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The nonlinear interaction of a magnetized ion with two beating electrostatic waves (BEW) whose

frequencies differ by a cyclotron harmonic can lead, under some conditions [Phys. Rev. E 69, 046402

(2004)], to vigorous acceleration for an ion with arbitrarily low initial velocity. When applied to an

ensemble of ions, this mechanism promises enhanced heating over single electrostatic wave (SEW)

heating for comparable wave energy densities. The extension of single ion acceleration to heating (SEWH

and BEWH) of an ensemble of initially thermalized ions was carried out to compare the processes. Using

a numerical solution of the Vlasov equation as a guideline, an analytical expression for the heating level

was derived with Lie transforms and was used to show BEWH’s superiority over all parameter space.
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In 1998, Benisti et al. [1] proposed that when two
electrostatic waves, propagating perpendicularly to a uni-
form magnetic field satisfy the beating criterion, !2 �
!1 ¼ n!c, where !1, !2 are the wave frequencies, n is
an integer number, and !c is the ion cyclotron frequency,
some magnetized ions with initial velocities arbitrarily
lower than the phase velocities of the exciting waves are
subject to vigorous acceleration. Spektor and Choueiri [2],
while deriving the necessary and sufficient conditions for
this acceleration, subsequently showed analytically that
there is no velocity threshold for targeting ions with this
nonlinear mechanism. It is for this reason that the beating
electrostatic waves heating (BEWH) of plasma is expected
to be more efficient than resonant, single electrostatic wave
heating (SEWH) for comparable wave energy densities and
why it represents an attractive alternative for plasma heat-
ing in applications such as fusion devices and spacecraft
plasma propulsion. So far, published analytical studies
[1–3] of BEW have been restricted to the case of a single
ion interacting with a pair of electrostatic waves.
Extending this analysis from acceleration of a single ion
to the heating of an ensemble of ions is of both fundamen-
tal and practical importance to plasma heating. In this
Letter we carry out this extension in an effort to answer
the following questions: Does BEWH outperform SEWH
for equal wave energy densities? Is it always the superior
process? And if yes, given experimental constraints, can
we predict the performance of BEWH?

We first establish the dependence of ion heating on wave

number and frequency by numerically solving the Vlasov

equation for SEWH and BEWH. Using this as a guideline,

we derive an analytical expression with Poincaré cross

sections and Lie transform theory that allows a comparison

between SEWH and BEWH for arbitrary wave parameters.
We follow Gibelli et al. [4] in assuming the ions are

collisionless and the waves are uninfluenced by the ion
dynamics. The first assumption restricts our analysis to
plasmas where heating time scales are faster than

collisions. The second limits our scope to small perturba-
tions as it precludes self-consistent effects that would limit
the maximum amplitude of the waves [5]. In spite of these
restrictions, assuming the waves are uninfluenced by
the particle dynamics still allows an approximation for
the average result of the stochastic energization of an
ensemble [4]. Moreover, this assumption enables us to
examine BEWH and SEWH in a general sense: while a
self-consistent simulation requires we specify plasma char-
acteristics such as the dielectric response, assuming the
waves are uninfluenced by ion dynamics results in a
Hamiltonian formulation where the wave parameters are
independent variables. We thus can compare SEWH and
BEWH over all wave parameter space without specifying a
plasma mode. With this in mind, we proceed by formulat-
ing the problem in terms of the normalized Vlasov equa-
tion with electrostatic waves propagating perpendicularly
to a uniform magnetic field:
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where i ¼ 1; 2 and we have normalized the physical vari-
ables such that X ¼ x=�rL, VX;Y ¼ vx;y= �v?, �i ¼ !i=!c,

� ¼ !ct, "i ¼ ðqEiÞ=ðm�rL!
2
cÞ, �i ¼ ki �rL, and � ¼ !ct.

Here Ei is the electric field amplitude of the ith wave; q
andm are the charge and mass of the ion, respectively, �rL is
the root mean squared value of the Larmor radius in
the initial ensemble, and �v? is the rms value of the initial
perpendicular velocity. In the summation above, we define
�1 ¼ � for SEWH and �1 ¼ �, �2 ¼ �þ 1 for BEWH as
this was found [1] to yield the greatest single ion accelera-
tion. In order to ensure equal energy densities for each

case, we define "1 ¼ �0 and "2 ¼ 0 for SEWH and "1 ¼
"2 ¼ �0=

ffiffiffi
2

p
for BEWH. Finally, we note that for two

waves, �1 � �2 has been shown to have an impact on the
level of single ion energization [1]. However, it is also
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evident from previous studies that if k�2 � �1k=�1 � 1—
a restriction valid for large group velocities—the resulting
acceleration is on par with �1 ¼ �2. In order to simplify
our analysis then and invoke the results of previous BEW
single ion work [2], we define �1 ¼ �2 ¼ �.

With these constraints, we first solve Eq. (1) using a
Monte Carlo particle method [4,6] where we select parti-
cles from the initial distribution function and integrate the
equations of motion along the characteristics of Eq. (1). We
then construct the distribution function fðVX; VY; X; �Þ at
time � from the discrete velocity and space distribution of
the particles. For our analysis, the initial distribution is a
two-dimensional Maxwellian, uniform in normalized
space such that fðV0

X;V
0
Y;X

0;0Þ¼�ð2�Þ�2 expf�½ðV0
XÞ2þðV0

YÞ2�=2g, where the factor �ð2�Þ�1 is a normalization
constant that reflects the periodicity of the exciting waves
and therefore the distribution function in X: fðVX; VY;
��=�; �Þ ¼ fðVX; VY; �=�; �Þ. The characteristics are
the solutions to the Hamiltonian

H ¼ 1

2
½P2

X þ ðPY � XÞ2� þX"i
�

cosð�X � �i�Þ; (2)

where VX ¼ PX, VY ¼ PY � X, and PY is a constant of
motion. For our numerical integration, 1000 particles were
uniformly spaced in the interval ��=� < X < �=� with
initial velocities randomly selected from the Maxwellian
distribution. The equations of motion were solved using a
symplectic algorithm [7].

Since the collisionless ion ensemble evolves without
thermal equilibration, we followed the convention of
Sheng et al. [8] in using the average kinetic energy in the
direction perpendicular to the magnetic field instead of
temperature to gauge ensemble energy: Kð�Þ ¼ 1

2

RðV2
X þ

V2
YÞfðVX; VY; X; �ÞdVXdVYdX. With our numerical solu-

tion for fð�Þ, we calculated Kð�Þ for a wide range of the
wave parameters, �0, �, and �. In each case, this quantity
equilibrated to a steady state value Keq, although as pre-

dicted from single ion energization considerations [3], the
heating time scale decreased with �0. We show in the top of
Fig. 1 plots of the magnitude of Keq for �0 ¼ 5.

These results are consistent with the range of amplitude
values (0:5< �0 < 10) we investigated numerically and
serve to illustrate, for the first time, that BEWH does
produce equal or greater heating than SEWH over a wide
range of wave parameters. In order to identify why this is
the case and ultimately to see if we can establish BEWH
superiority beyond the numerically investigated range, we
now use these numerical plots as a guideline and validation
in deriving an analytical expression for heating.

To this end, we begin with examining Eq. (3) in greater
detail by performing a change of coordinates to an action-
angle formulation by means of a generating function of the
first kind [9] similar to the one employed by Chia et al.
[10]: F1ðX; Y; �1; �2Þ ¼ 1=2ðX � �2Þ2 cot�1 þ Y�2. This
yields the transformed Hamiltonian:

h ¼ I1 þ
X2
i¼1;2

"i
�

cosð� ffiffiffiffiffiffiffi
2I1

p
sin�1 þ ��2 � �i�Þ; (3)

where the coordinate and momenta transformations are
given by X ¼ ffiffiffiffiffiffiffi

2I1
p

sin�1 þ �2, Y ¼ ffiffiffiffiffiffiffi
2I1

p
sin�1 � I2,

VX ¼ _X ¼ ffiffiffiffiffiffiffi
2I1

p
cos�1, and VY ¼ _Y ¼ � ffiffiffiffiffiffiffi

2I1
p

sin�1. In
this case, I1 ¼ ðV2

X þ V2
YÞ=2, �1 is the angle of Larmor

precision, �2 is the position of the guiding center in the X
direction, and �I2 is the position of the guiding center in
the Y direction. In this formulation I1 represents the parti-
cle kinetic energy such that if we denote the density
distribution in action-angle coordinates as
�fðI1; I2; �1; �2; �Þ, Kð�Þ is given by

Kð�Þ ¼
Z

I1 �fðI1; I2; �1; �2; �ÞdI1dI2d�1d�2: (4)

Since the ion dynamics are Hamiltonian, we can invoke
Liouville’s theorem to yield the result consistent with the
above Vlasov formulation that �f is constant along
the characteristics �fðI1; I2; �1; �2; �Þ ¼ �fðI01 ; I02 ; �01; �02; 0Þ,
where �fðI01 ; I02 ; �01; �02; 0Þ ¼ �ð2�Þ�2e�I0

1 . Coupled with
the conservation of phase space, Eq. (4) becomes

Kð�Þ ¼
Z
hI1ðI01 ; I02 ; �01; �02; �Þi�0;I0

2
e�I0

1dI01dI
0
2 ; (5)

where h� � �i�0;I0
2
denotes the average over 0< I02 <1, 0<

�01 < 2�, and ��=� < �02 <�=�.
The recasting of Eq. (3) in the coordinates of Eq. (5) now

enables us to use Poincaré cross sections for single particle
acceleration to approximate the equilibrated value Keq.

The Poincaré plots, shown in Fig. 2 and adapted

FIG. 1. Numerical and analytical contour plots of equilibrated
kinetic energy Keq for both SEWH and BEWH as a function of

wave parameters � and �: �0 ¼ 5 in all cases and � ¼ 0:25 for
analytical results. Each set of plots is normalized to the maxi-
mum SEWH value in the shown domain.
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from Spektor and Choueiri [2], are defined for fixed � and
� ¼ N��, where N ¼ 0; 1; 2; . . . and �� is the least com-
mon period of the exciting waves. They depict the trajec-
tories of individual ions in action-angle coordinates for
different initial conditions and serve to illustrate the accel-
eration regions characteristic of each process. On one hand,
SEWacceleration is a resonance-broadened process where
only ions with initial velocity close to the wave phase
velocity, v? ¼ !=k, are stochastically accelerated.
The range of initial actions that satisfy this condition is
bounded in phase space by the stochastic threshold [11],

Ith ¼ ½�=�� ffiffiffiffiffiffiffiffiffi
"=�

p �2=2, and the upper bound, IUB ¼
�2
s=2 ¼ ð4"�=�Þ4=3ð2=½���Þ2=3=2, which is valid provided

IUB � ð�=�Þ2 � 1. Ions with initial action outside this
resonance zone, i.e., in the forbidden region, are not accel-
erated. Particle orbits exhibit approximately the same be-
havior in the forbidden and stochastic regions for BEW
acceleration; however, the fundamental aspect of this
mechanism—wherein lies its potential for superiority
over the SEW process—is that it can accelerate ions out-
side the resonance zone. This effect occurs in the regular

acceleration region, defined by the elliptic point, HE ¼
ðI1; �1Þ ¼ ð½�=�� ffiffiffiffiffiffiffiffiffi

"=�
p �2=8; �Þ, and the hyperbolic

point, HH ¼ ð½�=�� ffiffiffiffiffiffiffiffiffi
"=�

p �2=2; �Þ, that intersects the
separatrix between regular and forbidden regions [2].

Since �01 and �02 are isotropic and the Hamiltonian is

independent of I02 , we see from Fig. 2 that particles in the

SEW forbidden region will have hI1ðeqÞðI01Þi�0;I0
2
¼ I01; i.e.,

the average value of the equilibrated action is constant,
while particles in the stochastic region, averaged over
initial angles, equilibrate to some value Ith < Ihð�0; �; �Þ<
IUB. Assuming IUB � 1, we see that all ions in an initial
Maxwellian with I01 > Ith will be in the stochastic region

with the remainder in the forbidden region. Therefore,
Eq. (3) yields the SEW equilibrated kinetic energy:

KeqðSÞ ¼ 1þ hIeffie�½�=��
ffiffiffiffiffiffiffiffi
�0=�

p
�2=2; (6)

where hIeffð�0; �; �Þi ¼ Ih � Ith � 1 and hI01i ¼ 1 corre-
sponds to the initial average action of the ensemble.
From this expression, we see that hIeffi indicates ions in
the stochastic region gain more energy with increasing
frequency due to the widening of stochastic phase space.

In opposition to this, the term e�½�=��
ffiffiffiffiffiffiffiffi
�0=�

p
�2=2 shows that

more of the initial distribution falls in the forbidden region
with increasing frequency �.
We use a similar approach as in Eq. (6) to estimateKeqðBÞ

for BEWH; however, we define a new effective threshold

I0th ¼ ½�=��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0=ð

ffiffiffi
2

p
�Þ

q
�2=8 at the elliptic point to ac-

count for the additional ions from the BEW regular accel-
eration region. We also assume all accelerated ions
equilibrate to the BEW value I0h. The modified Eq. (6) is

hIieq ¼ 1þ hI0effie�f�=��ð�0=½�
ffiffi
2

p �Þ1=2g2=8; (7)

where hI0effi ¼ I0h � I0th � 1.
Both Eqs. (6) and (7) are based on the analysis of a

Poincaré cross section valid only for off-resonance fre-
quencies (� � integer). However, an examination of on-
resonance acceleration for both SEW [12,13] and BEW [2]
showed that there is little change in the boundary of the
stochastic region. The significant difference caused by on-
resonance effects is the appearance of a web structure in
the stochastic region that leads to acceleration beyond
the maximum, IUB. This suggests that Eqs. (6) and (7)
can be universally applied provided the on-resonance
effects are folded into Ieff and I0eff .
In order to find these terms, we need to evaluate Eq. (5)

analytically. Since the nonlinearity of Eq. (3) precludes a
closed form solution for I1ðI01 ; I02 ; �01; �02; �Þ, we invoke the
results of Lie transform theory [14]. For small amplitude
(�0 < 1) and an appropriate Hamiltonian, this yields
hI1ð�Þ2i�0 ¼ hI01i�0 þ 1

2@I01 h½ð@�10�w1Þð@�1
0
�w1Þ�i�0 , where

�w1 ¼ �R
�
0 d�H1, H1 is the first order term in "i from

Eq. (3), the subscript 2 denotes second-order quantities,
and the integration is performed over the orbits in phase
space pertaining to the solution of the unperturbed
Hamiltonian, H0 ¼ I1. This expression is valid provided
the generating functions up to second order from the Lie
transform of Eq. (3) are periodic with respect to phase
angle and the transformed Hamiltonian (denoted by K in
Ref. [14]) is independent of the phase angles. These criteria
are satisfied for small �0 and in the off-resonance case, � �
integer, such that Eq. (5) becomes

Kð�Þ2 ¼
X1

m¼�1i;j¼1;2

"i"j

�2

Z 1

0

@

@I01
½m2Jmð�

ffiffiffiffiffiffiffi
2I01

q
Þ2�e�I0

1dI01
cos½ð�i � �jÞ�� � cos½ðm� �iÞ�� � cos½ðm� �jÞ�� þ 1

4ð�i �mÞð�j �mÞ þ 1;

FIG. 2. Figure adapted from Ref. [2]. Poincaré section for the
off-resonance case of an ion subject to SEW (left) and
BEW (right). The section is a projection into the coordinate
plane of ion orbits at fixed time interval � corresponding to the
lowest common period of � and �þ 1. Typical trajectories for
varying initial conditions are shown.
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which is a time dependent expression for the average
ion kinetic energy where Jmð� � �Þ denotes the mth order
Bessel function of the first kind. Averaging over time
yields

Keq ¼ 1þ 1

2

X
i¼1;2

1

ðk�k � �Þ2 þ �2

�
"i
�

�
2 Z 1

0

@

@I0

�½k�ik2Jk�ikð�
ffiffiffiffiffiffiffi
2I0

p Þ2�e�I0dI0;

the equilibrated average ion kinetic energy, where we have
dropped the second-order subscript, simplified the infinite
summation over m by retaining only the dominant m ¼
k�ik terms (k � � � k denotes the nearest integer function),
and introduced the constant �2 � 1 in order to remove the
nonphysical singularity at on resonance (� ¼ k�k). This
expression is a special case of Weber’s second exponential
integral, which yields (Watson [15], p. 395)

Keq ¼ 1þ e��2

2½ðk�k � �Þ2 þ �2�
X
i¼1;2

�
"ik�ik

�

�
2
Ik�ikð�2Þ;

where Ik�ikð�2Þ is the modified Bessel function of the first
kind. Furthermore, in the �=� > 1 limit, we find

Keq ¼ 1þ 1

ðk�k � �Þ2 þ �2

X
i¼1;2

�
"ik�ik
8��3=2

�
2
e�ð1=2Þðk�ik=�Þ2 :

(8)

From this result, we see that the exponential terms in
Eqs. (6) and (8) are almost identical where k�ik has
replaced �i, and in our small �0 analysis the amplitude
dependent term

ffiffiffiffiffiffiffiffiffiffiffi
�0=�

p
is absent. This implies to second

order hIeffi � ðk�k � �Þ2 þ �2Þ�1ð �0k�k
8��3=2Þ2, which with

Eqs. (6) and (8) yields an approximation for SEWH:

KeqðSÞ ¼ 1þ 1

ðk�k� �Þ2 þ �2

�
�0k�k
8��3=2

�
2
e�ð�=��

ffiffiffiffiffiffiffiffi
�0=�

p
Þ2=2:

(9)

This expression was derived under the assumption �0 < 1;
however, we have found it to be consistent over our
numerically investigated range 0:5< �0 < 10. This is
illustrated by Fig. 1 where we see the plot of Eq. (9)
corresponds quite well to the numerically indicated data.

Turning to the case of BEWH, it is apparent from
comparing Eqs. (7) and (8) that our second-order expres-
sion for KeqðBÞ is not accurate. The discrepancy in the

exponential terms indicates that Eq. (8) fails to capture
the effect of the regular acceleration region shown in
the BEW Poincaré cross section. Indeed, our analysis
reveals that the BEW effect only appears at higher order
in �0—an observation consistent with single wave findings
[10]. Since the analytical expression for heating becomes
prohibitively complicated beyond second order, we make
the simplifying assumption that hI0effi ¼ hIeffi, which is

justified by single ion studies that have indicated the sto-
chastic region remains qualitatively the same for both
BEW and SEW acceleration [2]. This simplification, com-
bined with the exponential of Eq. (7) that exclusively

represents the regular acceleration, thus yield an expres-
sion for BEWH:

KeqðBÞ ¼ 1þ 1

ðk�k � �Þ2 þ �2

�
�
�0k�k
8��3=2

�
2
e�f�=��ð�0=½�

ffiffi
2

p �Þ1=2g2=8: (10)

By comparing Eq. (10) with numerical results for the
investigated range of �0 in Fig. 1, we see this expression
successfully describes BEWH without expanding to fourth
order. Equation (10) thus generalizes our numerical results
and permits a direct analytical comparison between SEWH
and BEWH for arbitrary wave parameters: for all positive
values of �, �, and �0, BEWH is always greater than or
equal to SEWH. Furthermore, the good agreement of our
results with numerical work provides strong support for
our supposition that the major difference between BEWH
and SEWH lies in the fraction of particles subject to
acceleration [as indicated by the different exponential
terms in Eqs. (9) and (10)]. We thus confirm that
BEWH’s superiority stems from its ability to energize
more of an ion ensemble concurrently for a given wave
energy density.
Finally, the explicit dependence of BEWH on wave

parameters allows us to reincorporate an element of self-
consistency by substituting a dispersion relation,
Dð�; �Þ ¼ 0, into Eq. (10). In this way, we can predict,
given actual experimental constraints and without resorting
to a simulation, the resulting heating.
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