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A new concept for plasma propulsion that relies on using beating electrostatic wave
(BEW) direct ion acceleration to augment the linear ion current produced in a plasma by
a rectilinear, magnetic slope con�guration is presented and analyzed. The types of particle
trajectories possible in a magnetic slope con�guration are identi�ed and shown to produce
a net 
ow in a thermalized ion ensemble. The ability of BEW to augment this 
ow in the
magnetic null direction by direct acceleration, as opposed to ion heating, is subsequently
demonstrated and a thruster concept that relies on this process is described. It is expected
that the direct ion acceleration would yield a propulsive performance that is superior to
that obtained by concepts that rely on plasma heating, which su�er from relatively high
wall losses.

Nomenclature

rL Larmor radius
v? Perpendicular velocity of ions
� Normalized Larmor radius
!c Ion cyclotron frequency
!i Wave frequency of ith wave
� Time normalized by ion cyclotron frequency
� Normalized wave frequency
L Length scale of acceleration region
� Half-width of magnetic slope
x; yGC Coordinates of guiding center
B Magnetic �eld
� Larmor angle
px;y Canonical momenta
Ax Magnetic potential
h Full Hamiltonian
H Unperturbed Hamiltonian
k Wavenumber
E Electric �eld amplitude
�c Ion collision frequency

I. Introduction

In the late 1970s, a series of atmospheric sounding rockets revealed a naturally occurring ion acceleration
mechanism at an altitude of 1000 km in the topside ionosphere.1,2 Magnetized ions were observed to
experience prodigious increases in energy through nonlinear interactions with waves in regions of electrostatic
turbulence. Uncharacteristically for wave-particle interactions, however, ions with initial velocity well below
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the phase velocity of the exciting waves were observed to be accelerated. In 1998, Ram et al proposed an
interaction with a spectrum of multiple electrostatic waves propagating perpendicularly to the magnetic �eld
could be responsible for this non-resonant acceleration.3 In this same same year, Benisti et al showed the
necessary condition for this acceleration to occur is that at least two of the waves di�er in frequency by an
integer multiple of the cyclotron frequency:4,5

!2 � !1 = n!c (1)

where !1 and !2 are the angular frequencies of the exciting waves, !c is the ion cyclotron frequency, and
n is an integer. Spektor and Choueiri in a subsequent analytical investigation showed that this criteria for
acceleration is necessary but not su�cient.6 Rather, the beating condition must be satis�ed while the ion’s
initial Hamiltonian must fall within a certain range in order to insure acceleration. While this limited the
scope of BEW acceleration, the mechanism still retained the property of accelerating low energy ions. This
is in stark contrast to single electrostatic wave (SEW) heating described in detail by Karney as well as other
resonant processes, and it is for this reason that there has been signi�cant interest in the BEW mechanism.7

In particular, most applications of the BEW mechanism to date have focussed on plasma heating with BEW
electrostatic waves as its ability to accelerate low energy ions makes it an e�cient alternative to resonant
processes.8{11 In this respect, BEW plasma heating has a possible application in electric propulsion as a
heating stage for an electrothermal or magnetic nozzle concept.

While on-going work investigates this possibility in both optimizing and fully characterizing the BEW
process, the unique e�ect the BEW mechanism has on individual particle dynamics can be adapted to
produce direct linear acceleration. The concept, of course, of producing linear particle acceleration through
a plasma wave interaction is not new. RF current drive, for example, can generate prodigious current
through an RF interaction (see Ref. 12 for a comprehensive review of the subject) . However, while these
mechanism rely on a resonant interaction of particles with the wave velocity and subsequent di�usion of
energy in velocity phase space through collisional processes, the ability of BEW acceleration to coherently
accelerate ions with arbitrarily low initial energy opens new possibilities for directed acceleration. It is the
goal of this investigation to characterize in detail a thruster concept that relies on a magnetic slope to exploit
the unique features of the BEW mechanism.

To this end, we have organized this paper in the following way. In the �rst section, we provide a review
of the equations of motion for a single ion subject to beating electrostatic waves with a geometry chosen
to be easily applied to a thruster design. In the next section, we restrict our analysis to the unperturbed
case (no waves) and classify the di�erent types of ion trajectories possible in a magnetic slope. We then use
these results to show a thermalized ion ensemble will experience a net drift in the presence of a magnetic
slope. Following this, we demonstrate that BEW acceleration can augment this drift in a way advantageous
to traditional heating methods. In the �nal section, we outline a proof of concept design experiment to
investigate the application of the enhanced BEW ion 
ow to a thruster concept.

II. Single Ion Dynamics

For this investigation, we de�ne a simpli�ed geometry for ion motion shown in Figure 1 where we take
the magnetic �eld to be B = B(y)ẑ direction and the electrostatic waves to propagate in the x̂ direction
with wavenumber k. We further de�ne a steep slope in the magnetic �eld that occurs in the y-direction from
y = �� and changes polarity at y = 0. Outside the magnetic slope, the �eld is assumed to be constant such
that jB(jyj > �)j = B0. These criteria are combined in a general expression as

B(y) = B0f(y) (2)

where

f(y) =

8><>:
�1 if y � ��;
1 if y � �;
0 if y = 0;

and
f 0(y) > 0 if �� � y � �
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Figure 1. The geometry of this investigation where the wavevector k is de�ned to be in the x̂ , the magnetic
�eld, B, is in the ẑ direction, and the gradient of the magnetic �eld in both cases points away from the region
of null magnetic �eld at y = 0.

and continuity is enforced. We show an example of a magnetic �eld that satis�es the above criteria in
Figure 2. This particular con�guration is described by the equation

B = B0 tanh
3y
�

(3)

where the factor of 3 ensures that at y = ��, the magnetic �eld will be nearly unity. For all subsequent
numerical results, we employ this �eld.

-5 -4 -3 -2 -1 0 1 2 3 4 5

-1

0

1

y

B
HyL

Figure 2. Magnetic slope as described by Eq. 3 for � = 1. The magnetic null occurs at y = 0 while the region
is homogenous for jyj > 1

With this description of the �eld, we are now free to re-derive the equations of motion for an ion subject
to beating electrostatic waves. For this purpose, we adapt the initial derivations for the interaction of an
ion with multiple electrostatic waves performed by Chia.13 In the presence of a magnetic �eld and electric
potential, the Hamiltonian governing the equations of motion for a single ion is given by

h = (p� qA)2 + q� (4)

where p is the canonical momenta, A is the magnetic vector potential, q is the charge, and � is the electro-
static potential. Since r�A = B and B = B(y)ẑ, we can without loss of generality let Ay = Az = 0 and
Ax(y) = �

R y
0
B(y0)dy0. We further de�ne the electric �eld generated by the beating electrostatic waves to

be
E =

X
i=1;2

E0 sin(kx� !it)x̂ (5)
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where E is the electric �eld amplitude, k is the wavenumber, and !i is the frequency of the ith wave de�ned
in such a way to satisfy the beating criterion of Eq. 1 for n = 1 (!2 � !1 = !c). We have in this case
assumed the waves have the same initial phase, wave number, and amplitude. This has been shown to yield
the largest single ion acceleration.5 We further assume that k and E0 are constant for this investigation.

For our time independent magnetic �eld, we have r� = �E such that

� =
X
i=1;2

E0

k
cos(kx� !it): (6)

Therefore, the Hamiltonian governing the single ion dynamics is given by

h =
1
2

�
[px � qAx]2 + p2

y

�
+
qE0

k

X
i=1;2

cos(kx� !it) (7)

where px = m _x+ qAx, py = m _y and m is the particle mass. We in turn normalize this expression following
the convention of Spektor and Choueiri to yield the canonical transformation:6

h =
1
2

��
PX �AX

�2
+ P 2

Y

�
+ "

X
i=1;2

cos(X � �i�) (8)

where

� = !ct h = !2
cm
k H; �i = !i=!c; "i = qkEi

m!2
c

; kx = X; ky = Y

PX = _X +AX ; AX = qk
m!c

Ax(Y=k); PY = _Y ; �1 = �; �2 = � + 1

where !c = qB0=m is the magnitude of the ion cyclotron frequency in the regions of constant magnetic �eld,
jyj > �. Physically, Eq. 8 describes the evolution of the normalized position and velocity of the ion subject
to BEW. In the following section, we analyze this Hamiltonian �rst in the case where " = 0 and categorize
di�erent types of ion motion. We then explore where " 6= 0 and how it in
uences ion orbit in our magnetic
�eld con�guration.

III. Unperturbed Orbits (" = 0)

In this section, we use Eq. 8 in conjunction with energy considerations in order to categorize ion behavior.
This is similar to the approach employed by Landsman et al in their investigation of single ion orbits in a
�eld reserved con�guration.14 We write Eq. 8 in the " = 0 case such that

H =
1
2

��
PX �AX

�2
+ P 2

Y

�
: (9)

This expression reveals that both PX and H are constants of motion. In particular, H is the total energy of
the system characterized by an e�ective potential:

Veff =
1
2

��
PX �AX

�2�
: (10)

By using � = 1 and k = 1 to evaluate AX in the above expression, we illustrate in Figure 3 the two possible
forms this potential can take. For PX < 0, Veff is a single well symmetric about Y = 0. For PX > 0, the
potential becomes a double well with minima that intersect the axis. We consider each case separately and
the resulting ion motion.

I. For this case of PX > 0, we show two orbits in Fig. 4 at H = 17.2 and 94.8, which are characteristic of
all trajectories for PX > 0. Speci�cally, these orbits have a guiding center of motion that is in the region
of opposite polarity and approximately beyond the magnetic slope such that the orbit completes less
than half of its Larmor rotation before intersecting the magnetic slope region. As the ion’s momentum
carries it across the magnetic null, it experiences a reversal in the direction of gyration. The net e�ect
of this is a linear translation in the x̂ direction, which as can be seen from Ref. 14, is the linear analog
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Figure 3. Two cases for the e�ective potential Veff evaluated with Eq. 10 for k = � = 1. Case I, the solid line,
has PX = 8 and is characterized by single well. Case II, the dotted line, corresponds to PX = �5:8 and has two
potential wells.

to the "betatron orbits" de�ned for the Field Reserved Con�guration (FRC). It is for this reason we
refer to these trajectories as "linear betatron" (LB) orbits. As a �nal observation, we note from Figs.
4(a) and 4(b) that with increasing H, the e�ective guiding center moves further away from the magnetic
null such that the ion completes a decreasingly smaller fraction of its Larmor precession before reaching
the magnetic null. This results in a faster and more linear motion in the x̂ direction.

II. We show in Fig. 5 six characteristic orbits that serve to illustrate the possible trajectories in the regime
where PX < 0. For small initial energy, Figure 5(a) , the ion energy places it near the one of the minima
of the e�ective potential, Veff , and at su�ciently low values, this potential is symmetric about each
minimum. As a consequence, ion motion is characterized by simple Larmor precession. For slightly
larger values of initial energy, Fig. 5(b), the potential exhibits asymmetry about the potential minima,
though the ion energy is su�ciently small that it does not escape the well. Therefore, the Y value
of the orbit maintains its sign, and the ion undergoes a grad-B drift in the �x̂ direction. Physically,
this trajectory is the consequence of the ion orbit barely moving the particle into the magnetic slope
region. For Figs. 5(c) and 5(d), the ion has su�cient energy to cross the magnetic null. This is re
ected
in energy space as the ion having su�cient energy to overcome the potential barrier at Y = 0 from
Figure 3 and therefore move into the region of opposite polarity. As it crosses the magnetic �eld region,
the particle reverses the direction of gyration and traces out what is termed a \�gure-8" orbit.14 At
the lower energy case, Fig. 5(c), we see the \�gure-8" drifts in the �x̂ direction, whereas at the higher
value case, Fig. 5(d), the drift is in the x̂ direction. Finally, in Figs. 5(e) and 5(f), for progressively
higher values of energy, the \�gure-8" orbits open up and approach the LB trajectories of Case I.

We can derive the exact conditions under which each type of orbit occurs with an analysis of Eq. 10.
First, we see an ion will only become trapped in simple Larmor precession or a grad-B drift on one side of
the magnetic slope if the total energy H places it below the peak that occurs in the potential at Y = 0. This
condition is expressed as

H < Veff (0): (11)

As we outlined in Case II, the transition from cyclotron motion to grad-B drifts occurs when the potential
well begins to exhibit asymmetry about the minima. For the ideal, piecewise de�ned magnetic �eld de�ned
in Sec. II, we see this asymmetry begins right at the boundary of the magnetic slope jY j = k�. Therefore, we
can resolve further the energy space of trapped orbits by de�ning the criterion for simple Larmor precession:

0 < H < Veff (k�) (12)

and grad-B drifts:
Veff (k�) < H < Veff (0): (13)
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(a) H = 17.2 and PX = 0:1
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(b) H = 94.8 and PX = 8

Figure 4. Characteristic ion trajectories for Px > 0 and increasing values of H. The net motion is in the x̂ and
the trajectories become more elongated and therefore parallel to the x̂ axis for higher energies, H.

We see for arbitrary f(y) that satisfy the criteria outlined in Sec. II, AX � 0 such that the above expressions
imply grad-B and cyclotron drift only occur when PX < 0. Now, it is evident that the opposite of this criteria
should lead to ion trajectories that cross the magnetic null region at Y = 0 and thus become �gure-8 or LB
orbits. As we saw in Figs. 5(c) and 5(d), however, it is possible that the �gure-8 orbit will lead to precession
in either the positive or negative x̂ direction. We derive in the Appendix the approximate condition for the
\backward �gure-8" trajectories (in the x̂ direction):

Veff (0) < H <
1
2
�
PX �AX(k�)� k�=2

�2
: (14)

This thus implies the \forward �gure-8" (in the x̂ direction) orbits occur where

1
2
�
PX �AX(k�)� k�=2

�2
> H; PX � 0; (15)

and our LB orbits are at

PX > 0: (16)

With these expressions, we have characterized the full spectrum of single ion motion for a magnetic �eld
described by a function f(y) and in the unperturbed case (" = 0). These compiled results are depicted
graphically in Figure 6(a) where we have classi�ed each type of ion trajectory as it depends on the constants
of motion.

We can also recast H and PX and the criteria shown in Fig. 6(a) in terms of more physically intuitive
variables|namely the Larmor radius and guiding center of motion. To this end, we consider the term

XGC = X +
B

jBj
_Y = X +

B

jBjPY (17)

Taking the time derivative, we �nd

_XGC = _X � B

jBj
�
PX �AX(Y )

�
A
0
X(Y )
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(a) H = 4.5 for both orbits
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(d) H = 16.8
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(f) H = 31.2

Figure 5. Characteristic ion trajectories for Px = �5:8 and increasing values of H. The time interval is the
same for each orbit. Where necessary for clari�cation, the bold arrows indicate the net motion of the guiding
center.

= _X
�

1� B

jBjA
0
X(Y )

�
(18)

= _X
�

1� B

jBjf(Y=k)
�

where we have used the de�nition of PX and AX . If we make the assumption that jY j > k�, we see the
equation yields _XGC = 0. In other words, XGC is a constant of a motion in the region outside of the magnetic
slope. We take this assumption along with our de�nition of PX to �nd

X = � B

jBj
_Y +XGC (19)

Y =
B

jBj
_X + YGC (20)

(21)

where YGC is a constant related to PX by

YGC = � B

jBj
�
PX �AX(k�)� k�

�
: (22)

Eq. 19 thus shows the expected result that in the uniform magnetic �eld region jY j > k�, the ion motion is
described by Larmor precession such that

X = � sin � +XGC (23)
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(a) H = 17.2 and PX = 0:1
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(b) Orbit classi�cation in physical space. The white triangle de-
notes the values where the expression for YGC from Eq. 22 is not
valid.

Figure 6. Classi�cation of orbits for our linear con�guration with a magnetic slope. k = � = 1

Y =
B

jBj� cos � + YGC (24)

where � = krL =
p

_X2 + _Y 2 is the normalized Larmor radius, (XGC ; YGC) is the location of the normalized
guiding center, and � is the Larmor angle measured from the B� k direction. Finally, with our de�nitions
for PX and PY , we �nd

H =
1
2

�
_X2 + _Y 2

�
(25)

= �2=2:

For any ion with initial position outside of the magnetic slope, Eqs. 22 and 25 provide us with a way
to relate the physical parameters of the orbit{its Larmor radius and Y-coordinate of the guiding center{ to
the energy H and canonical momentum PX . We thus can express the map from Fig. 6(b) in terms of � and
YGC in Fig. 6(b). For simplicity, we have combined all x̂ drifting orbits (LB and forward �gure-8) into one
region (gray) in this trajectory map. We further note that this description is only valid, as described in the
derivation above, if jY0j > k� where Y0 denotes the initial value of the the Y coordinate of the ion. It is for
this reason that the white triangle appears in the �gure.
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IV. Linear acceleration of an ion ensemble

With the classi�cation of ion behavior in terms of physical coordinates provided in the previous section,
we now pose the central question: can this magnetic slope produce a preferential linear acceleration in an
ensemble? In order to address this, we consider the velocity and space probability distribution of an ion
ensemble in the plane perpendicular direction to B which we denote

F (vx; vy; x; y): (26)

We make three assumptions about this distribution. First, the ensemble is isotropic in physical space.
Second, ions are magnetized such that !c � �c where �c is the collision frequency of the ions. And third,
we assume that L� � where L denotes the length scale of the set up in the ŷ direction. This last assertion
coupled with the �rst assumption show us thatR �

�� F (vx; vy; x; y)dyR L
�L F (vx; vy; x; y)dy

� 1: (27)

In other words, the fraction of ions at any given time in the magnetic slope region is very small. Therefore,
the majority of particles are magnetized with the same magnitude �eld B0, which reduces the probability
distribution to approximately f(v?) where v? =

p
_x+ _y2

2
and we have integrated over the isotropically

distributed spatial coordinates. With this description of the plasma, we can calculate the average, normalized
radius of the ions:

� =
v?k

!c
=

k

!c

Z
v?f(v?)dv? (28)

We plot a representative value of � in Fig. 6(b) which appears as a straight line due to the isotropy in Y:
This �gure also includes the e�ects of a closed geometry. Speci�cally, we approximate walls in the ŷ direction
as the condition that ions must have jYGC j + � < kL where L is the length of the experiment as de�ned
above. With this added e�ect, we see from Fig. 6(b) that for those particles within the closed geometry, an
ensemble at equilibrium will have a fraction of ions follow each type of trajectory. Moreover, for su�ciently
large values of � there will be more ions subject to x̂ drifts rather than �x̂ drifts, and since the fraction of ions
present in the Larmor region do not have a net motion, an ion 
ow subsequently will form along the magnetic
null in the x̂ direction. This linear analog to the azimuthal current found in the FRC con�guration14,15 thus
shows us that without a magnetic nozzle, a magnetic slope can produce directed, linear acceleration from a
plasma. And with this observation, we have described the means to generate directed thrust for a plasma
thruster concept. It is also evident that for the purposes of achieving an e�ective and e�cient concept,
we can augment this 
ow by increasing the fraction of ions subject to forward-drifting orbits. We discuss
three methods for achieving this end: ion heating, changing the magnetic �eld topography, and coherent ion
acceleration.

1. Ion Heating

The most intuitive way to increase the fraction of ions in the forward-drifting region is to raise �. Thermal
ion heating can produce this result by increasing the average perpendicular velocity hv?i. This must be
done with care, however, for as we increase �, it is evident that the ions become less magnetized and are
more prone to escape to the walls. Indeed, it is only in the neighborhood of the point where the inaccessible
region just intersects the LB and �gure-8 region in Fig.6(b) where we qualitatively expect the fastest ion
population along the magnetic null. Increasing � further would start to reduce the fraction of ions in the
accelerated region.

2. Magnetic �eld topography

The second method for increasing the number of ions subject to LB and �gure-8 orbits is to change �
by decreasing !c, i.e. lowering the background, uniform magnetic �eld. This, however, requires the same
considerations as ion heating. On the the other hand, we could expand the magnetic slope region by increasing
�. This has the e�ect of \widening" the LB and forward �gure-8 region without the cost of demagnetizing
the plasma. Changing � thus can help augment ion acceleration for a given �. However, we recognize that
this factor is a �xed parameter of the system. Once we optimize it, we can no longer change it.
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3. Coherent Ion Acceleration

While the two methods outlined above show promise for augmenting the ion 
ow, the limitations we discussed
lead us to examine a third process. Speci�cally, instead of using a heating technique that relies on thermal
equilibration to a higher �, we propose the use of coherent ion acceleration. Such a mechanism that works
on a reasonably fast time scale t < ��1

c will accelerates ions from Larmor regions to the forward drifting
areas such that we would have a means of e�ectively lowering the bounds in Fig. 6(b) while avoiding the
deleterious e�ects of demagnetizing the ions. In the next section, we show how beating electrostatic waves,
BEW, are well suited as such an acceleration scheme.

V. BEW ion acceleration

In order to simplify our analysis, we restrict our consideration of BEW acceleration to ion dynamics in
the homogenous magnetic �eld zone, jY j > ky, and focus on determining what conditions will push the ions
into the forward drifting region. To this end, as Eq. 8 shows, the introduction of BEW to the ion dynamics
renders the equations of motion intractable. In order to analyze the behavior, therefore, it is necessary to
turn to Poincar�e cross-sections as well as perturbation theory methods. A signi�cant body of work exists
in performing these analyses, which we summarize here.?, 5, 6, 13,16 Speci�cally, Spektor and Choueiri using

Figure 3.1: Poincaré section schematics. The figure shows typical trajectories for various
initial conditions of an ion interacting with: a) a single electrostatic wave (SEW), b) beating
electrostatic waves (BEW).

51

a!

b!

c!

Figure 7. Poincar�e map for single ion motion subject to beating electrostatic waves. � = 23:2 and " = 10 taken
from Ref. 6. This cross-section occurs at the least common period between the two exciting waves.

a combination of numerical work and analytical theory examined the Poincar�e map for ion motion subject
to Eq. 7 in phase space for the case of o�-resonance � 6= m where m is an integer.6 We show a sample
Poincar�e map in Fig. 7 where the time interval between points is equal to the shortest common period of
the exciting waves. In this map, we see that ion motion is characterized by three separate regions, and the
initial value of the Hamiltonian of an ion dictates in which region it will begin. The �rst acceleration zone,
denoted the forbidden acceleration region, contains closed orbits about an elliptic point HE that occurs where
(�; �) = (�; [� �p"] =2; ) in this cross-section or more generally where � = � + � . Physically, ions in this
region experience an oscillation in their normalized Larmor radii about the elliptic point. In the stochastic
acceleration region, ions are subject to a resonant interaction with the waves that is qualitatively similar to
the stochastic acceleration found in single electrostatic wave (SEW) heating and described in great detail by
Karney.7 Particles in this region do not have closed orbits but rather experience incremental kicks in energy
from the wave. The boundary between stochastic and acceleration regions is de�ned by the value � = ��p".
In the third and �nal region, ions are subject to coherent acceleration until they pass the neighborhood of
the hyperbolic point HH at (�; �) = (�; � �p") in this cross-section, where again, more generally, � = �+ � .
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Once the ions pass this point, they in turn experience stochastic acceleration. The separatrix that separates
the forbidden and regular acceleration regions is de�ned by the orbit that intersects HH .

This phase portrait gives us vital information about the e�ect of initial conditions on ion energization
and in particular demonstrates a means by which the normalized Larmor radius � can be increased. In order
to fully explore the possible application to Fig. 6(b), however, we need to understand how BEW acceleration
in
uences YGC as well. To this end, it is necessary to examine how and where in the orbit energy is exchanged
with the exciting waves. We pursue this purpose both analytically and numerically. For the latter method,
we used a symplectic integrator to solve the equations of motion governed by Eq. 8.

A. Regular and Forbidden acceleration

We show in Figs. 8(a) and 8(b) examples of ion motion corresponding to the initial conditions labeled in
Fig. 7. For an ion initially in the forbidden acceleration region (Case a), we see the guiding center remains
constant, and the Larmor radius oscillates on a timescale slower than the cyclotron period �� = 1 about
the elliptic point value, � = [� �p"] =2. This is reminiscent of the linearized solution for any perturbed
harmonic oscillator system about an elliptic point,17 and it is physically the consequence of the coupling of
the slow ion dynamics with the beat frequency, (�2 � �1)=2 = 1=2, generated by the two waves. The slow
and continuous exchange of energy with the ion throughout the orbit prevents a preferential movement of
the guiding center in any direction. The net e�ect then is the observed gradual increase in Larmor radius
with �xed guiding center.

0 1000 2000 3000 4000 5000
0

15

30

45

60

75

Τ

Ρ

! 

a
! 

b! 

c

(a) Normalized radius � as a function of time. The dotted line
corresponds to the average value achieved by ions that enter the
stochastic region, �h

0 1000 2000 3000 4000 5000

0

30

60

90

120

Τ

Y G
C
�
Y G

C
0 Ih /"

ab

c

(b) Change in normalized y-coordinate of the guiding center as
a function of time. The dotted line represents the average value,
Ih=�, achieved by ions in the stochastic region.

Figure 8. Sample trajectories for points shown in the Poincar�e map in Fig. 7: a) Forbidden acceleration region;
b) Regular acceleration; c) Stochastic acceleration. � = 23:2 and " = 10.
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For ions in the regular acceleration region (Case b), we observe that for an initial period, there is
qualitatively similar behavior as in the forbidden region, i.e. a regular and coherent change in Larmor radius
with �xed guiding center. However, the trajectory’s oscillation about the elliptic point ultimately leads to
� = � �p" at the hyperbolic point such that the ion enters the stochastic acceleration region. At this point
the guiding center is no longer conserved and the Larmor radius starts to change chaotically. We will address
this chaotic motion in the next section. For all ions coherently or regularly accelerated, however, before they
reach the stochastic region, we can draw the following conclusions.

1. The y-element of the guiding center, YGC , remains �xed throughout the energy exchange.

2. The normalized Larmor radius � will increase or decrease in a systematic way depending on the initial
phase.

B. Stochastic Acceleration

The stochastic acceleration region is characterized by a chaotic interaction between the exciting waves and
ion motion. The coupling with ion dynamics therefore no longer depends on the beat frequency but rather
on the phase velocity of the wave{just as in single electrostatic wave acceleration (SEW).4 Following the
treatment of Karney,18 we can model this stochastic interaction with the waves as periodic kicks that occur
when the phase velocity of one of the exciting waves and ion velocity in the wave direction are equal, i.e.
when

_X = �� sin � = � (29)

where we have assumed that � is su�ciently large such that �1 � �2. Outside this resonant condition,
however, we note that the orbit remains largely unperturbed and therefore follows simple Larmor precession.
During these unperturbed periods, the ion position is given from Eq. 19

R = � B

jBj (VY 0x̂� VX0ŷ) + RGC (30)

where R is the position vector, VX0 and VY 0 are the normalized components of velocity in the x̂ and
ŷ directions respectively, and RGC is the position of the normalized guiding center. Since the energy
exchange with the wave happens instantaneously and the ion resumes Larmor precession immediately after
the exchange, we can describe the ion motion post-interaction as

R = � B

jBj (V
0
Y x̂� V 0X ŷ) + R0GC : (31)

where the primes denote the post-interaction values. From Eq. 29, we see that the interaction will only
introduce velocity in the x̂ direction such that V 0X = VX + �V and V 0Y = VY . Equating Eq. 30 to Eq. 31,
we thus see that

�RGC = � B

jBj�V ŷ (32)

From this result, we con�rm our assertion from Eq. 17 that the X coordinate of the guiding center
remains constant, but the kicks result in a change in the guiding center in the � B

jBj ŷ. Moreover, these
changes scale linearly with the increments in velocity, and we can relate this change to our normalized radius
�. Speci�cally, we see that �2 = V 2

X0 + V 2
Y 0 and �0 = (VX0 + �V )2 + V 2

Y 0. But we take into consideration
from Eq. 29 the fact that the kicks occur where VX0 = � such that we �nd �V = �� +

p
�2 + 2�I where

I = �2=2 is a measure of the normalized kinetic energy. If we assume that the incremental changes are
su�ciently small such that �I � �, we thus �nd

�V =
�I
�

(33)

This is the same result derived by Karney with energy considerations19 and when summed over a series of
steps allows us to approximate the position of the normalized guiding center as

YGC = YGC0 �
B

jBj
X

�YGC (34)
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= YGC0 �
B

� jBj (I � I0) (35)

= YGC �
B

� jBj

�
I � �2

0

2

�
(36)

Since the evolution of � and by extension I is inherently stochastic, it is di�cult to predict the temporal
dependence of both the guiding center and normalized Larmor radius. However, we can approximate the
behavior by taking the time average of the motion such that

hYGCi = YGC0 �
B

� jBj

�
hIi � �2

0

2

�
: (37)

Spektor and Choueiri estimated that hIi is a monotonically increasing function of �, which Jorns and
Chouieiri denoted Ih(�) = hIi where Ih > (� �p")2 =2.11,20 For convenience, we denote a new variable ��
such that Ih = �2

h=2. We thus �nd

hjYGC ji = jYGC0j �
1

2�
�
�2
h � �2

0

�
: (38)

From this expression, we can draw two de�nitive conclusions about ion motion for particles that are acceler-
ated to the stochastic region from the regular acceleration region as well as those that start in the stochastic
acceleration regime with (� �p") < �0:

1. The normalized Larmor radius � will approach an average value �h that increases monotonically with
normalized frequency, �.

2. The y-element of the guiding center, YGC , will move toward the average value given by Eq. 38, which
translates to a net motion toward the magnetic null provided �0 < �h.

Case C in Figs. 8(a) and 8(b) illustrates both of these trends.

VI. Application of BEW acceleration to a magnetic slope

With our understanding of the di�erent regimes of ion acceleration subject due to BEW, we next explore
the e�ects of BEW acceleration in the presence of a magnetic slope. For this investigation, we assume the
waves propagate with �xed k and !i uniformly in the plasma despite the changing magnetic �eld.

As can be seen from Fig. 6(b) and Eq. 15 expressed in terms of � and YGC , ions will be subject to
forward-drifting orbits if they satisfy the criterion,

YGC �
B

jBj� < 0: (39)

While this quantity remains �xed in the absence of waves, as we showed in the previous section, BEW
acceleration can change it. Our goal for the investigation of the BEW e�ect then is two-fold. First, for ions
that start with YGC � B

jBj� < 0, will BEW acceleration push the ions into satisfying Eq. 39? And second,
will the accelerated ions remain on average in this section?

To address these questions, we have taken Eq. 39 to hold initially and identi�ed two regimes of behavior
in Figure 9(a) distinguished by jYGC0j < ��p" in Figure 9(a) and jYGC0j > ��p" in Figure 9(b) where we
have plotted jYGC j � � versus normalized time. For the former, all ions outside the forward-drifting region
necessarily have �0 < � �p" such that they are all subject initially to coherent acceleration through either
the regular or forbidden regions. As a consequence, there are two possible outcomes. On one hand, the ion
starts in the forbidden acceleration region such that its normalized Larmor radius oscillates in time with �xed
guiding center. However, the amplitude of the oscillation is such that for the entire orbit, jYGC j�� > 0, and
these ions never enter a forward-drifting orbit. This is illustrated by the blue trajectory shown in Figure 9(a).
The other outcome is that the ion starts with initial conditions that place it either in the regular acceleration
region or forbidden such that it can be accelerated up to � = jYGC j. However, since these particles have
not reached the stochastic regime � = � �p" at this point, they are still undergoing coherent acceleration.
As a consequence of this well-behaved motion, we have found the interesting result that these regularly
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(a) YGC0 = 15 such that ��
p
" > YGC0 and all ions are trapped

in closed Larmor orbits.
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(b) YGC0 = 35. Ions in the forbidden region cannot pass the
dotted line where YGC �� = ��

p
". Ions starting below this line

in the stochastic acceleration region and some starting above it
in the regular acceleration regime are accelerated to and remain
on-average in the forward drifting region.

Figure 9. YGC � � as a function of normalized time � . � = 23:2, and " = 10. All initial conditions are chosen
such that the ions start outside the forward-drifting region of Figure 6(b) where jYGC j � �0 > 0. Ions enter
forward-drifting regime when YGC � � = 0.

accelerated ions experience an immediate decrease in � at the magnetic null such that jYGC j � � increases
and they move away from the forward-drifting region. This is demonstrated by the red trajectory in Fig.
9(a). The qualitative explanation for this can be understood from the Poincar�e map in Fig. 7 where we have
already seen that in a homogenous magnetic �eld, � increases until the condition � � � = � is satis�ed and
then begins to decrease after this point. In unnormalized parameters this condition is

� � !c(y)t = � (40)

where !c(y) = jqB(y)=mj. We thus see at the magnetic null (y = 0) that !c(0) = 0 such that Eq. 40
yields � = �. This, however, is precisely the angle the ion has from the B � k direction at the magnetic
null. The particle consequently experiences an immediate deceleration in � such that it can never cross the
jYGC0j � � = 0 bound. Coupled with our earlier observation, this result leads us to the conclusion that no
ions initially in the Larmor region with YGC0 < � � p" will be accelerated to forward-drifting orbits with
BEW acceleration.

In Figure 9(b), we examine the case where YGC0 > � �p" where the dotted line represents � = � �p".
From this �gure, we see three possible scenarios. In the �rst case, illustrated by the blue line, we see behavior
similar to Fig. 9(a) in that ions are trapped in the forbidden acceleration region such that � < � �p", and
therefore jYGC j � � > 0 for all time. These ions never pass into forward-drifting behavior. As a second case,
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the black line, the ion starts in the stochastic region with � �p" < �0 < �h such that, as illustrated in the
previous section, the ion has a net decrease in YGC and increase in � resulting in jYGC j � � < 0. The ions
therefore do enter the forward-drifting region. As the third type of behavior, the blue line, we see that an
ion that starts in the regular acceleration region with �0 < (� �p") will be coherently accelerated to the
stochastic regime where YGC0 = � and then in turn experience stochastic motion similar to that described
above. Now, as illustrated above in Sec. V and Figure 7, the conditions on whether an ion will undergo
forbidden or regular acceleration is dependent in a nonlinear manner on the initial conditions. However, in
order to simplify our analysis, we make the same approximation as in Ref. 11 that ions with �0 > (� �p") =2,
i.e. above the elliptic point HE , are subject to regular and therefore stochastic acceleration. Therefore, we
�nd that the necessary conditions for ions initially in the Larmor region to reach the forward-drifting zone
are

1
2
�
� �p"

�
< �0 < jYGC0j (41)

We further see that these orbits will remain on-average in this desirable region provided jhYGCij � �h < 0
from Eq. 38. In terms of initial conditions, we can rewrite this as

jYGC0j < �h +
1

2�
�
�2
h � �2

0

�
(42)

which we in turn combine with Eq. 41 to yield the necessary conditions for ions to be accelerated to and
stay in the forward-drifting region from the Larmor region:

1
2
�
� �p"

�
< �0 < jYGC0j < �h +

1
2�
�
�2
h � �2

0

�
: (43)

where Eq. 39 is assumed to hold initially. Provided �h >> kL, we can simplify this expression further by
replacing the upperbound on jYGC0j with the wall criterion such that we ultimately �nd

1
2
�
� �p"

�
< �0 < jYGC0j (44)

where (
jYGC0j < kL� �0 if �0 > � �p";

jYGC0j > kL� [� �p"] if �0 < � �p";

The second condition on jYGC0j for � < � � p" stems from the fact that initial regular acceleration does
not produce a drift of the guiding center toward the magnetic null. As a consequence, the initial guiding
center must be su�ciently far from the wall in order to guarantee the ion will still be in the geometry when
� equals the threshold value. With this in mind, the above result represents the region of Larmor space that
is enhanced to forward-drifting orbits by BEW acceleration.

Now, while it is apparent that BEW acceleration can augment the magnetic slope 
ow, there is still the
possibility that the acceleration may push ions from the forward-drifting region into Larmor precession. We
ask then, can ions with

jYGC0j < �0 (45)

be decelerated to the point that � < jYGC j? The answer we have found is invariably no. The reason for
this is that initially forward-drifting orbits as showcased in Figs. 4(a), 4(b), 5(d), 5(e), and 5(f) advance
considerably in x̂ for each ion orbit. This has the net e�ect of randomizing the interaction with the BEW
such that at each crossing of the magnetic slope, the ion has a new initial condition in the Poincar�e map.
This switching happens on the time scale of the cyclotron period �� = 1 such that any coherent increase or
decrease of the Larmor radius, which as we have already established happens on a much longer timescale, is
not possible. Therefore, there is little net change in � and YGC such that these ions tend to remain in the
forward-drifting section. The one exception to this is if the ion begins with initial conditions that result in
jhYGCij > �h where Eq. 45 is also satis�ed. In this case, as we see from Eq. 38, the particle will experience
a net change in the guiding center away from the magnetic null and a decrease in the average Larmor radius
such that it may become stuck on side of the magnetic slope. The criterion then for ions to remain in the
forward drifting region{provided they start in it{is also given by

jYGC0j < �h +
1

2�
�
�2
h � �2

0

�
(46)

15 of 19

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 P

R
IN

C
E

T
O

N
 U

N
IV

E
R

SI
T

Y
 o

n 
Ju

ly
 5

, 2
01

6 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
0-

71
07

 



which again given that �h >> L and combined with the condition that the orbits initially be in the forward
drifting region is

jYGC0j < L� �0 (47)
jYGC0j < �0:

This thus represents the other region of phase space that starts and will remain in forward-drifting orbits.

Enhanced drift from BEW acceleration

!"#$%&'($)%)&*#'
%#+'

,-+.'/01&$'2'

! 

" - #

! 

(" - # ) /2

Figure 10. Portrait for enhanced drift in the magnetic slope due to BEW acceleration.

From the considerations of the previous sections, we use Eqs. 44 and 47 to compile an updated portrait
of the regions of space susceptible to acceleration in Figure 10. Comparing to Fig. 6(b), we immediately see
that for a �xed � more ions will undergo forward drifting acceleration than in the non-BEW case. We also
emphasize here that provided � < �h, the net motion of the ions will be away from the walls toward the
magnetic null{thus avoiding the losses associated with thermal heating. BEW acceleration clearly has the
potential to be a mechanism for increasing the linear current along the magnetic null.

VII. Proof of concept design

With this mechanism for introducing a current in the x̂ direction as well as a means for augmenting it
with BEW current, we now turn our attention to a physical, concept that could exploit this ion 
ow for
thrust. With this purpose in mind, we show in Fig. 11 a possible linear geometric con�guration for a thruster
proof of concept. This design has three major components: a plasma source (not shown), current sheets to
provide a uniform magnetic �eld, and an inductive antenna for wave launching. We discuss each of these
elements in detail.

1. Plasma source

Plasma generation is essential as a source of ions but in itself is only incidental to the acceleration process.
Indeed, once the plasma is generated, it will di�use from the source to the acceleration zone. Since the
acceleration scheme relies on a stable magnetic gradient as well as BEW, the ideal plasma source for this
concept is continuous with minimal interference with the waves in the acceleration zone. A low power helicon
is one possible option.

2. Magnetic �eld con�guration

The magnetic �eld con�guration is essential for the acceleration process outlined above. In order to achieve
the steep gradient as well as the null region, we arrange two parallel current sheets. The spacing between
these must be su�cient in order to allow for wave excitation and propagation, i.e. Lk � 1
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Antenna 

Current Sheet 

Exhaust 

BEW 

(a) Side view.

1

∇B (1)

x̂ (2)

a1,b1 (3)

b2 (4)

Antenna 

Current Sheet 

(b) Front view

Figure 11. Thruster concept with linear geometry. The current densities on the sheets are in the sme direction
in order to produce a steep magnetic slope.

3. Inductive antenna

In order to generate the necessary BEW, we propose using the electrodeless, inductive antenna employed by
Kline to launch electrostatic ion cyclotron waves.21 The advantage of this element is that it consists of a
two-coil, Helmholtz con�guration (shown in Fig. 11), in which accelerated ions simply pass through one coil
on exit of the thruster. This minimizes erosion of the thruster materials. Also, by properly aligning the coils
to be colinear with the axis of the thruster, we can preferentially launch electrostatic waves in the necessary
direction to achieve BEW augmentation of the ion drift.

Thruster operation

During operation of the thruster, plasma is generated at the source where it di�uses to the acceleration
region that contains a magnetic slope similar in structure to the ideal type outlined in Eq. 3. The antenna
excites BEW along the axis of the thruster and perpendicular to the magnetic �eld in the acceleration zone.
The resulting interaction with the ions results in a net drift along the magnetic null region out of the thruster.

The phase velocity of electrostatic waves that couple with ion dynamics in most cases will be much
smaller than the average electron velocity, vTe

� v�, such that the BEW will not have much of an e�ect
on electron behavior. However, some electrons in the plasma by virtue of close proximity to the magnetic
slope and appropriate initial velocity will be subject to the behavior outlined in Sec. II including linear
betatron, �gure-8, and grad-B trajectories with a reversed sign due to the change in charge. This will serve
to further bias the exhaust of the thruster. The hope is that this charged plume will ultimately lead to an
ambipolar �eld that will work to drag electrons with the propelled ions{thus preserving neutrality of the
plume. However, particle-in-cell simulations may be necessary to fully elucidate this point.
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VIII. Conclusion

In the above work, we have outlined the design for a new plasma thruster concept starting with the basic
theory of operation and ending with a proposed proof of concept. Speci�cally, we demonstrated that in a
rectilinear geometry, a sharp magnetic slope perpendicular to the direction of the magnetic full can result in
a linear ion current. This is comparable to the current that forms along the magnetic null in an FRC plasma.
We have further showed that BEW direct ion acceleration, as opposed to plasma heating, can considerably
augment this acceleration while minimizing wall losses in order to produce a constant stream of ions in the
magnetic null direction. In our �nal section, we proposed a proof of concept for a thruster design in order to
investigate the e�cacy of this acceleration mechanism for generating thrust. This BEW thruster thus shows
promise as a new form of electric propulsion that bears further investigation through numerical simulations
as well as experiment.

Appendix

We provide here a physical argument for the boundary in phase space between forward �gure-8 and
backward �gure-8 orbits cited in Eq. 15. Speci�cally, we see that the linear betatron orbit transition occur
where PX = 0, which using our de�nition of YGC from Eq. 22 translates to

YGC =
B

jBj
�
AX(k�) + k�

�
: (48)

This expression implies that the guiding center is on the opposite side of the magnetic null from where the
particle is located (recall B = B(y) and AX(k�) + k� < 0). On the other hand, the transition from grad-B
to �gure eight orbits occurs where Veff (0) = H which in physical space corresponds to

jYGC j = �+
�
AX(k�) + k�

�
(49)

such that the guiding center is on the same side of the magnetic slope as where the particle is located. The
transition from backward �gure-8 to forward �gure-8 must lie somewhere between the conditions described
by Eqs. 48 and 50. We therefore place the transition from forward �gure-8 to backward �gure-8 at

jYGC j = �+
�
AX(k�) + k�(1� �)

�
(50)

where 0 < � < 1. Through modeling the trajectories numerically, we found � � 1=2. This translates to the
condition in energy space cited in Eq 15.
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