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The design and implementation of an experiment dedicated to testing the wave frequency
and amplitude dependence of the heating of a magnetized plasma with beating electrostatic
waves is discussed. This non-resonant heating process has the potential to be more efficient
than current radio frequency plasma heating methods and thus is particularly promising for
electrothermal plasma propulsion. Recent theoretical work on beating electrostatic wave
heating is reviewed with an emphasis on the existence of an optimal frequency for maximum
heating as well as a scaling relation for the magnitude of heating. While the possibility of
optimizing the process thus is demonstrated theoretically, systematic experimental verifi-
cation remains to be conducted. The implementation of a cylindrical, magnetized plasma
generated with an inductive source is discussed as a testbed for the predicted theoretical
trends. The diagnostics for observing the amplitude and frequency dependence are also
presented as well as a derivation of the experimental parameters necessary for the tests to
accurately investigate the theoretical predictions.

I. Introduction

The Radio Frequency (RF) heating of plasma is an essential process in a number of industrial and
scientific processes and in recent years has seen an increasing use in electrothermal plasma propulsion. RF
heating in this application is particularly attractive as it is electrodeless (and thus extends thruster lifetime)
and potentially very efficient.1 Typical RF heating schemes rely on resonances between the exciting waves
and particle dynamics. In Ion Cyclotron Resonance Heating (ICRH), for example, a small fraction of the
magnetized ions that are resonant with the exciting waves are subject to energy exchange with the wave.
The remainder of the ion population is subsequently energized through the secondary effect of collisional
processes. By contrast, in a non-resonant heating process, the entire initial distribution of ions interacts
with the waves, and as a consequence, this process is thought to be theoretically more efficient than resonant
RF heating.2 It is thus with considerable interest that researchers have investigated non-resonant forms of
ion acceleration. Most notably, Benisti et.al demonstrated theoretically that non-resonant acceleration can
be achieved through the non-linear interaction of magnetized ions with two electrostatic waves propagating
perpendicularly to the magnetic field and subject to the beat criterion, ω1 − ω2 = nωc where ω1 and ω2 are
the frequencies of the exciting waves, ωc is the cyclotron frequency of the ions, and n is a positive integer.3

While the process Benisti et al. reported was non-resonant in that ions with arbitrarily low initial energy
were accelerated in the presence of Beating Electrostatic Waves (BEW), it was apparent that the effect
did not accelerate ions for all possible initial conditions. Choueiri and Spektor subsequently examined the
case of n = 1 and showed that there are necessary and sufficient conditions on the initial Hamiltonians of
the ions (in addition to the beat criterion) in order for acceleration to occur.4 They further demonstrated
through numerical simulations that even when taking the constraints for acceleration into account, a physical,
collisionless plasma should experience a net increase in energy. We have recently expanded on this work by
analytically showing that BEW heating does produce an increase in average ion speed in an ensemble and
moreover that the increase depends directly on the amplitude and the frequency of excitation of the waves.5
In particular, we have demonstrated that for a given initial temperature of the plasma, there is an optimal
frequency that produces the largest increase in average ion speed in the ensemble. We further have derived
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a scaling relation for how the magnitude of heating depends on wave amplitude. The characterization of
these trends is a particularly important development for electrothermal plasma propulsion as they represent
an initial step toward optimizing the BEW heating process.

While Spektor and Choueiri6 have successfully demonstrated experimentally that BEW heating does in
fact produce an increase in ion temperature, due to difficulties in wave launching and the limited diagnostics
of their experiment, they were unable to explore the frequency and amplitude dependence of the magnitude
of heating. The need is apparent then for an experimental testbed with which we can determine if an
optimal frequency does in fact exist and how the wave amplitude influences heating. With this end in mind,
it is the goal of this paper to outline the design and implementation of an experiment that unambiguously
characterizes the frequency and amplitude dependence of BEW heating. In Section II, we provide a review
of BEW single ion acceleration as well as the derivation of the frequency and amplitude dependence of BEW
plasma heating. In Section III, we outline the primary and secondary objectives of our experiment. In
Section IV, we describe the experimental apparatus. And finally, in Section V, we discuss the direction of
future investigations.

II. Review of Theoretical Findings

A. Single Particle Dynamics

The theoretical understanding of plasma heating with BEW evolved from an examination of the acceleration
of an individual ion by multiple electrostatic waves. The geometry of the ion motion is depicted in Figure 1
where we take the magnetic field to be constant in the ẑ direction and the electrostatic waves to propagate in
the x̂ direction. In the unperturbed case (no incident electrostatic waves), the ion has tangential velocity v⊥

Figure 1. A single ion of charge q and mass m in a constant homogeneous magnetic field Bẑ interacts with an
electrostatic wave. The wavenumber and electric field of the wave are parallel to the x axis.

and undergoes simple Larmor precession at the cyclotron frequency ωc with Larmor radius given by rL. In
the presence of two electrostatic waves propagating perpendicularly to the magnetic field, the ion dynamics
become significantly more complicated. In particular, the equation of motion in the Cartesian formulation
is given by

ẍ + ω2
cx =

∑

i=1,2

Ei sin(kix ωit), (1)

where Ei and ki are the amplitude and wave number respectively of the ith wave. Since this non-linear differ-
ential equation is intractable, we must resort to numerical and perturbation methods in order to understand
its behavior. To this end, the equation is more readily analyzed in a normalized, action-angle formulation
where the Hamiltonian for the equations of motion is given by3,4

H = I +
∑

i=1,2

εi cos( 2I sinκθ νiτ + ϕi), (2)
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where H is the Hamiltonian of the system, νi = ωi/ωc, τ = ωct, εi = (kqEi)/(mω2
c ), k = k1, κ = ki/k

and 2I = ρ = rL/k. Here q and m are the charge and mass of the ion respectively, ρ is the normalized
Larmor radius, ϕi is the phase of each wave relative to the cyclotron motion, and θ is the cyclotron rotation
angle measured from the ŷ direction. With this formulation, Benisti and Ram3,7 were able to show that
the maximum acceleration for any ion occurs when the waves have equal amplitude, ε1 = ε2 = ε, and equal
wavenumber, k1 = k2 = k. We thus restrict our analysis to these conditions, and for simplicity we follow
the precedent set by Choueiri and Spektor4 in considering the case of n = 1 such that ν = ν1 = ν2 1 and
where the waves are in phase such that ϕ1 = ϕ2 = 0. The Hamiltonian governing the equation of motion
then is given in a simplified form by

H = I + ε
(
cos( 2I sin θ ντ) + cos( 2I sin θ (ν + 1)τ)

)
. (3)

B. Plasma Heating with BEW

The derivation of Eq. 3 is strictly for the case of single-particle motion. In order to characterize ion dynamics
in an actual plasma, an ensemble of ions must be considered, and additional terms representing collective
effects and collisionality must be included. However, as has been reported in Ref. 5, these additional terms
can be ignored, and Eq. 3 can accurately be used to describe motion in a plasma if three criteria are
satisfied. First, the heating time scale th is shorter than the time between de-phasing collisions ti such
that th << ti. De-phasing collisions consist of any ion-particle interactions that result in a change in phase
angle. As demonstrated by Spektor and Choueiri,2 these are the types of collisions that render additional
terms in Eq. 3 necessary while by contrast non-dephasing collisions allow the ions to continue on as if the
equations of motion have been unchanged. Second, the exciting waves are assumed to be independent of the
ion dynamics. Third, we explore only the non-resonant case for each wave such that ω1, ω2 = mωc where m
is a positive integer. Assuming these three criteria are satisfied, we are free to use Eq. 3 in a discussion of
the macroscopic variables of an ion ensemble. Specifically, as outlined in Ref. 5, it is desirable to know how
the average speed of the ions in the plasma will evolve in the presence of BEW as this gives an indication of
the magnitude of heating. Since ρ = 2I scales directly with the ion speed, this variable is the focus of our
investigation.

If the equations of motion described by Eq. 3 are tractable, then for a given initial action I0 and Larmor
angle θ0, we can find the value of the action I at some subsequent time τ : I(τ) = I(θ0, I0, τ). Furthermore, if
we know the initial distribution function of the ions, f(θ0, I0), we can find the average value of any function
of I(τ) at time τ . In particular, for ρ = 2I

ρ(τ) =
∫ ∞

0

∫ 2π

0

√
2I0f(θ0, I0)dθ0dI0, (4)

where the integrals are performed over all possible values of initial Larmor angle and action. We further
posit that the plasma is initially in thermal equilibrium such that the the distribution of ions in phase space
is Maxwellian. We also assume that before heating, the collisionality is sufficiently high that the initial
Larmor angles are randomized. In action-angle coordinates then, the initial distribution function is strictly
a function of the action I0 and is given by

f(I0) =
4
π

β3/2
√

2I0e
−β2I0 , (5)

where kB is the Boltzmann constant, T is the temperature of the ion distribution in Kelvin, and β =(
m

2πkBT

) (
ωc
k

)2. β is a direct measure of the spread in the Maxwellian distribution, and physically, β

scales with the square of the ratio of the thermal Larmor radius of ions in the plasma (rL(th) = vth/ωc =
8kBT/πmωc where vth is the thermal velocity of ions) to the wavelength of the exciting waves (λ = 2π/k)
such that β = (λ/rL(th)π

2)2. For optimal coupling, λ/rL is on the order of unity. Therefore, typical values
of β will range from 10−2 10−1.

With f(I0) strictly a function of the action, substitution into Eq. 4 yields

ρ(τ) =
∫ ∞

0

〈√
2I(I0, θ0, τ)

〉

θ0

f(I0)dI0, (6)
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where we have integrated over the initial action and denoted for subsequent convenience the average over
initial phase angle as .. θ0 . Eq. 6 is easily evaluated if an analytical solution exists for Eq. 3. However, this
Hamiltonian is non-linear, and there is no closed form solution for

√
2I(I0, θ0, τ). It is therefore necessary

to employ a perturbation method. Specifically, for Hamiltonians of the form of Eq. 3, there exists a
second-order, phase-averaged, Lie Transform method for finding an approximation for phase angle-averaged
quantities.8,9 Using this method as we did in Ref. 5, we can evaluate Eq. 6 in the the small ε < 1 limit to
second-order:

ρ(τ)2 =
∑

i=1,2;j=1,2

ε2
∞∑

−∞

∫ ∞

0

∂

∂I0

[
m2Jm( 2I0)2

2I0

]
f(I0)dI0 (7)

1
2(νi m)(νj m)

[cos([νi νj ] τ) + cos([m νi] τ) + cos([m νjτ ]) +1] +
2
πβ

,

where the summation is over integer values of m, and Jm is the Bessel function of the first kind. The
above expression represents the time evolution of the average ion speed, and it is immediately noted that it
exhibits periodicity in time. This implies that after averaging over several multiples of the longest period
term, the average normalized ion speed will equilibrate. Following our work from Ref. 5 in which the small
β assumption is employed and only resonant terms retained, we average the expression and find a simplified
result for the equilibrated value of the average ion speed in the plasma when subject to BEW:

ρ2 eq =
2
πβ

+
(ε

δ

)2 4
π

β3/2

(
(ν δ)2

√
β

π
e−β(ν−δ)2 +

ν δ

2

[
Erf([ν δ]

√
β) 1

])
, (8)

where Erf(z) = 2√
π

∫ z
0 e−x2

dx is the error function and δ = min ν m .
This result provides a concise depiction of how the equilibrated average ion speed in an initially Maxwellian

plasma depends on the amplitude of the waves ε, the spread in the Maxwellian β, and the frequency of ex-
citation ν. A sample depiction of Eq. 8 for fixed values of β and ε and varying normalized frequency ν is
shown in Figure 2. It is immediately apparent that not only does the average speed of the ions experience an
increase, there is an optimal frequency at which the maximum increase in ion average ion speed occurs. This
is a particularly exciting observation as it implies it may be possible to optimize the beating wave heating
process. Furthermore, the magnitude of the heating is seen to scale with the amplitude of the exciting
waves–offering another method by which the BEW mechanism may be controlled. We can find expressions
for how this scaling relation as well as the optimal frequency depend on the experiment and wave parameters.

Ν"

0 5 10 15 20
0

2.5

5.

7.5

10.

NORMALIZED FREQUENCY !Ν"

!Ρ 2" e
q

Figure 2. Second order prediction for the frequency dependence of the equilibrated value of average ion speed.
β = .05 and ε = 1.

1. Optimal frequency for plasma heating

The value of the optimal frequency depicted in Figure 2 is denoted ν∗ and occurs where the the average ion
speed has the largest equilibrated value. We have found this maximum persists for a wide range of β and
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ε, and we have provided a physical justification for its existence in Ref. 5. We also have noted that in the
small β limit, the value for the optimal frequency is given by

ν∗ =
√

3
2β

+ δ. (9)

We checked the validity of this expression numerically in Ref. 5 and found it to be accurate for the β < 0.1
and ε < 1 limits.

2. Magnitude of plasma heating

For the small ε limit, we find at a fixed frequency ν and initial spread in Maxwellian β that the magnitude
of the increase in normalized ion speed scales as

∆ρ eq

( ε

δ

)2
. (10)

And so, it can be seen that the magnitude of heating is a function of wave amplitude and frequency, which
implies there is a way for manipulating the level of heating. It should be noted, however, that as these
derivations were made for the small ε and β limits, non-linear effects may change this scaling relation for
large wave amplitudes and low temperature plasmas

In sum, we have identified physical trends based on the analytical formulation presented in Eq. 8 that
represent a promising possibility for controlling and ultimately optimizing the heating process. Before this
optimization task can be undertaken, however, there is a need for experimental verification. And as the
scope of the theory is limited by the assumptions outlined in the above section, the experiment must explore
the predicted trends not just in the parameter space described above but outside it as well.

III. Testing Methodology, the Goal and the Approach

While experimental results have already confirmed that BEW can heat a plasma,4 we, with the goal
in mind of optimizing the BEW heating process, seek to use the theoretical predictions from the previous
section as a guideline for exploring the heating as a function of the defined non-dimensionalized parameters.
Specifically, there are two experimental aims:

1. Investigate the parameter space outlined in the assumptions of Sec. II in an effort to verify the existence
of an optimal frequency for heating and how the magnitude of heating scales with frequency and wave
amplitude.

2. Characterize the physical process by which the beating wave heating mechanism produces plasma
heating and use this understanding to optimize it.

For the first aim, in order to test the theoretical predictions outlined above, it is necessary to operate
in the appropriate parameter space. Specifically, the experimental parameters must satisfy the assumptions
about time scales and field amplitudes described in Sec. II. With respect to time scales, it has already
been established that the plasma must be collisionless for the ions, ωc >> νi where νi is the ion de-phasing
collision frequency. Also, the heating time scale must be smaller than the collision time, th << 1/νi . In
order to simplify this expression, we see from Eq. 7 that the lowest frequency term is δωc. Since δ is on
the order of 0.1, we find that the equilibrated ion speed will only be achieved after averaging Eq. 7 over
a sufficiently long time interval such that th >> 10/ωc. By absorbing the factor of 10, we find that the
heating restriction on time reduces approximately to the collisionless plasma condition. This condition can
be achieved provided the correct ambient magnetic field and plasma density are selected.

The assumptions about electric and magnetic field magnitude correspond to the requirements that ε < 1
and β < 0.1. In order to find the appropriate parameter space for an experiment that will satisfy these
criteria, we express them in terms of physical variables such that

E <
ωcB

k
kBT >

5mω2
c

πk2
. (11)

We thus find restrictions on the initial temperature of the plasma, wave amplitude, and wavelength of exciting
waves–all experimentally observed or controlled variables.

Once the criteria above are satisfied, the assertions from Sec. II are checked with three experiments:
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1. Two beating electrostatic waves with frequencies differing by one cyclotron harmonic (n = 1) are intro-
duced to the plasma, and a time-resolved measurement of the perpendicular ion velocity distribution
function is performed with a Laser Induced Fluorescence (LIF) system. The evolution of the average
perpendicular ion velocity is calculated from the changing distribution function and the increase over
background inferred. The frequency of excitation is then increased by integer values so as to maintain
the value of δ, and the procedure repeated. In this way, the frequency dependence of excitation is
monitored.

2. The same procedure is followed as in 1; however, the value of δ is varied.

3. The frequency of excitation is fixed, and the wave amplitude is varied while the increase in average
ion velocity is measured. The amplitude of waves in the plasma is remotely measured with the LIF
system. This experiment establishes the dependence of the level of heating on wave amplitude.

The listed set of experiments from above will accomplish the primary goal of the investigation. For the
second goal outlined above, a separate set of experiments seeks to fully characterize the heating mecha-
nism. To this end, a spatially resolved LIF system is employed to measure the propagation of waves in the
plasma and the average ion velocity throughout the test region. This provides insight into the wave-particle
interaction intrinsic to BEW heating and provides a measure of the spatial extent of the effect.

IV. Experiment

A. Vacuum Chamber

A rendering of the experimental apparatus is shown in Figure 3. A single Pyrex cylinder 52” in length with
a 6” inner diameter is placed concentrically in a 50” long, 10 ring solenoid. A small window placed at the
end of the chamber provides longitudinal optical access while argon gas flows into the chamber through a
feed in the cross at the opposite end of the chamber. A constant pressure of 0.1 to 30 mTorr is maintained
by a 140 l/s turbo pump with a conductance controller as well as a roughing pump. Once the plasma is
created, it propagates along the magnetic field lines into the experimental region. The solenoid is capable of
producing a uniform 0.1 Tesla magnetic field along the central axis.

B. Plasma source

A Boswell type saddled antenna is placed around the vacuum chamber at one end of the solenoid. The
antenna is actively water cooled and produces an inductive discharge by means of an ENI 13.56 MHz 1.28K
power supply. The source is impedance matched to the plasma with an L network consisting of two Jennings
1000 pF 3kV variable vacuum capacitors. The antenna is positioned 18” away from the test region in order
to minimize interference from the plasma source during ion heating measurements.

In order to minimize the ion-ion collisionality by reducing the plasma density, the antenna is operated at
low power. While operating at low power also has the undesired effect of lowering the ionization fraction and
therefore increasing the ion-neutral collision frequency, we have found that the ion-ion collision frequency is
typically the larger contributor to the total de-phasing collision frequency. There is thus more gained from
its reduction at low power. The dominance of ion-ion collisions can be seen in Figure 4 where we have shown
the characteristic frequencies for a plasma in a 0.1 T magnetic field with the following parameters found in a
typical 150-300 W inductive discharge: ne 109 1010 cm −3, Te = 3eV, Ti = 0.1eV, and for low pressures,
< 3 mT, the ionization fraction α is 10−4 10−3.

C. Heating Antenna

A rendering of the the heating antenna is depicted in Figure 5. The antenna is a transverse Helmholtz
configuration modeled after the geometry employed by Kline for single electrostatic wave heating.10 It is a
5” 9” rectangle and consists of 1/2” wide copper strip with 20 loops. The coils are operated in phase and
powered with an ENI 100 W amplifier. The frequency of the amplifier is variable from 2 kHz to 2 MHz,
which corresponds approximately to the range in normalized frequency of ν = 0.25 50.

The antenna is mounted on an 18” carriage that can be rotated 180◦ and translated along the axis of
the plasma. This is essential for spatially resolved ion temperature and wave measurements in the plasma.
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Figure 3. Rendering of the experimental apparatus.

Figure 4. Typical frequencies for experimental plasma
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Figure 5. Computer rendering of the Helmholtz transverse antenna and its carriage.

Indeed, the LIF diagnostic necessary for these measurements is immobile and can only take perpendicular ion
temperature and wave measurements at a fixed position in the axial direction and only along one diameter
of the plasma (Figure 6). However, since the cylindrical plasma is assumed to be axisymmetric, by rotating
the antenna around the center of the plasma, we effectively change the field of view of the LIF diagnostic.
By that same token, the antenna can be translated so as to give a spatial measure of heating in the axial
direction as well. The carriage is mounted flush to the vacuum chamber wall in order to provide optimal
coupling between the antenna and plasma.

[a] [b]

Figure 6. An axial cross-section of the experimental setup is shown. The light colored area represents the
region optically accessible to the LIF system. The arrows indicate the direction of the launched waves. The
rotation from the Figure a to Figure b. indicates how the mobile antenna can exploit the axisymmetry of the
plasma to expand the optically accessible region of the LIF system.

The varying magnetic flux produced by the antenna generates electric fields in the plasma that in turn
excite plasma waves. As has been observed in Ref. 10, the primary mode in the cyclotron frequency range
excited by this technique is the forward branch of the Electrostatic Ion Cyclotron Wave (ESICW) with
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dispersion relation given by11

ω2 = ω2
c + k2 kBTe

m
(12)

where Te is the electron temperature. It is noted that the ESICW is near-acoustic in nature and depends
on the electron temperature. Also, there is minimal resonant damping that occurs. This feature makes the
mode an ideal candidate for BEW heating investigations as it minimizes other heating effects that may be
due to resonant absorption in the plasma.

D. Diagnostics

There are three major diagnostics in this experimental apparatus. First, an RF compensated Langmuir
probe is employed for steady-state electron temperature and plasma potential measurements. Second, a
low frequency directional coupler is placed in series with the ENI amplifier to give an indication of forward
and reflected power from the heating antenna. Since the matching of the heating antenna to the plasma
varies with frequency of excitation and plasma parameters, the directional coupler is a critical diagnostic
for ensuring that comparable power levels are delivered to the plasma as the variables of the experiment are
changed.

Finally, the primary diagnostic in this setup is the LIF system shown in Figure 7. The system has five
components: a tunable diode laser centered at 668.6130 nm, a wavemeter, a signal chopper, a Stanford
Lock-In Amplifier, and a collection optics lens stationed orthogonal to the incident laser beam. The central

Figure 7. Schematic of the Laser Induced Fluorescence system. The dotted line indicates the laser beam
path. There are two possible paths, parallel and perpendicular to the field lines for temperature and wave
measurements in each direction. The system can only perform measurements in one direction at a time.

wavelength of the laser is tuned to the 3d4F7/2 − 4p4D0
5/2 transition of the metastable state of ArII which

decays to the 4s4P3/2 state producing 442.72 nm light. The wavelength of the beam is swept by 0.2 nm in
the red and blue directions around the central wavelength, and the subsequent intensity profile of fluoresced
light I(ν) is recorded. Due to the Doppler shift, the velocity distribution function f(v) in the direction of
the beam, denoted x′, can be shown to be proportional to the intensity of the fluoresced signal I such that

f(vx′) I
(
νl0

(
1− vx′

c

))
, (13)

where νl0 is the central frequency of the laser and c is the speed of light. This normalized distribution of
velocity vx′ is for one direction in the plane of Larmor precession and can through the appropriate integration
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of the intensity signal yield v2
x′ :

v2
x′ =

∫∞
−∞ v2

x′I
(
νl0

(
1 vx′

c

))
dvx′

∫∞
−∞ I

(
νl0

(
1 vx′

c

))
dvx′

. (14)

However, we need to know how the average perpendicular velocity varies v⊥ =
√

v2
x′ + v2

y′ where y′ is
the direction orthogonal to x′ and in the plane normal to ẑ. If the assumption holds true that before the
introduction of waves, the Larmor angles of precession are isotropic in phase, the LIF measurements in the
x′ direction can be assumed to be equivalent to measurements in the y′ direction. Exploiting this fact, the
perpendicular velocity evolution is found with the calculation

v⊥ =

∫∞
−∞

∫∞
−∞

√
v2

x′ + v2
y′I

(
νl0

(
1 vx′

c

))
I

(
νl0

(
1 vy′

c

))
dvx′dvy′

∫∞
−∞

∫∞
−∞ I

(
νl0

(
1 vx′

c

))
I

(
νl0

(
1 vy′

c

))
dvx′dvy′

. (15)

In order to temporally resolve the evolution of the perpendicular ion speed distribution, the tunable laser
is set at a fixed frequency while the heating antenna is triggered by a 100 ms pulse. The fluoresced signal
after a fixed time delay is integrated over a 1 ms time interval. The process is repeated at a frequency of 1Hz
and fed through a lock-in amplifier in order to eliminate ambient noise. Once this measurement is taken, the
time delay between the start of the pulse and measurement is increased. After the duration of the pulse has
been resolved for the given laser frequency, the frequency is incrementally changed and the process repeated.
In this way, the intensity profile I(ν) can be constructed at each time step. Due to the limited temporal
resolution of this method (1 ms), the de-phasing collision frequency must be sufficiently slow in order to
yield the evolution of the velocity distribution in the absence collisions. As can be seen from Figure 4, such
a collisionless environment (νii < 103, νin < 102 where νii and νin are the ion-ion and ion-neutral collision
frequencies respectively) can be achieved at low densities, ne < 109.

In addition to velocity distribution measurement, the wave properties including amplitude and disper-
sion relation are measured by triggering the lock-in amplifier to the frequency of the exciting waves. The
methodology for this is discussed at greater length in Ref. 10. Furthermore, as described in Sec. C , we can
find a spatial image of the propagation of waves in the plasma as well as a three dimensional image of ion
temperature by rotating and translating the antenna.

E. Parameters of operation

The test of theoretical trends must, as discussed above, occur in the appropriate parameter space. The
collision frequency for de-phasing collisions is given approximately by νi = νii +νin where we have neglected
electron-ion collision frequencies since they produce minimal momentum change for the ions. By comparing
νi to the cyclotron frequency ωc, we can see from from Figure 4 that the collisionless criteria for our plasma
is satisfied.

As for appropriate electric field, we can substitute in the dispersion relation from Eq. 12 into the criteria
outlined in Eq. 11 to find

E <

√
B2kBTe

mq2(ν2 1)
ν2 1 >

5Te

πTi
. (16)

Using the representative plasma parameters depicted in Figure 4, we find the following physical constraints

E <
25000
ν2 1

V

m
ν > 7. (17)

For a 0.1 Tesla magnetic field, our ENI amplifier is capable of producing 0.25 < ν < 50, so the second
condition is easily satisfied. However, the amplitude of the waves must be carefully controlled in order to
operate in the correct parameter space.
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V. Conclusions

We have presented the design and implementation of an experiment dedicated to investigating the optimal
frequency and scaling relations predicted for BEW plasma heating. This experiment employs an RF plasma
source that generates a low density plasma in which beating electrostatic waves are launched by means of
a transverse Helmholtz antenna. We described the theoretical basis for the predicted optimal frequency
and scaling relations for heating as well as the methodology for testing these trends. We also provided a
description of the diagnostics and analysis techniques and estimated the appropriate frequency and electric
field ranges to test the parameter space described in the theoretical derivations. We finally discussed a
secondary set of experiments for measuring the spatial extend of the heating and wave-particle interaction.
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