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A theoretical and numerical investigation of the Beating Wave Thruster (BWT) – an
electrodeless electric propulsion concept based on direct ion acceleration with beating elec-
trostatic waves (BEW) – is presented. Simulations reveal that in a collisionless ion en-
semble, a rectilinear magnetic slope configuration generates a net linear ion current that
flows along the magnetic null. Monte Carlo methods are used to demonstrate that BEW
propagation can significantly enhance overall thruster performance by increasing both the
magnitude and density of said current, while also revealing a unique phenomenon referred
to as “ion channeling,” in which stochastic ions are preferentially transported away from
the thruster walls and towards the magnetic null. Single and beating wave cases are com-
pared for equal wave energy densities and BEW superiority is demonstrated for the chosen
wave parameters. Neglecting ambipolar effects, conservative thrust density and specific
impulse estimates are calculated and shown to be comparable to many existing Hall and
ion thruster configurations.

Nomenclature

B magnetic field θ Larmor phase angle

δ half-width of magnetic slope ρ normalized RMS Larmor radius

δ normalized half-width of magnetic slope YGC guiding center Y -position

rL root-mean-square (RMS) Larmor radius L thruster bound

ωci ion cyclotron frequency ξf fraction of forward-drifting ions

h Hamiltonian ξesc fraction of ions that escape to the walls

Hk k-normalized action-angle Hamiltonian ξex fraction of ions that breach the exit plane

HrL rL-normalized Hamiltonian Uex normalized exhaust velocity

P normalized momentum n ion density

A normalized magnetic vector potential Tr ratio of electron to ion temperature (Te/Ti)

E0 electric field amplitude Isp specific impulse

k wave number T/` thrust density

ωi frequency of ith wave τ normalized time

ε normalized wave amplitude ρth stochastic Larmor radius threshold

κ normalized wave number ρf forward-drifting Larmor radius threshold

νi normalized frequency of ith wave Z ion charge (in units of e)

Veff effective potential |YUB | Y upper bound for forward-drifting ions

ρ normalized Larmor radius νc ion collision frequency
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I. Introduction

In 2010, Jorns and Choueiri proposed a new electric propulsion concept based on direct ion acceleration
with beating electrostatic waves (BEW).1 Inspired by a naturally-occurring phenomenon first observed in the
upper ionosphere in the late 1970s,2 the concept relies on BEW propagation to augment the linear ion current
generated in a thermalized ion ensemble by a steeply-sloped rectilinear magnetic field. The ultimate goal is
for this acceleration mechanism to form the basis of a new plasma propulsion system called the Beating Wave
Thruster (BWT). The BWT has three principal characteristics that render it an attractive propulsion device:

1) Improved Lifetime – Electrode erosion hinders thruster performance and can lead to structural
failure. As a consequence, it is a life-limiting process for many thruster classes, including MPD, ion,
and Hall effect thrusters.3,4 Since the BWT concept is electrodeless, it offers the potential benefit of
improved lifetime over other electric thruster configurations.

2) High Efficiency – As an electric propulsion device, the BWT is expected to have a specific impulse
that is superior to chemical rockets. Furthermore, as will be shown in Section III, BEW propagation
triggers an “ion channeling” mechanism that tends to preferentially transport ions away from the
thruster walls. This will serve to limit plasma-wall interactions, a source of appreciable energy losses
in Hall and electrothermal thrusters.5

3) Variable Thrust and Specific Impulse – The BEW acceleration mechanism is affected by the fre-
quency, amplitude, and wave number of the exciting waves.6 Therefore, it is expected that variations
in these parameters will correspond to changes in BWT specific impulse and thrust density. The abil-
ity to actively manipulate these parameters is advantageous from a mission optimization standpoint,
both in terms of thruster versatility and overall power consumption.7

The goal of this paper is to demonstrate the potential of the BWT as a viable electric propulsion concept
by building upon the foundational work of Jorns and Choueiri via simulation and numerical analysis. The
paper is structured as follows: in Section II, we introduce the basic thruster concept in the absence of BEW
(the “unperturbed” case), including the magnetic slope configuration, single-ion dynamics, and benchmark
thruster characteristics. In Section III, we begin with a brief introduction of the BEW phenomenon and
continue with an investigation of thruster performance in the presence of BEW (the corresponding “per-
turbed” case). We describe the effects of BEW propagation on ion trajectories and thruster characteristics,
using Monte Carlo methods to determine preliminary BWT specific impulse, thrust density, and wall loss
estimates. In Section IV, we summarize the major results of our investigation, and conclude with a brief
discussion of recommended future work.

II. Basic Thruster Concept

A. Magnetic Field Topography

Critical to the success of the BWT concept is the topography of the applied magnetic field. A rectilinear,
z-oriented field was chosen for this application, with a magnetic null at y = 0, a steep positive slope for
|y| < δ, and constant B for |y| > δ. The hyperbolic tangent function exhibits these properties when scaled
by the appropriate factors, yielding the following expression for the ideal applied magnetic field within the
bounds of the thruster (see Figure 1):

B = B0 tanh
3y

δ
ẑ (1)

This antisymmetric field configuration is intended to generate thrust by exploiting the gyromotion of ions
in the vicinity of the magnetic null. Let us consider the behavior of a single ion in the unperturbed case.
While the ion is in a homogenous field region (y > |δ|), it traces out a simple Larmor trajectory. However,
as it approaches the sloped region and begins to encounter B-field asymmetry, its trajectory becomes more
complex. If the ion crosses the null (y = 0), the direction of the Lorentz force is reversed, resulting in
mirrored orbits that propagate along y = 0 in the ±x-direction. If the ion enters the sloped region but does
not cross y = 0, it will experience a net ∇B drift in the −x-direction while remaining trapped on one side
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Figure 1. Magnetic field configuration as described by Eq. 1 for B0 = δ = 1. Note that the field is (approxi-
mately) homogeneous for |y| > δ.

of the null. Jorns and Choueiri posited that for a thermalized ion distribution with an exit plane in the
x̂ direction, this sloped configuration would yield a net ion current in the +x-direction (and therefore, net
thrust in the −x-direction) along the magnetic null, and proposed the introduction of BEW as a means of
effectively augmenting that current.1

B. Unperturbed Ion Dynamics

Since unperturbed ion dynamics are just a special case of perturbed ion dynamics (with zero wave
amplitude), we begin with the Hamiltonian of a magnetized ion of mass m and charge q subject to a
spectrum of n perpendicularly propagating electrostatic waves:

h =
1

2m
(p− qA)2 +

qE0

k

n∑
i=1

cos(kx− ωit) (2)

where p is the canonical momentum vector, A is the magnetic vector potential (such that ∇ × A = B),
E0 is the wave amplitude, k is the wave number, and ωi are the wave frequencies. For simplicity, we have
assumed that all exciting waves are of equal amplitude, wave number, and phase.

Next, we nondimensionalize h via canonical transformation. First, however, for the purpose of normaliza-
tion we introduce an exogenous quantity rL, the root-mean-square (RMS) Larmor radius of a hypothetical
ion ensemble. After normalizing length to rL and time to ω−1ci , we obtain the following expression for the
rL-normalized Hamiltonian:

HrL =
1

2

([
PX −AX

]2
+ P 2

Y

)
+
ε

κ

n∑
i=1

cos(κX − νiτ) (3)

where

HrL =
1

mω2
cir

2
L

h τ = ωcit νi =
ωi

ωci
κ = krL ε =

qE0

mω2
cirL

X =
x

rL
Y =

y

rL
AX =

q

mωcirL
Ax(rLY ) PX = X ′ +AX PY = Y ′

and the prime (′) denotes differentiation with respect to τ . This rL-normalization scheme will ultimately
allow us to simulate ensemble behavior without having to specify a specific ion temperature.

The magnetic slope configuration described in Eq. (1) can also be expressed in rL-normalized coordinates:

B = B0 tanh
3Y

δ
ẑ (4)

where δ = δ/rL.
In the unperturbed case, ε = 0 and the simplified Hamiltonian becomes
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Figure 2. Plot of Veff (δ = 1) for PX = 9 and PX = −7. Note the single well behavior for PX > 0 and the double
well behavior for PX < 0.

HrL =
1

2

([
PX −AX

]2
+ P 2

Y

)
(5)

Following the convention of Jorns and Choueiri,1 since HrL and PX are constants of motion, we can
express the Hamiltonian in terms of PY and an effective potential Veff such that

Veff =
1

2

([
PX −AX

]2)
(6)

Veff takes two forms depending upon the sign of PX . For PX > 0, the effective potential is a single well
symmetric about Y = 0. For PX < 0, Veff becomes a symmetric double well with minima on the Y -axis
and a local maximum at Y = 0 (see Figure 2).

The structure of this potential defines ion behavior in the unperturbed case. Jorns and Choueiri were
able to classify particle trajectories based upon the sign of PX and the value of the Hamiltonian HrL for a
given ion.1 Their conclusions are summarized in the sections to follow. Subsequent analysis assumes δ = 1
unless otherwise noted.

1. PX > 0

For an ion with PX > 0, the effective potential is a symmetric single well with a minimum at Y = 0. All
ions with PX > 0 are trapped in this single well. The Y -bounds of their trajectories (and thus, the turning
points) are given by Veff = HrL . However, while for a uniform B-field this would imply simple Larmor
precession, in the case of an antisymmetric magnetic slope configuration, this trapping results in mirrored
orbits that propagate along the magnetic null in the +x-direction (see Figure 3). Thus, for PX > 0, ions
will always follow forward-drifting trajectories. We will refer to these trajectories as “linear betatron” (or
LB) orbits as per the nomenclature of Jorns and Choueiri.1

2. PX < 0

For PX < 0, Veff becomes a symmetric double well with minima on the Y -axis and a maximum at Y = 0.
To determine ion trajectories for PX < 0, let us first consider the case where PX = −7 and the Hamiltonian
HrL is small (see I in Figure 4). In this case, the ion is trapped in a symmetric well about one of the minima,
and exhibits Larmor precession due to the homogeneity of the magnetic field in that region (see trajectory
I in Figure 5). These trajectories will be referred to as Larmor orbits.

As the value of HrL increases, Larmor precession persists until the ion begins to experience asymmetry
about the minimum of the well (see II in Figure 4). Physically, this corresponds to the ion just entering
the magnetic slope region (Y < |δ|). Thus, in this regime, the ion experiences a grad-B drift in its guiding
center in the −x-direction, but still does not cross the magnetic null (see trajectory II in Figure 5). These
trajectories will be referred to as grad-B (or ∇B) orbits.

4 of 25
The 32nd International Electric Propulsion Conference, Wiesbaden, Germany

September 11–15, 2011



0 50 100
-20

-10

0

10

20

X

Y

(a) PX = 1, HrL = 10

0 50 100
-20

-10

0

10

20

X

Y

(b) PX = 9, HrL = 95

Figure 3. Sample ion trajectories for PX > 0. A black dot is used to show the ion’s initial position in each
plot. In the LB case, the guiding center of ion motion generally lies across the magnetic null in the region
of opposite field polarity. Thus, an ion will never complete more than half of a circular orbit before crossing
Y = 0. As a result, Y is clearly single-valued in X for LB trajectories.

Increasing HrL further results in the ion overcoming the potential barrier at Y = 0 and actually crossing
the magnetic null (see III in Figure 4). For sufficiently low values of HrL , the ion follows a “figure-8”
trajectory and experiences a net drift in the −x-direction (see trajectory III in Figure 5). These trajectories
will be referred to as reverse figure-8 orbits.

As HrL increases further, ions continue to trace out figure-8 trajectories, but their drift velocities increase
until they ultimately experience a net drift in the +x-direction (see IV in Figures 4 and 5). Upon even further
increases in HrL , these figure-8 trajectories are stretched in X (and Y , but to a lesser extent) and ion motion
converges to the LB orbits observed for PX > 0 (see trajectory VI in Figure 5).

3. Orbit Domain Representations

This completes our classification of characteristic ion orbits in the unperturbed case. The regions of
PX -HrL phase space occupied by each trajectory are depicted graphically in Figure 6(a). However, in order
to better intuit the relative frequency of each orbit in a thermalized ensemble, we must recast these orbit
domains in terms of more physical variables – namely, the normalized Larmor radius ρ of the ion and the
Y -position of its guiding center YGC . We also introduce a physical boundary in the form of thruster walls and
consider only particles whose trajectories fall within the region |Y | < L, where L is the thruster half-width
in Y . The result of this coordinate transformation is depicted in Figure 6(b).

C. Ensemble Behavior

Next, we consider the behavior of a collisionless ion ensemble subject to the magnetic slope described
in Eq. (1). We assume that the initial velocity distribution of such an ensemble is described by a two-
dimensional (since only v⊥ is relevant) Maxwell-Boltzmann distribution. In rL-normalized coordinates, a
2-D Maxwellian has the following velocity component distribution:

fv(vi) dvi = fV (Vi) dVi =
1

V
√
π

exp

[
−V

2
i

V
2

]
dVi (7)

where VX = X ′, VY = Y ′, and V = v/ωcirL. But rL = v/ωci by definition and

ρ =
√
〈ρ2〉 =

√
〈V 2

X + V 2
Y 〉 =

√
〈V 2〉 = V

where ρ is the normalized RMS Larmor radius of the ensemble and 〈. . .〉 denotes the average value. Thus,
for a rL-normalized ensemble, V = ρ = 1. The velocity distribution can thus be expressed in the following
simplified form:

fV (Vi) dVi =
1√
π

exp
[
−V 2

i

]
dVi (8)

This expression defines a normal distribution of velocity component Vi with a mean value µ of zero and a
standard deviation σ of 1/

√
2. Initial ion velocities for all subsequent simulations are sampled from this
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Figure 4. Veff plot for PX = −7. A magnified portion of the same plot is included for clarity. Red lines
denote values of HrL for five test ions. Each line matches up with a corresponding particle trajectory (labeled
I-V) featured in Figure 5 below. A particle encounters a turning point (Y -bound) in its orbit whenever its
corresponding HrL line intersects the Veff curve.
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Figure 5. Characteristic ion trajectories for PX < 0. Each trajectory (except VI) matches up with a corre-
sponding HrL value depicted in Figure 4.

6 of 25
The 32nd International Electric Propulsion Conference, Wiesbaden, Germany

September 11–15, 2011



Larmor

LBforward
figure-8

!B

reverse
figure-8

-4 -2 0 2 4
0

2

4

6

8

PX

H
r L

(a) δ = 1

Larmor

LB

forward
figure-8 ÑB

reverse
figure-8

WALLWALL

 forward
figure-8 /
     LB

Ρ = 1

-10 -5 0 5 10
0

2

4

6

8

10

12

YGC

Ρ

(b) δ = 1, L = 10

Figure 6. (a) Trajectory classification plot depicting the domains of characteristic ion orbits in the PX-HrL
plane. The white region is inaccessible to ions due to the inherent structure of the phase space. (b) Region
plot depicting characteristic orbit domains in YGC-ρ space. The brown region is indeterminate by our analysis
(since Y < |δ|) and the gray regions are inaccessible due to the presence of physical walls (located a distance L
from the magnetic null in Y ).

distribution. Note that since rL normalization universally maps ρ to one, this distribution is fixed; it is a
universal Maxwellian that represents a thermalized ion ensemble at an arbitrary temperature. This implies
that results from simulations involving rL-normalized Hamiltonians are generalizable to all ion temperature
values.

A dotted line representing ρ = 1 is featured in the region plot in Figure 6(b). The relative length of the
ρ segment that falls within a given orbit domain in ρ-YGC space yields an intuitive (albeit rough) estimate
of the relative prominence of that particular orbit in the context of the entire ensemble. Thus, for L = 10,
we see that a majority of ions are trapped in Larmor orbits and very few follow forward-drifting trajectories.
From the standpoint of thrust generation, this is clearly undesirable. One way to increase the fraction of ions
subject to these forward-drifting orbits is to constrict thruster geometry by decreasing L. As L decreases,
the number of ions subject to forward-drifting orbits initially increases. However, the fraction of ions that
“escape” to the walls also grows with decreasing L. These two conflicting behaviors imply that an optimal
L value can be determined such that the percentage of ions subject to forward-drifting orbits is a maximum.

1. L Optimization

In order to determine the optimal thruster geometry, we used a numerical simulation featuring approx-
imately 15,000 ions divided evenly amongst approximately three thousand starting Y positions (such that
δ < |Y0| < L, where the subscript 0 denotes an initial value) with normalized velocity components randomly
selected from the distribution defined in Eq. (8). From these initial conditions, we were able to deduce ρ and
YGC values for each ion. The results of these simulations are featured in Figure 7 in the form of contour plots.
Figure 7(a) confirms our initial postulate that for L = 10, the vast majority of ions are trapped in Larmor or-
bits. Figure 7(b), however, depicts the optimal thruster geometry (L ≈ 1.6) for a collisionless, rL-normalized
ion ensemble. Numerical results reveal that for this optimized system, the fraction of forward-drifting ions
ξf is approximately 34.9% while the fraction of ions that escape to the walls ξesc is approximately 53.5%.
The remaining ions (11.6%) follow either reverse-drifting or Larmor trajectories. Furthermore, the fixed na-
ture of ρ in the context of this simulation means that this geometric configuration essentially represents the
universal optimum for every thermalized distribution of ions subject to a steeply-sloped z-directed magnetic
field.

2. Benchmark Specific Impulse

Next, we sought to determine a theoretical specific impulse value for our L-optimized thruster geometry.
Only forward-drifting ions were considered (including, for completeness, ions that started in the sloped
region). We also assumed that ions lost to the walls did not contribute to the exhaust plume. To determine
the exhaust velocity, we concentrated our ensemble in a very small X-range (∼ 0.1) and specified an arbitrary
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Figure 7. (a) Contour plot of a 2-D Maxwellian velocity distribution in the ρ-YGC plane subject to the
constraints of thruster geometry. White lines are used to delimit the orbit domains featured in 6(b). Lighter
regions indicate greater particle density. (b) Contour plot depicting the optimal thruster geometry for a
rL-normalized ion ensemble.
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Figure 8. (a) Average exit velocity distribution. The black curve is a a half-Gaussian best fit. (b) A plot of
the product of exit velocity and the distribution f(VX). The integral of the resulting curve is the average exit
velocity, or the (normalized) exhaust velocity Uex.

plane in X that we defined as the exit plane. An ion that breaks this plane is considered part of the exhaust
plume, and the average velocity VX at which it does so is considered to be the exit velocity of the ion. As
expected, the exhaust velocity of the thruster is defined as the average velocity of the exhaust plume.

Figure 8(a) depicts the exit velocity distribution for a sample size of approximately 10,000 ions. This
plot unambiguously demonstrates that the magnetic slope configuration can indeed produce a net linear ion
current in the X-direction. The distribution can be approximated by a half-Gaussian, which agrees very
well with numerical results for large VX . But for small VX , numerical results clearly diverge from the fit.
While this could indeed be a characteristic of the thruster itself (which is likely given that this drop-off was
observed even for very large time intervals), it could also be a result of the drawbacks of our chosen method.
However, seeing as the exhaust velocity is defined such that

Uex =

∫ ∞
0

VXf(VX) dVX (9)

and noting the improved correlation of the transformed fit in Figure 8(b), we conclude that for the purposes
of exhaust velocity calculations, the half-Gaussian approximation is acceptable.

This simulation ultimately yielded a normalized exhaust velocity Uex of 0.6. In other words, in this
optimized geometry in the unperturbed case, the average exiting ion enters the exhaust plume with an
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X-velocity equal to 60% of the average initial perpendicular velocity of the ensemble.
From this normalized exhaust velocity value, we use realistic physical parameters to calculate the bench-

mark Isp for the optimal unperturbed thruster configuration. By definition,

Uex =
uex
v

(10)

where v is the RMS velocity of the 2-D ensemble. Also by definition (for a Maxwellian),

v =

√
2kBTi
m

(11)

where kB is Boltzmann’s constant, Ti is the temperature of the ion ensemble, and m is the ion mass. Thus,
by specifying an ion temperature Ti and recalling that Isp = uex/g0, we can determine uex for an ensemble
of ions each with mass m.

For example, consider an ensemble of hydrogen ions (m ≈ 1.67× 10−27 kg) with an average temperature
of Ti = 0.1 eV. For g0 = 9.81 m/s2, this yields a theoretical Isp of approximately 270 s. For an ensemble of
argon ions (m ≈ 6.63× 10−26 kg), this theoretical Isp drops precipitously to about 40 s.

3. Benchmark Thrust Density

Next we use the average exhaust velocity distribution to determine an approximate expression for the
thrust generated by this magnetic slope configuration. Recall that

T = ṁuex (12)

By assuming that these two quantities are not independent, we can approximate the ṁ term as follows:

ṁ = nmξfAuex = 2nmξfrLLmax`uex (13)

where A is the cross-sectional area of the thruster, ` is the depth of the thruster in the z-direction, n is
the average ion density, and m is the ion mass. The inclusion of ξf accounts for the fact that only forward
drifting ions contribute to the mass flow from the thruster. Thus, we can approximate the thrust generated
per unit thruster depth (in z) in terms of fundamental physical parameters as follows:

T

`
= 2nmξfrLLmaxu

2
ex = 25/2

(
ξfLmaxU

2
ex

) n√m(kBTi)
3/2

qB0
(14)

We see from the above expression that we can change the thrust of the unperturbed optimized configu-
ration for a given plasma via the manipulation of three parameters: n, Ti, and B0. However, this expression
is only an approximation, and considers neither the mechanism by which thrust is actually transferred to
the spacecraft nor the complex particle interactions that are often characteristic of plasma behavior. Nev-
ertheless, it should still provide a somewhat reasonable estimate for the expected thrust level of a given
configuration. Even if the actual values it produces turn out to be inaccurate, the expression can still be
used to gauge the relative thrust levels of comparable configurations.

In calculating hypothetical thrust values, we used data collected by Jorns and Choueiri in 2010 from
the second-generation Beating Wave Experiment (BWXII).8 Thus, for a singly-ionized argon plasma with
n ≈ 1010 cm−3 and Ti ≈ 0.1 eV in a B-field of 500 Gauss, the calculated linear thrust density is approximately
7.4× 10−7 N/m – an incredibly small result. For a hydrogen plasma of equal density and temperature, the
thrust density is even lower: T / ` ≈ 1.2× 10−7 N/m.

D. Performance Assessment

The specific impulse values calculated in the previous section are remarkably low for electric thrusters.
However, given the fact that in the unperturbed case, the Hamiltonian of each individual ion is conserved,
these results are unsurprising. In its current form, this magnetic field configuration essentially takes the
thermal energy of an ion ensemble and concentrates a portion of it in the +X-direction, establishing a linear
ion current along the magnetic null. If the thruster were 100% efficient, it would concentrate 100% of that
thermal energy such that Uex ≈ 1. Thus, in its current configuration (and for the specified ion temperature),
the maximum Isp (assuming Uex = 1) for a hydrogen thruster of this type is only about 450 s (for an argon
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thruster it is approximately 70 s). Much of the same reasoning applies to why the calculated thrust values
are also very low.

In their seminal paper that introduced this propulsion concept, Jorns and Choueiri proposed that BEW
propagation would augment the linear ion current generated along the magnetic null.1 In the interest
of demonstrating the enhancement of both current flow and current density along the null (and thereby
increasing both the net thrust and Isp of the thruster), in the next section we consider the perturbed case
(ε 6= 0) and investigate the effects that beating waves have on the propulsive characteristics of this sloped
field configuration.

III. Effects of BEW Propagation

A. BEW Phenomenon

Before immediately delving into the perturbed case, we must first elucidate the basic physics of BEW
acceleration, as well as its propulsive applications.

Background

In 1998, Ram et al proposed that particle interactions with a spectrum of electrostatic ion cyclotron (EIC)
waves propagating perpendicularly to the Earth’s magnetic field were responsible for the prodigious ion accel-
eration observed in the upper ionosphere.9 In that same year, Benisti et al theoretically demonstrated that
ions with arbitrarily low initial velocities can be stochastically accelerated via nonlinear wave-particle inter-
actions if the aforementioned electrostatic spectrum contains at least two waves that satisfy a mathematical
“beating criterion” such that their frequencies differ by an integer multiple of the cyclotron frequency:10,11

ω2 − ω1 = αωci (15)

where ω1 and ω2 are the wave frequencies, ωci = qB/m is the local ion cyclotron frequency, and α is a
nonzero integer.

In 2004, Spektor and Choueiri showed that although the beating criterion is necessary for such acceleration
to occur, it is not sufficient.12 They determined that low-velocity ions are accelerated only if their initial
Hamiltonians fall within a specific range. However, in spite of this restriction, BEW propagation still results
in the acceleration of ions with initial velocities well below the phase velocities of the exciting waves. This
stands in stark contrast to single electrostatic wave (SEW) acceleration, in which only the portion of the ion
distribution that satisfies a broadened resonance condition experiences stochastic acceleration. This implies
that for a general distribution, a larger portion of ions will satisfy the less stringent BEW acceleration criteria
than will satisfy the corresponding SEW resonance condition.

Ion heating via BEW propagation was first demonstrated in a laboratory setting by Spektor and Choueiri
in 2005.13 In 2009, Jorns and Choueiri were able to unambiguously demonstrate the superiority of BEW
heating over SEW heating.14 They reported a 90% increase in perpendicular ion temperature for BEW
heating versus only a 50% increase for SEW heating at comparable wave energy densities. In 2011, Jorns
and Choueiri derived an analytical expression that demonstrated the superiority of BEW heating over SEW
heating for all parameter space.15 This claim was also confirmed by their numerical results.

Hamiltonian Formulation and Analysis

After normalizing length to k−1 and time to ω−1ci , the Hamiltonian of an ion in a uniform magnetic field
subject to a spectrum of perpendicularly propagating electrostatic waves takes the following action-angle
form:

Hk =
ρ2

2
+ ε

n∑
i=1

cos
(
ρ sin θ − νiτ

)
(16)

where ρ is the normalized Larmor radius, θ is the Larmor phase angle, ε is the normalized wave amplitude,
νi is the normalized frequency, and τ is a normalized time variable (τ = ωcit). In the BEW case, n = 2 and
the wave frequencies ν1 and ν2 satisfy the normalized beating criterion such that ν2 − ν1 = α. In the SEW
case, of course, n = 1.
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(a) SEW (ε = 10, ν = 24.3) (b) BEW (ε = 10/
√

2, ν1 = 24.3)

Figure 9. Poincaré sections for the off-resonant (a) SEW (ε = 10, ν = 24.3) and (b) BEW (ε = 10/
√

2, ν1 = 24.3)
cases. Each section is a projection of ion motion onto the (ρ, θ) plane at a fixed interval τc corresponding to
either (a) the normalized period of the exciting wave (2π/ν) or (b) the least common period of the beating
waves. Each well-defined curve represents the trajectory of a single test ion in phase space. Normalized
amplitudes were chosen such that total wave energy density is equal in both cases. In both plots, the dashed
red line represents the single-wave stochastic threshold. In the BEW case, the hyperbolic and elliptic points
are labeled H and E, respectively.

Because Hamilton’s equations reveal that this nonlinear system has no general closed-form solution, we
turn to Poincaré sections to gain greater physical insight into ion behavior in the SEW and BEW cases.
Figure 9(a) is a typical Poincaré section for an ion subject to a SEW. Karney determined that in order for an
ion to experience SEW acceleration, the ion’s velocity must fall within a certain range, thereby satisfying a
broadened resonance condition.16 The dashed red line depicts the lower bound of said range. This stochastic
threshold is analytically defined as follows:

ρth ≡ ν −
√
ε (17)

Figure 9(a) reveals that ion motion is coherent for ρ . ρth and stochastic for ρ & ρth. Thus, phase space for a
magnetized ion subject to a SEW can be divided into two distinct regions of ion motion: a forbidden region,
where wave-ion interactions are small and ion motion is coherent, and a stochastic region, where wave-ion
interactions are strong and ion motion is effectively chaotic. In the SEW case, these coherent and stochastic
regions of phase space remain strictly separate. If an ion starts in a given regime, it remains in said regime
for all time. As such, only ions with ρ & ρth exchange energy with the exciting wave; low-velocity ions are
not appreciably accelerated.

For comparison, Figure 9(b) features a Poincaré section of ion phase space in the BEW case. The
corresponding SEW stochastic threshold is included for reference. Normalized beating wave amplitudes were
chosen such that total wave energy densities are equal for both cases depicted in Figure 9. We see from
the BEW plot that contrary to the SEW case, ions subject to BEW can experience appreciable coherent
acceleration. This coherent acceleration is observed in two forms: either the ion is coherently accelerated up to
the stochastic threshold, after which it enters the chaotic regime (somewhere in the vicinity of the hyperbolic
point H) and is subsequently stochastically accelerated, or it is coherently accelerated up to a maximum
ρmax < ρth and then coherently decelerated. While the first case corresponds to a gradual and subsequently
chaotic increase in Larmor radius (“regular acceleration”), the second corresponds to the periodic contraction
and expansion of a magnetized ion’s orbit about its guiding center (“forbidden acceleration”). Thus, BEW
phase space can be divided into three regimes: the forbidden acceleration region, the regular acceleration
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(a) BEW (ε = 10, ν1 = 24.3)
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Figure 10. Time evolution of (a) ρ and (b) YGC in the off-resonant BEW case (ε = 10, ν1 = 24.3) for various
initial conditions (ρ0 and θ0). The dotted red line represents the SEW stochastic threshold ρth. Note that
stochastic acceleration results in a net displacement of the guiding center in the k×B direction.

region, and the stochastic acceleration region. While in the SEW case the stochastic and coherent regions
are strictly separate, in the BEW case, they are connected via the regular acceleration region. As a result, an
ion with very low initial velocity can be coherently accelerated up to and through the stochastic threshold.
Thus, the broadened resonance characteristic of SEW acceleration is clearly not required for significant BEW
acceleration to occur.

Note that the stochastic threshold described in (17) decreases with decreasing frequency and increasing
wave amplitude. For a general distribution, a decrease in the stochastic threshold results in an increase in
the number of ions subject to acceleration. This is true for both SEW and BEW acceleration.

Figure 10 features the time evolution of ρ and YGC−YGC0 (the normalized Y -displacement of the guiding
center, where Y = ky) for three test ions. The black curve represents an ion in the forbidden acceleration
region. The ion is coherently accelerated and decelerated periodically as its Larmor radius oscillates between
ρth and some minimum value. The ion’s guiding center remains fixed in Y (aside from ignorable fluctuations)
for all time. The red curve represents an ion that starts in the stochastic region such that ρ0 > ρth. The ion
experiences appreciable energization as its Larmor radius oscillates stochastically in the region above ρth.
Over time, the guiding center of the ion experiences a net drift in the k×B direction (in this configuration,
the negative Y direction). Finally, the blue curve represents an ion that starts in the regular acceleration
regime and is coherently accelerated through the stochastic threshold. This curve in particular illustrates the
principal benefit of BEW over SEW: despite ρ0 being less than half of ρth, the stochastic regime is clearly
still accessible to the ion. Furthermore, while the ion’s guiding center remains fixed during the coherent
portion of the acceleration, upon stochastic energization it too experiences a clear negative displacement in
YGC .

Propulsive Applications

As aforementioned, Jorns and Choueiri have demonstrated both analytically and experimentally that
BEW propagation is a comparatively efficient method for heating a plasma. Thus, the BEW phenomenon
clearly has potential applications in the heating stage of an electrothermal thruster.

In this paper, however, we seek to demonstrate the feasibility of a propulsion concept that exploits the
direct acceleration of individual ions via BEW (as opposed to ensemble heating and subsequent expansion
through a suitable nozzle). As previously demonstrated, the physical manifestation of BEW acceleration is
an increase in the Larmor radius of the ion. In this section, since our thruster operates via the conversion
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of gyromotion to linear motion, we seek to demonstrate that radial BEW acceleration enhances thruster
performance by increasing both the speed and density of ions flowing along the magnetic null. Furthermore,
we also show that the stochastic drift of the guiding center in the k×B direction may help to minimize wall
losses in the context of an actual thruster geometry. And finally, since the properties of BEW acceleration
clearly change with the variation of wave parameters, we expect BWT performance characteristics to change
in a related fashion, thereby implying thruster variability.

B. Perturbed Ion Dynamics

Recall that the rL-normalized BEW Hamiltonian is

HrL =
1

2

([
PX −AX

]2
+ P 2

Y

)
+
ε

κ

2∑
i=1

cos(κX − νiτ) (18)

where ν1 and ν2 satisfy the beating criterion. The goal of subsequent analysis is to determine how BEW
propagation alters the orbits of unperturbed ions.

Following the convention of Jorns and Choueiri,1 we partition our analysis by grouping ions based on the
relationship between the initial Y -position of the guiding center YGC0, the initial normalized Larmor radius
ρ0, and the stochastic threshold for BEW acceleration ρth. Note that while the k-normalized stochastic
threshold was previously defined as ρth = ν −

√
ε, rL normalization yields a slightly different expression due

to the presence of an additional parameter κ:15

ρth =
ν

κ
−
√
ε

κ
(19)

First, we group unperturbed ions into two categories: a forward-drifting category (which includes forward
figure-8 and LB trajectories) and a non-forward-drifting category (which includes reverse figure-8, grad-B,
and Larmor trajectories). A given unperturbed ion will only follow a forward-drifting trajectory if ρ0 > ρf ,
where

ρf ≈ |YGC0| (20)

Next, we treat four relevant cases of motion based on the initial conditions of a given ion (more specifically,
the relationship between ρ0, ρf , and ρth).

Case 1: ρ0 < ρf < ρth

In the case where ρ0 < ρf < ρth, the ion starts in the non-forward-drifting regime, and the Larmor radius
at which it enters the forward-drifting regime is below the stochastic threshold for BEW acceleration.

Figure 11 depicts the time evolution of ρ and ρf − ρ for a test ion subject to BEW that satisfies ρ0 <
ρf < ρth. The sign of ρf − ρ determines the drift behavior of the ion. For ρf − ρ > 0, the Larmor radius of
the ion is less than the Larmor radius required to enter the forward-drifting region; therefore, the ion follows
a non-forward-drifting trajectory. For ρf − ρ < 0, the ion’s gyroradius is greater than the Larmor radius
required for the ion to enter the forward-drifting regime; thus, the ion follows a forward-drifting trajectory.

Figure 11(a) shows that for ρ0 < ρf < ρth, the test ion coherently accelerates up to ρf , but immediately
decelerates upon encountering the magnetic null. Figure 11(b) depicts the same behavior: the ion coherently
approaches the forward-drifting region, but is deflected upon reaching the ρf−ρ = 0 barrier. While numerical
results have shown that this does not necessarily prevent the ion from entering the forward-drifting regime,
it does prevent the ion from remaining in the forward-drifting regime for appreciable periods of time (i.e.
more than a few Larmor orbits). These ions tend to experience periodic kicks in XGC that are too small
and infrequent to be considered forward-drifting. Thus, we conclude that on the whole, ions initially in
non-forward-drifting orbits cannot be coherently accelerated into the forward-drifting regime.

Case 2: ρ0 < ρth < ρf

For ρ0 < ρth < ρf , the ion clearly starts outside the forward-drifting regime, and the Larmor radius at
which it enters said regime is above the BEW stochastic threshold.
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(a) Time evolution of ρ (gray). The dotted blue line represents
ρf ; the dashed red line represents ρth.
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(b) Time evolution of ρf−ρ (gray). The dotted blue line repre-
sents the boundary between forward-drifting and non-forward-
drifting trajectories; the dashed red line represents the stochas-
tic threshold (ρf − ρth).

Figure 11. Time evolution of (a) ρ and (b) ρf − ρ for ρ0 < ρf < ρth (wave parameters: ε = 10, ν1 = 14.3, and
κ = 1).
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(a) Time evolution of ρ. The dotted blue line represents ρf ;
the dashed red line represents ρth.
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(b) Time evolution of ρf − ρ. The dotted blue line repre-
sents the boundary between forward-drifting and non-forward-
drifting trajectories; the dashed red line represents the stochas-
tic threshold (ρf − ρth).

Figure 12. Time evolution of (a) ρ and (b) ρf − ρ for ρ0 < ρth < ρf (wave parameters: ε = 10, ν1 = 14.3, and
κ = 1). The gray curves represent an ion in the forbidden acceleration region; the red curves represent an ion
that starts in the regular acceleration region.
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The gray curve in Figure 12(a) represents an ion that starts in the forbidden acceleration region. As
expected, the ion coherently accelerates up to the stochastic threshold ρth and then decelerates, never
reaching the forward-drifting regime. The red curve, however, represents an ion that begins in the regular
acceleration region. This ion is coherently accelerated up to the threshold ρth where it is then stochastically
accelerated into the forward-drifting regime (where it remains, on average; see Figure 12(b)). Thus, for
ρ0 < ρth < ρf , BEW propagation can clearly push an ion into the forward-drifting regime as long as it
begins in the regular acceleration region. To simplify our analysis, we make the same approximation as
Jorns and Choueiri and assume that on average (over θ) ions with ρ0 > ρth / 2 (i.e. ρ above the elliptic point
E) are subject to regular acceleration.1 Thus, we define our first criterion for non-forward-drifting ions to
be pushed into the forward-drifting regime:

ρth
2

< ρ0 < ρth < ρf (21)

Case 3: ρth < ρ0 < ρf

In the case where ρth < ρ0 < ρf , the ion begins outside the forward-drifting regime, but its initial Larmor
radius places it in the stochastic acceleration region.

Figure 13 clearly illustrates that this ion is stochastically accelerated from the outset and promptly enters
the forward-drifting regime, where it remains on average for all time. Thus, we can generalize (21) to all
ions with ρ0 < ρf as follows:

ρth
2

< ρ0 < ρf (22)

This expression defines the conditions under which an ion initially following a non-forward-drifting trajectory
can be pushed into the forward-drifting region. Thus, the magnitude of ρth essentially determines the fraction
of the reverse-drifting and Larmor populations that can be linearly accelerated along the magnetic null. The
smaller the magnitude of ρth, the greater the number of ions in a given thermalized distribution that can be
pushed into forward-drifting trajectories.

Case 4: ρ0 > ρf

The final case considers the possibility that ions initially in the forward-drifting region may be pushed
into non-forward-drifting orbits as a result of BEW propagation.

Numerical results indicate that these initially forward-drifting ions tend to remain in the forward-drifting
region even after BEW perturbation. However, the manner in which their trajectories propagate in X tends
to change based on the magnitude of ρ0 relative to ρth.

As one might expect, ions with ρ0 > ρth tend to stochastically accelerate as they drift forward in X
(see Figure 14(a)). As a consequence of this stochastic acceleration, their resultant perturbed X velocities
tend to be much higher than their originally-unperturbed counterparts. The blue curves in Figure 14(b)
demonstrate this velocity shift. While the dashed blue line represents the unperturbed X trajectory, the
solid blue line represents the corresponding perturbed X trajectory. The plot clearly demonstrates that the
X velocity of the ion (i.e. the slope of the corresponding blue curve) jumps after the application of BEW.

For ρ0 < ρth, however, forward-drifting ions tend not to accelerate at all (see Figure 14(a)). The only
exception occurs when ions are in the immediate vicinity of ρth. These ions do tend to undergo regular
acceleration and subsequently jump into the stochastic regime. However, aside from this limited range of ρ0
values near the stochastic threshold, most forward-drifting ions actually exhibit an appreciable decrease in
X velocity upon encountering BEW. Figure 14(b) illustrates this substantial decrease in velocity for a test
ion with ρf < ρ0 < ρth upon BEW propagation.

Therefore, not only does lowering ρth effectively increase the number of trapped ions that can be pushed
into the forward-drifting region for a given distribution, but it also greatly enhances the flow of ions that
were already following forward-drifting trajectories prior to BEW propagation. Thus, we can conclude that
by decreasing the magnitude of ρth, it is likely that we can also dramatically improve the performance of
the BWT.
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(a) Time evolution of ρ. The dotted blue line represents ρf ;
the dashed red line represents ρth.
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(b) Time evolution of ρf − ρ. The dotted blue line repre-
sents the boundary between forward-drifting and non-forward-
drifting trajectories; the dashed red line represents the stochas-
tic threshold (ρf − ρth).

Figure 13. Time evolution of (a) ρ and (b) ρf − ρ for ρth < ρ0 < ρf (wave parameters: ε = 10, ν1 = 14.3, and
κ = 1). The gray curves represent an ion in the forbidden acceleration region; the blue curves represent an ion
that starts in the stochastic acceleration region.
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(a) Time evolution of ρ. The dotted blue line represents ρf ;
the dashed red line represents ρth.
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(b) Time evolution of X. Dashed lines represent unperturbed
trajectories; solid lines represent perturbed trajectories. The
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curve.

Figure 14. Time evolution of (a) ρ and (b) X for ρf < ρ0 < ρth (gray) and ρf < ρth < ρ0 (blue) for wave
parameters ε = 10, ν1 = 14.3, and κ = 1).
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Figure 15. Time evolution of YGC for a test ion in the regular acceleration regime (ε = 10, ν1 = 14.3, and κ = 1).
Dense regions about the magnetic null are characteristic of forward-drifting trajectories, in which the guiding
center switches sign each time the ion crosses Y = 0.

C. Ion Channeling

BEW propagation also has a visible benefit in the context of electric propulsion due to the tendency
of guiding centers to drift in the k × B direction after the onset of stochasticity. In the context of this
sloped field configuration, this implies that ions in the stochastic region will actually be siphoned towards
the magnetic null, a phenomenon which we will henceforth refer to as “ion channeling.”

Figure 15 illustrates this phenomenon for a test ion in the regular acceleration region. We see that YGC

remains roughly constant while the ion coherently accelerates. Upon breach of the stochastic threshold,
however, the guiding center drops precipitously in Y and gravitates towards the magnetic null, after which
it enters the forward-drifting region and the average value of YGC approaches zero.

Numerical results indicate that ions subject to SEW experience a similar k × B drift in their guiding
centers. However, since the stochastic regime is accessible to a larger portion of the ion population in the
beating wave case, we expect the channeling effect to be generally more prominent for BEW than for SEW.

This channeling behavior is important from a propulsion standpoint because it implies a net stochastic
transport of particles towards the magnetic null, and therefore away from the thruster walls. This effect
therefore helps to mitigate characteristic wall losses that hinder the performance of many existing electric
thrusters.

D. BWT Performance

1. EIC Dispersion Relation

According to the definition of ρth

ρth =
ν

κ
−
√
ε

κ
. (23)

We can make the stochastic threshold arbitrarily small by manipulating the parameters ε, ν, and κ as we
please. However, this notion of arbitrary manipulation of wave parameters is unphysical in that it neglects
the actual behavior of EIC waves in a plasma. The first problem is that in a real plasma, ν and κ are
not independent of one another. EIC waves propagate according to the following (approximate) dispersion
relation (for Te � Ti, where Te is the electron temperature and Ti is the ion temperature):8

ω2 = ω2
ci + k2

ZkBTe
m

(24)
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Figure 16. (a) Plot of the EIC dispersion relation for Tr ≈ 30. (b) Plot of theoretical ρth values for various
normalized wave amplitudes (again, for Tr ≈ 30). Blue points represent minimum values of ρth.

where Z is the ion charge (in units of e). In rL-normalized coordinates, this expression becomes

ν2 = 1 + κ2
ZTr

2
(25)

where Tr is the ratio of the electron temperature to the ion temperature (Te / Ti). By using this expression
to relate ν and κ we introduce a degree of physical fidelity into our analysis that would be absent otherwise.

Next we consider self-consistency at its lowest order. We are investigating ion acceleration by beating
electrostatic waves; however, in a real plasma, electrostatic waves propagate via perturbations in the electron
and ion population. Thus, since all of our analysis up to this point has featured the use of constant wave
parameters, we have implicitly assumed that the exciting waves are unaltered by ion dynamics. In reality,
this limits the scope of our investigation to relatively small wave amplitudes (ε . 10).15

Thus, by combining these limiting criteria with measured electron and ion temperature values, we can
come up with a first-order approximation for the value of ρth in a real plasma. For the purposes of this
investigation, we use BWXII temperature data collected by Jorns and Choueiri in 2010.8 For a singly-
ionized (Z = 1) argon plasma, they measured electron and ion temperatures of 3 and 0.1 eV, respectively
(thus, Tr ≈ 30). Given that Te � Ti, our expression for the dispersion relation (25) is valid. The resulting
relationship between ν and κ is plotted in Figure 16(a). Note that EIC waves cannot propagate for ν < 1
(ω < ωci).

Now that we have determined the relationship between ν and κ, we combine the dispersion relation with
our small-amplitude approximation to determine allowable ρth values for various wave amplitudes. Figure
16(b) features ρth curves for ε = 1, 5, and 10. We clearly see that for a given wave amplitude, there is a
corresponding minimum value of ρth. Given that we are seeking to minimize the stochastic threshold, we will
refer to this minimum as the optimum value for ρth. We clearly see that for the given spectrum of allowable
wave amplitude values, the universal optimum occurs for ε = 10. For this wave amplitude, the stochastic
threshold is minimized when κ ≈ 0.16 and ν ≈ 1.47, yielding an optimal ρth value of approximately 0.75.
In subsequent analysis, we use these optimized wave parameters to deduce the specific impulse of the BWT
via numerical simulation. Before proceeding, however, we recall that in the rL normalization scheme, ρ is
implicitly equal to one. Thus, for this particular set of physical wave parameters, ρth < ρ. This implies
that a significant portion of the ion population will undergo stochastic acceleration, which in turn will push
trapped ions into the forward-drifting regime while simultaneously enhancing the X velocity of ions that are
already-forward-drifting.

2. BWT Specific Impulse Estimate

After determining approximate wave parameters that optimize ρth for a physical plasma, we conducted
numerical simulations to determine the average exhaust velocity of the BWT in the case of BEW propagation.
We followed a procedure similar to that used in Section II to deduce the exhaust velocity of an unperturbed
ensemble in a magnetic slope configuration. To start, we evenly distributed 10,000 ions in the X and Y
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intervals [ 0, 2π/κ ] and [−L, L ], respectively. Note that the upper bound of the X interval is equal to the
normalized wavelength, and was chosen due to the spatial periodicity of the exciting waves. The initial X
and Y velocities of each ion were determined by sampling from the Maxwellian described in 8. The ensemble
was assumed to be collisionless; only single-ion dynamics were considered in simulation. The exit plane wase
located one wavelength (2π/κ) from the upper bound of the X interval, and ions that breached this plane
were considered part of the exhaust plume (which in the context of a two-dimensional geometry, is really
an exhaust “sheet”). Their instantaneous velocity upon doing so was their exit velocity, denoted by VX .
For each individual ion, we monitored the numerical integration of Hamilton’s equations at each time step
to ensure that the ion remained within the Y limits set by the thruster bound L. Ions whose trajectories
exceeded these bounds were considered lost to the walls. Numerical integration was performed over long
timescales to minimize the error associated with low-velocity particles.

In conducting these simulations, it became immediately clear that the optimized geometry derived in
Section II for the unperturbed case was not readily applicable to the perturbed case. However, this was to
be expected for two reasons. In the unperturbed case, a geometry that features a large fraction of particles in
the Larmor region is a mark of inefficiency; precessing particles can never break the exit plane of the thruster,
and therefore cannot contribute to thrust generation. A principal benefit of BEW propagation, however,
is its ability to push particles from Larmor precession into forward-drifting orbits. In the BEW case, the
Larmor region can be thought of as a massive reservoir from which particles can be selectively drawn to alter
the density of the current flowing along the magnetic null. Thus, a geometry that features a large number
of initially-trapped particles is actually desirable (to a degree) in the BEW case. Another reason why the
unperturbed optimized geometry is inapplicable in this case has to do with the fundamental nature of the
BEW acceleration mechanism. The physical manifestation of BEW acceleration for an ion is a change in its
Larmor radius. Upon breaking the stochastic threshold, an ion’s Larmor radius dramatically increases and
subsequently oscillates chaotically about some mean value greater than ρth. This notion, coupled with the
fact that ions can only be pushed into forward-drifting orbits if they breach the stochastic threshold, implies
that the population of forward-drifting ions that results from the introduction of BEW has a relatively large
average ρ value. This also implies that while BEW can both increase and enhance flow in the X direction,
it can also greatly increase the Y -range swept out by ions as they propagate forward in X. Thus, any BEW
propagation in the context of the unperturbed optimized geometry (where L = 1.6) that would otherwise
enhance current flow just results in an overwhelmingly large percentage of the ions being lost to the walls
(> 95%). Thus, a new thruster geometry had to be determined if the simulations were to have any meaning.

For the optimal wave parameters previously prescribed (ε = 10, κ = 0.16 and ν = 1.47), numerical
investigations of ion trajectories revealed that forward-drifting ions exhibited an upper bound in Y of ap-
proximately 50. Thus, we set L = 50 in the interests of increasing net ion flow while also decreasing the
percentage of ions that collide with the thruster walls.

Figure 17 illustrates some of the major results of the simulation. Figure 17(a) depicts the velocity
distribution of ions that breached the exit plane during the course of the BEW simulation. The distribution
peaks around 25. The average value of this distribution – which is equal to the normalized exhaust velocity
Uex – is approximately 21. For an ion temperature of approximately 0.1 eV, this yields an Isp value of
approximately 1500 s for argon. For a hydrogen thruster with the same Ti, the corresponding Isp value is
nearly 9500 s. These values clearly represent a vast improvement over the unperturbed configuration, and
puts the Beating Wave Thruster in the same Isp range as many existing Hall and ion thruster configurations.17

Numerical results also indicated that the fraction of ions that break the exit plane (denoted by ξex) is ap-
proximately 0.837. Note that ξex in the perturbed case is approximately equivalent to ξf in the unperturbed
case. Furthermore, the fraction of ions that escape to the walls of the thruster (ξesc) in the perturbed case
is approximately 0.163. This implies that the percentage of ions that remain trapped in Larmor or reverse-
drifting orbits during BEW propagation is < 0.1%. This represents an astronomical increase in efficiency
over the unperturbed case (where ξf = ξex ≈ 0.535, ξesc ≈ 0.349, and the remaining 11.6% of ions were
trapped in non-forward-drifting orbits). Thus, it is clear from these numerical results that BEW acceleration
appreciably increases – and enhances – the net flow of ions in the X direction along the magnetic null.

For the purpose of comparison, Figure 17 also depicts the results of a simulation featuring SEW propa-
gation for equal energy densities. An examination of the SEW exit velocity distribution featured in Figure
17(b) reveals a clear shift in both the peak and mean values of VX . While the distribution peaks around 19,
the average exhaust velocity Uex is approximately 18. Furthermore, there are noticeably fewer high-velocity
particles (VX & 30) in the SEW case as compared to the BEW case. Numerical results reveal that for SEW,
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(a) Normalized exit velocity distribution (BEW).
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(b) Normalized exit velocity distribution (SEW).

Figure 17. Normalized exit velocity distribution plots for (a) BEW and (b) SEW. For SEW, ε = 10
√

2, κ = 0.16
and ν = 1.47. For BEW, ε = 10, κ = 0.16 and ν1 = 1.47. In both cases, δ = 1/3.

ξex ≈ 0.850 and ξesc ≈ 0.150. These values are comparable to the corresponding BEW results. This makes
sense given that the theoretical benefit of BEW over SEW in the context of wall loss minimization is due
to the existence of a regular acceleration region. However, given the relative magnitudes of ρ and ρth, the
regular acceleration region is negligibly small in this case; thus, for the chosen wave parameters, BEW and
SEW propagation result in comparable levels of ion channeling.

From Uex, we can calculate theoretical specific impulse values for the single wave case. Using the same
plasma parameters that we used to calculate BEW Isp, the corresponding SEW Isp values for argon and
hydrogen fuel are 1275 s and 8000 s. These values represent a 15% decrease in Isp relative to BEW levels
for equal energy densities.

Thus, in the context of the chosen wave parameters, while BEW and SEW result in similar wall losses,
beating wave propagation results in a higher exhaust velocity (and thus, Isp). Since the stochastic threshold
ρth is so low relative to ρ (such that the regular acceleration is negligibly small), these results suggest that
BEW acceleration may feature a more effective stochastic acceleration process than SEW. This is yet another
topic of potential further theoretical investigation.

3. BWT Thrust Estimate

Recall the linear thrust density equation derived in Section II:

T

`
= 25/2

(
ξexLmaxU

2
ex

) n√m(kBTi)
3/2

qB0
(14)

where we have replaced ξf with ξex. Citing the figures reported in the previous section (Lmax = 50, Uex = 21,
and ξex = 0.837), we can use this expression to calculate theoretical thrust values for the Beating Wave
Thruster. If we again assume that n ≈ 1010 cm−3, Ti ≈ 0.1 eV, and B0 ≈ 500 Gauss, the approximate thrust
densities for argon and hydrogen are 0.07 N/m and 0.01 N/m, respectively (the corresponding SEW thrust
densities are nearly 30% smaller). Not only does this represent a significant improvement over unperturbed
thrust levels, but it also indicates that from the perspective of thrust generation, the Beating Wave Thruster
can compete with many existing (and currently operational) ion and Hall thruster configurations.17 Thus,
while these thrust values are approximate, they are encouraging nonetheless.

From Eq. 14, we can see how thrust density scales with various plasma parameters. For a given pair of
beating waves and a fixed (normalized) thruster geometry (i.e. fixed ξex, Lmax, and Uex), we see that there
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are several ways to increase the thrust density of the BWT. In choosing a propellant to maximize thrust,
high ion mass and low ion charge are desirable. However, we see from the definition of uex:

uex = Uex

√
2kBTi
m

(26)

that greater ion mass also results in reduced exhaust velocity (and thus, reduced Isp). Thus, in terms of fuel
selection, there is a clear tradeoff between thrust density and specific impulse.

Thrust density also increases with ion density n. However, as will be briefly discussed in Section V the
next section, there is an upper limit to the allowable ion density for a given ion temperature due to the
potentially negative effects of collisional processes on thruster performance.

4. Optimization Procedure

The L value that was used in this particular simulation was determined based on a combination of
intuition and small-scale investigation of ion trajectories. In this section, however, we consider a potential
procedure for optimizing the BWT geometry so as to maximize thruster performance.

First, it is clear that to minimize wall losses, it is desirable for L > |YUB |, where |YUB | is the approximate
upper Y bound of forward-drifting ion trajectories for a given set of wave parameters. Furthermore, given
that BEW acceleration (like its SEW counterpart) has an upper bound in ρ (ρUB), it is obvious that L cannot
be made arbitrarily large, otherwise particles near the walls would never be able to reach the magnetic null
(for a collisionless plasma). However, given that BEW stochastic acceleration also causes a net shift in the
guiding center towards the magnetic null, this implies that a particle with |YGC | > ρUB can still potentially
reach the null and be pushed into the forward-drifting region. We will refer to the maximum |YGC | value for
which this phenomenon occurs as |YGC,max|. From these observations, we conclude that while L > |YUB | will
help to significantly minimize walls losses, the optimal L value (in terms of the total number of ions that can
be pushed into forward-drifting orbits via BEW propagation) for the perturbed case lies somewhere in the
vicinity of |YGC,max| (which numerical results reveal tends to be much larger than |YUB |). However, in order
to determine the actual optimum geometry for a given pair of beating waves, we need explicit expressions
for both |YUB | and |YGC,max|, neither of which have been (accurately) theoretically defined. Thus, further
developments in this area would allow us to effectively optimize BWT geometry from the standpoint of both
mass flow (thrust generation) and wall loss minimization.

IV. Preliminary Proof-of-Concept Design

Preliminary simulation has clearly shown that the BWT has potential as an electric propulsion concept.
Thus, while developing BEW theory and simulation architecture is very important, so is the demonstration
of BWT performance in a laboratory setting. Thus, a proof-of-concept experiment is a critical next step in
the actual development of BWT technology. It is our intention to adapt BWXII for this very purpose.

One of the most important aspects of the proof-of-concept experiment is going to be the accurate re-
production of a steeply-sloped magnetic field within the vacuum chamber. In their original paper, Jorns
and Choueiri proposed a thruster design that featured the use of two parallel current sheets to produce the
desired magnetic field (see Figure 18(a)).1 However, this design is insufficient. While finite current sheets
would indeed produce a magnetic slope, the slope would be extremely shallow and occupy the vast majority
of the span between the two plates. This becomes apparent when one takes the limit of very large plates,
since the magnetic field between two infinite current sheets with parallel currents is identically zero. Thus,
since the BWT concept calls for a steep magnetic slope, the current sheet geometry is not applicable when
trying to reproduce the idealized field configuration used in our previous analysis.

One simple configuration that can effectively reproduce the necessary field configuration to a very good
approximation is featured in Figure 18. An antisymmetric arrangement of current loops (or Helmholtz coils)
is shown at the x = 0 cross-section of the y-z plane. Axial vectors of each current loop point in the z-
direction. Loops in quadrants I and IV have current flowing in one direction; loops in quadrants II and III
have current flowing in the opposite direction. This produces a magnetic field with two near-homogeneous
regions of opposite polarity, and a magnetic null (coupled with a sharp magnetic slope) at their interface.
Linear ion current flows out of the page in the positive x-direction.
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Figure 18. (a) Originally proposed configuration featuring the use of two current sheets to produce a sloped
magnetic field (taken from Ref.1). However, this design does not result in a steep magnetic slope. (b) Magnetic
field vector and density plot for an antisymmetric configuration of current loops. By inspection, we see that
for a given z-value between -1 and 1, the field is approximately homogeneous for 1 < |y| < 9, features a magnetic
null at y = 0, and is steeply-sloped in the interval |y| < 1. The positive x-axis (and thus, the direction of the
net ion current) points out of the page.

A sampling of field magnitudes along z = 0 was taken to deduce field dependence on y. Parameters
were scaled appropriately in an attempt to match the theoretical field described by (1). Figure 19 features a
plot of the numerical data deduced from the above sampling, as well as the hyperbolic tangent field profile
described by (1) for B0 = δ = 1. Aside from minor field oscillations and fringe effects at large y, the current
loop field matches the theoretical field very well, suggesting that this simple current loop configuration could
be an effective way of producing the desired field in a laboratory setting. Furthermore, while permanent
magnets could be used to produce a similar magnetic field topography, the use of current loops allows for
B-field tuning (and thus the adjustment of grad-B in the sloped region) since B ∝ I. Once BWT thrust
and Isp levels have been successfully measured in the laboratory, they can be used to cross-check the theory
developed both in this thesis and in the seminal paper of Jorns and Choueiri,1 and ultimately, to spur the
development of an actual thruster design.

V. Discussion

We have effectively demonstrated via numerical simulation and subsequent calculations that BEW prop-
agation increases both the velocity and density of the linear ion current that forms along the null of a
steeply-sloped rectilinear magnetic field for a thermalized ion ensemble. We have also demonstrated that the
“ion channeling” characteristic of BEW acceleration helps to mitigate wall losses that plague other electric
thrusters. Theoretical specific impulse and thrust density values indicate that BEW direct ion acceleration
can be an effective propulsion mechanism, and therefore, that the BWT has potential as a future electric
propulsion device.

However, in spite of these promising results, our analysis featured a number of simplifying assumptions.
Several factors were neglected that could impact BWT performance. We discuss the relative impacts of
those factors here.

22 of 25
The 32nd International Electric Propulsion Conference, Wiesbaden, Germany

September 11–15, 2011



-10 -5 0 5 10

-1

0

1

y
B

Hy
L

Figure 19. Magnetic field for the above current loop configuration along z = 0 (red curve). The blue curve is
a theoretical field (1) with B0 = δ = 1.

1. Collisions

In the context of BEW acceleration, an important quantity to consider when evaluating the effects of
collisions on ensemble behavior is the Hall parameter, which is defined as the ratio of the gyrofrequency to
the collision frequency:17

Ωi =
ωci

νc
(27)

Since the BWT concept exploits the Larmor motion of particles to produce a linear ion current, we conclude
that if Ωi < 1, in all likelihood, the effectiveness of the BWT will decrease dramatically. For ion-ion collisions,

the collision frequency νi goes as niT
−3/2
i (where ni is the ion density).18 Thus, for a given plasma (i.e.

fixed ion charge and mass), we can increase the Hall parameter by increasing the magnitude of the magnetic
field, decreasing the ion density, and/or increasing the ion temperature.

2. Multiple Species

In the above analysis, the coupling of energy from the wave to the electrons can largely be ignored since
the wave frequency is too long to induce stochastic effects in electron orbits. However, since the ions will
be subject to significant drifts due to the BEW, ambipolar effects will undoubtedly play a role in thruster
performance.

Jorns and Choueiri theorized that the ejection of ions from the end of the thruster geometry would create
an ambipolar electric field of sufficient strength to drag the electron population with it, thereby ensuring the
quasi-neutrality of the exhaust.1 However, the induced electric field may adversely effect the performance
of the BEW acceleration mechanism. This in turn could have a negative impact on both BWT thrust and
specific impulse values.

It is difficult to examine these effects with our simplified numerical scheme; however, Particle-in-Cell
(PIC) codes (which are generally much more complex than the Monte Carlo methods featured in this paper)
may be employed to accurately capture two-species ensemble behavior.19

3. Self-Consistency

As aforementioned, we have assumed that the exciting waves are unaltered by ion dynamics. In reality,
however, BEW propagate via perturbations in the electron and ion populations within a plasma. In our
analysis, we limited the amplitude of the exciting waves (ε < 10) to minimize the error associated with
the absence of self-consistency. However, these self-consistent effects can be introduced and characterized
via the aforementioned PIC codes. These complex models would allow us to increase ε while mitigating
error, and since increasing the wave amplitude decreases the time scale on which BEW acceleration occurs,
it is likely that these self-consistent simulations will result in even higher BWT thrust density and specific
impulse figures. To conduct such a numerical investigation on a large scale, however, would likely require a
very complex base code, coupled with significant computational power.
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VI. Conclusions

The goal of this investigation was to demonstrate the feasibility and validity of a new plasma propulsion
concept that uses beating electrostatic waves to augment the linear ion current generated by a thermalized
ion ensemble in a rectilinear magnetic slope geometry.

After describing thruster fundamentals – magnetic topography, single-ion dynamics, orbit domains – we
extended our analysis to a thermalized ion ensemble via numerical simulation. An optimal unperturbed
thruster configuration was numerically deduced, and simulation results unambiguously demonstrated that a
rectilinear, steeply-sloped magnetic field does indeed produce a net linear ion current that flows along the
magnetic null. Benchmark specific impulse and thrust density values were determined, and unperturbed
thruster performance was shown to be very poor.

After the introduction of the perturbed case, an investigation of ion dynamics for ε 6= 0 was conducted
that expanded on the previous work of Jorns and Choueiri.1 It was shown that stochastic acceleration
was required in order for trapped ions to be pushed into forward-drifting orbits, and that already-forward-
drifting ions were often decelerated if ρ0 < ρth. The “ion channeling” phenomenon was demonstrated
numerically, in which stochastic ions are preferentially transported away from the thruster walls and towards
the magnetic null. It was ultimately deduced that to a large degree, the magnitude of ρth essentially dictates
thruster performance. The EIC dispersion relation was then introduced and wave amplitudes were limited to
preclude self-consistent effects. Numerical simulations featuring both single and beating electrostatic wave
propagation using optimal wave parameters were conducted to deduce resulting thruster characteristics. It
was ultimately demonstrated that (for the given wave parameters) while SEW and BEW performed similarly
in terms of wall loss minimization, BEW was superior in both thrust generation and specific impulse. The
BWT was thus shown to possess specific impulse and thrust levels comparable to existing ion and Hall
thruster configurations (for argon, Isp ≈ 1500 s and T / ` ≈ 0.07 N/m). Nearly 85% of ions were shown to
contribute to the BWT exhaust plume, while only 15% of the initial ion population was shown to escape to
the thruster walls.

Based on these preliminary results, it is reasonable to assert that the BWT concept has the potential
to form the basis of a new class of electrodeless, efficient, and variable electric thruster that rivals – and
could potentially surpass – the performance of operational ion and Hall thrusters. As such, the further
investigation and optimization of this novel ion acceleration mechanism is strongly encouraged.
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