫
0

dτ · −µ0I
2
a δ̄

-2
s cos θν

∫
Re[eiθν Ā] · Re[

∂Ā

∂z̄
]dV̄ . (20)

Similarly, we compute the time-averaged power dissipation in Eq. 10 to get

〈Ploss,plasma〉 =
1

2π

2π∫
0

dτ · Z0I
2
a δ̄

-3
s

ω

ωpe
cos θν

∞∫
0

∞∫
0

{
Re[eiθν Ā] · Re[iĀ]

}
r̄dr̄dz̄, (21)

where Z0 is the impedance of free space given by
√

µ0

ε0
.

Careful treatment of the real and imaginary components of A and the exponential terms allow us to
recast Eqs. 20 and 21 into the following forms, which are dependent only on the complex-amplitude of A:

〈Fz〉 =
π

2
µ0I

2
a δ̄

-2
s cos2 θν

∞∫
0

‖Ās(r̄, z̄ = 0, δ̄s, l̄, θν)‖2r̄dr̄ (22)

〈Ploss,plasma〉 = πZ0I
2
a δ̄

-3
s

νe
ωpe

cos2 θν

∞∫
0

∞∫
0

‖Ās(r̄, z̄, δ̄, l̄, θν)‖2r̄dr̄dz̄. (23)

The maximum force occurs as δ̄s, l̄, θν → 0, i.e., when the plasma density is sufficiently high and the
electron collision frequency sufficiently small that the plasma perfectly shields out all magnetic fields and
the stand-off distance is negligibly small. We calculate this maximum force in Appendix B;

〈Fz〉max =
3

4
πµ0I

2
a . (24)

This result in unsurprising, as the maximum force is equal to the magnetic pressure between two infinite
current sheets16 multiplied by the area of the antenna and an additional factor of 1

2 to account for the average
over the period of oscillation. We normalize by this maximum force such that

〈Fz〉(δ̄s, l̄, θν , Ia) = 〈Fz〉max · γ(δ̄s, l̄, θν), (25)

where

γ(δ̄s, l̄, θν) =

∞∫
0

2

3
r̄

∥∥∥∥
∞∫

0

2∫
1

xJ1(ax)J1(ar̄)
aδ̄ -1
s cos θν

a+
√
a2 + δ̄ -2

s cos θνeiθν
e−al̄dxda

∥∥∥∥2

dr̄ (26)
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and is between 0 and 1.
A similar normalization can be computed for the losses associated with Joule-heating in the plasma. We

separate the loss term into a portion dependent only on the antenna current and the ratio of νe to ωpe and
a non-dimensional part dependent on the other parameters of the system.

〈Ploss,plasma〉(δ̄s, l̄, θν , Ia, ω) =
3

4
πZ0I

2
a

νe
ωpe
· α(δ̄s, l̄, θν), (27)

where

α(δ̄s, l̄, θν) = δ̄ -1
s

∞∫
0

∞∫
0

4

3
r̄

∥∥∥∥
∞∫

0

2∫
1

xJ1(ax)J1(ar̄)
aδ̄ -1
s cos θν

a+
√
a2 + δ̄ -2

s cos θνeiθν
e−al̄e−

√
a2+δ̄ -2

s cos θνeiθν z̄dxda

∥∥∥∥2

dr̄dz̄,

(28)
and is also between 0 and 1.

IV. Parameter Space Investigation

A. Thrust and Power Dissipation

At this point, we have analytical descriptions for the thrust and power dissipation as functions of the total
current in the antenna, Ia, the electron collision frequency, νe, and three non-dimensional parameters, δ̄s,
l̄, and θν . The interplay of these three parameters is seen in the large integral equations for γ and α.
These equations do not have explicit solutions in terms of elementary functions and therefore we performed
numerical integrations over a parameter space from δ̄s = 1 to 1

64 , l̄ = 1 to 1
16 , and ν̄ = 0 to 10 (θν = 0 to

1.47).
Figure 2 shows contour plots for the coupling parameter, γ, in terms of δ̄s and l̄ for various values of ν̄.

As expected, we can see that γ increases towards unity as δ̄s, l̄, ν̄ → 0. As the reverse happens, γ quickly
decreases to zero as δ̄s, l̄, ν̄ approach order 1. γ does not exhibit large changes for ν̄ < 1, which corresponds
to ω � νe.

Figure 3 shows similar contour plots for dissipation parameter, α, in terms of the same parameter space.
α and γ exhibit similar behavior, such that as γ increases, the dissipation losses also increase. Qualitatively,
this occurs because more current must be present in the plasma in order to increase the net force. This
additional current leads to more ohmic losses.

B. Efficiency

Given the assumption of constant density and infinite plasma extent described in Section II, the calculated
thrust efficiency, defined by

η =
Pthrust

Pthrust + 〈Ploss,plasma〉+ 〈Ploss,antenna〉
, (29)

is expected to be an upper bound. Using Eq. 22, the thrust power is

Pthrust =
T 2

2ṁ
=

9π2µ2
0I

4
aγ

2

32ṁ
, (30)

and the time-averaged resistive loss in an antenna with effective resistance Reff is

〈Ploss,antenna〉 =
1

2
ReffI

2
a . (31)

Combining Eqs. 27 and 29-31, we can express thrust efficiency in terms of the normalized dissipation integrals
associated with the antenna and plasma.

η =
1

1 + PD,plasma + PD,antenna
. (32)

PD,plasma =
8ṁZ0

3πµ2
0I

2
a

νe
ωpe

α

γ2
. (33)
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Figure 2. Contour Plots of the coupling parameter γ as a function of the normalized skin-depth, the normalized
stand-off distance, and the normalized electron collision frequency. Contours of γ are plotted on Log-Log plots
of the antenna-plasma coupling length and the inverse of the plasma skin depth. The five plots correspond to
varying electron collision frequencies.
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Figure 3. Contour Plots of the dissipation parameter α as a function of the normalized skin-depth, the
normalized stand-off distance, and the normalized electron collision frequency. Contours of α are plotted on
Log-Log plots of the antenna-plasma coupling length and the inverse of the plasma skin depth. The five plots
correspond to varying electron collision frequencies.
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PD,antenna =
16ṁReff

9π2µ2
0I

2
aγ

2
. (34)

Efficiency is improved by minimizing the normalized dissipation integrals. This improvement can be
achieved by increasing the total current in the antenna - and therefore the total power of the device. At a
fixed current level, the antenna dissipation is minimized by increasing the coupling parameter γ. However,
since α scales with γ, the plasma dissipation requires minimizing the ratio α

γ2 . Contour plots in Figure 6
show that α

γ2 decreases as the skin depth, stand-off length, and electron collision frequency decrease.
Figure 5 shows plots of efficiency as a function of power for a range of scaling parameters by assuming

that Reff = 0 and choosing a typical mass flow rate of 1 mg/s. At a fixed input power, efficiency increases
for smaller stand-off distances and electron collision frequencies, but efficiency decreases for smaller skin-
depths. This result can occur because increasing the coupling increases the power requirements for a given
Ia. However, as shown in Figure 7, this trend reverses for sufficiently large antenna resistances, in which
case, improved coupling always results in higher efficiencies.

V. Conclusion

The Direct Wave-Drive Thruster is an electrode-less and nozzle-less propulsion concept, which confers
potential advantages compared to other electric devices. We have analytically modeled the thrust and thrust
efficiency of the DWDT concept, and shown the scaling depends on two coupling parameters, γ and α, which
themselves are functions of three important non-dimensional parameters: ν̄, l̄, and δ̄s. In general, efficiency
increases as ν̄, l̄, and δ̄s become small.

Practically, since the νe is not easily controlled, the requirement ν̄ < 1 suggests an optimal frequency
range for wave excitation such that ω > νe, but not so large as to reach the electromagnetic regime. The
stand-off distance, l, includes the physical antenna width and any necessary insulation. Therefore, the size
of a DWDT, r0, must be sufficiently large compared to these thicknesses. Finally, the antenna must also be
large compared to the skin depth of the plasma. While we can attempt to minimize skin depth by increasing
the plasma density, this results in larger collision frequencies as well, which may be counterproductive.

To put the above model in perspective by making reasonable physical assumptions; for ṁ = 1 mg/s,
Reff = 1 mΩ, r0 = 5 cm, l = 1 cm, ne = 1018 m−3, and Te = 3 eV, a 5 kW thruster would have efficiency
bounded near 50%.

Two key assumptions were made about the plasma in this model that are expected to over-estimate the
performance: the plasma is infinite in extent and has a constant density in space and time near the antenna.
For sufficiently large coupling, the plasma currents occur near the antenna, and so the force and dissipation
are not substantially changed by assuming a large plasma extent. The constant density assumption, however,
ignores the wave-damping and absorption dynamics. Including these processes could have substantial effects
on the scaling of the DWDT, and must be taken into account in order to determine more precise scaling.

Appendix A

Starting with Eqs. 19 and 22, we apply separation of variables of As such that

AS = R(r̄) · Z(z̄), (35)

and define a separation constant a2. Therefore, the solution can be described by

1

r̄R

∂

∂r̄
(r̄
∂R

∂r̄
)− 1

r̄2
= −a2 (36)

1

Z

∂2Z

∂z̄2
= a2 + b2, (37)

where b2 = δ̄ -2
s cos θνe

iθν in region III, and b = 0 in regions I and II, outside the plasma. The solutions to
the R equation are Bessel functions of the 1st and 2nd kind. However, only Bessel functions of the first kind
are physical. The Z equation has growing and decaying exponential solutions, where physically region I can
only have growing exponentials and region III can only have decaying exponentials.
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Figure 4. Contour Plots of α
γ2

as a function of the normalized skin-depth, the normalized stand-off distance,

and the normalized electron collision frequency. Contours of α
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are plotted on Log-Log plots of the stand-off

distance and the inverse of the plasma skin depth. The five plots correspond to varying electron collision
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Figure 5. Efficiency vs. Power. Assuming ṁ = 1 mg/s, νe/ωpe = 10−4, Reff = 0. The left-side plots are for l̄ = 1
and the right-side are for l̄ = 1/4. The upper plots have ν̄ = 0 and the lower plots have ν̄ = 1, which corresponds
to νe = 0 and νe = ω respectively. Efficiency is plotted against total input power for various δ̄s. δ̄s = 1 gives the
best efficiency in red and δ̄s = 1/64 gives the worst efficiency in purple.
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Figure 6. Efficiency vs Power, Normalized Stand-off Distance, Normalized Electron Collision Frequency, and
Normalized Plasma Skin Depth.
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As a result, the solutions to Eqs 19 and 22 in each region are:

A1s(r̄, z̄) =

∞∫
0

[
C1(a)eaz̄J1(ar̄)

]
da (38)

A2s(r̄, z̄) =

∞∫
0

[(
C2(a)eaz̄ + C3(a)e−az̄

)
J1(ar̄)

]
da (39)

A3s(r̄, z̄) =

∞∫
0

[
C4(a)e−bz̄J1(ar̄)

]
da. (40)

Dodd and Deeds previously generated and solved similar equations assuming a single coil loop and multiple
conducting layers of material. We proceed using their methodology, but instead of a single loop, we have a
full annular antenna, so we will use their solution and integrate over many loops to form a full flat annulus.
Assuming the single coil loop has a radius x in normalized coordinates, the appropriate boundary conditions
are:

A1s(r̄,−l̄) = A2s(r̄,−l̄) (41)

A2s(r̄, 0) = A3s(r̄, 0) (42)

∂A1s

∂z̄
|z̄=−l̄ =

∂A2s

∂z̄
|z̄=−l̄ + µ0Iδ(r̄ − x) (43)

∂A2s

∂z̄
|z̄=0 =

∂A3s

∂z̄
|z̄=0. (44)

which forms four equations for four knowns. Therefore, we have

C1(a) =
1

2
µ0IxJ1(ax)

[
a− b
a+ b

e−al̄ + eal̄
]

(45)

C2(a) =
1

2
µ0IxJ1(ax)

a− b
a+ b

e−al̄ (46)

C3(a) =
1

2
µ0IxJ1(ax)e−al̄ (47)

C4(a) = µ0IxJ1(ax)
a

a+ b
e−al̄. (48)

In order to calculate the forces and losses in the plasma, we are solely concerned with region III, and the
magnetic vector potential in that region is:

A3loop(r̄, z̄) = µ0I

∞∫
0

[
xJ1(ax)J1(ar̄)

a

a+ b
e−al̄e−bz̄

]
da. (49)

A full annulus with inner radius r0 and outer radius 2r0 can be thought of as many individual coils with
radii between r0 and 2r0, which correspond to x = 1 and x = 2 in the normalized coordinate system. Each
individual coil has a fraction of the total antenna current, Ia. Taking the limit of behavior as infinitely many
coils with Ia evenly distributed amongst them, we get a total magnetic vector potential by integrating over
x:

A3s(r̄, z̄) = µ0Ia

2∫
1

∞∫
0

[
xJ1(ax)J1(ar̄)

a

a+ b
e−al̄e−bz̄

]
dadx. (50)
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Appendix B

Limiting Case of the Time Averaged Force

In this section, we will show that the maximum time averaged force in the limiting case where δ̄s, l̄, θν → 0
is correctly given in Eq. 34. This can be demonstrated by showing that γ → 1. Recall from Eq. 26

γ(δ̄s, l̄, θν) =

∞∫
0

2

3
r̄

∥∥∥∥
∞∫

0

2∫
1

xJ1(ax)J1(ar̄)
aδ̄ -1
s cos θν

a+
√
a2 + δ̄ -2

s cos θνeiθν
e−al̄dxda.

∥∥∥∥2

dr̄ (51)

As θν becomes small, cos θν and eiθν both tend towards unity. Similarly, as l̄ decreases, e−al̄ → 1. Finally,
the large fraction in the integrand tends towards a as δ̄s → 0. Therefore,

γ(δ̄s → 0, l̄→ 0, θν → 0)→
∞∫

0

2

3
r̄

∥∥∥∥
∞∫

0

2∫
1

xJ1(ax)J1(ar̄)adxda.

∥∥∥∥2

dr̄. (52)

The double integral in the ‖ brackets becomes unity if r̄ is between the limits of integration on x. Otherwise,
the integrand goes to 0. Therefore,

γ(δ̄s → 0, l̄→ 0, θν → 0)→
2∫

1

2

3
r̄dr̄ = 1. (53)
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