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Abstract

The heating of ions in a magnetized plasma with two electrostatic waves whose fre-

quencies di↵er by the ion cyclotron frequency is analytically, numerically, and ex-

perimentally characterized. This process, denoted beating electrostatic wave (BEW)

heating, is of particular interest since its ability to non-resonantly accelerate low

energy ions suggests that it may be more e↵ective at ion energization than the tradi-

tional, resonant heating produced by a single electrostatic wave (SEW). To explore

this possibility, the BEW and SEW mechanisms were examined through an analysis

of single particle orbits as well as the average power absorbed by an ion ensemble.

Using the total input energy density of the waves as a metric, it was found that there

are three distinct regimes for comparing the two processes: (I) for low energy density,

there is a criterion for the onset of heating that depends on the wave parameters,

and this criterion is satisfied for a lower input energy density with BEW; (II) at in-

termediate energy density, once heating has onset for both processes, SEW heating

is superior; and (III) at high energy density above a threshold value that depends

both on the wave parameters and background plasma, the BEW heating process is

predicted to lead to higher heating levels. These analytical conclusions were tested in

a low-temperature experimental setup by examining the increase in ion temperature

produced by SEW and BEW as a function of total input energy density and fraction

of energy in each wave. The experimental results were found to correspond to within

error to the theoretical trends predicted for the first regime (I) and qualitative agree-

ment was found for the second regime (II). Saturation e↵ects combined with a limited

available energy density to the experiment precluded a systematic investigation of the

third energy density regime.
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Chapter 1

Introduction

1.1 Background and motivation

The heating of a plasma with externally-coupled radiofrequency (RF) waves is a

process that is widely employed in both industrial and scientific applications. The

ability of these RF waves to introduce energy without directly contacting the plasma

particularly recommends this mechanism when e�ciency and material erosion are

of paramount importance. Indeed, over the latter half of the last century, the RF

heating of plasmas has become an indispensable tool for research ranging from the

largest of fusion experiments [1] to small-scale industrial plasma sources [2]. Even

more recently, RF waves have found a place in the field of plasma propulsion where

thruster lifetime is largely limited by the erosion of the materials exposed to the

plasma. By employing inductively coupled modes to either heat or directly accelerate

the ions of the plasma [3, 4, 5, 6], this electrodeless mechanism is a promising method

for producing continuous thrust for in-space propulsion systems.

Given the near ubiquity of RF heating in the field of plasma physics, there is an

ongoing e↵ort to identify and understand the ways in which excited waves exchange

energy with the plasma (cf. Swanson [7]). Among these studies, the need to achieve
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particle confinement for many plasma applications has motivated particular interest

in the power absorption processes that occur in the presence of strong magnetic fields.

Moreover, a subset of these power absorption processes that has merited significant

attention is the coupling of energy to ions and electrons through electrostatic (ES)

waves. This is because electrostatic waves, so-called since the time-dependent changes

in magnetic field induced by these modes as they propagate in a plasma are negligible,

can be launched in a plasma with a relatively simple antenna configuration [8], they

propagate across magnetic field lines, and there is a subset of these ES modes that

exists within the range of the ion cyclotron frequency, which facilitates a direct energy

exchange with the ions (c.f. Ono’s review on ion Bernstein wave research [9]). In light

of these advantages, we choose to focus in this thesis on ES wave power absorption

processes in a magnetized plasma.

The way an obliquely-propagating ES wave transfers energy to ions in a magne-

tized plasma is traditionally represented through the process of ion cyclotron damping

(cf. [7, 10]). This physically intuitive mechanism can be understood through a sim-

ple zeroth order analysis of single ion orbits. We show in Fig. 1.1 an ion undergoing

Larmor precession where the magnetic field is oriented in the ẑ direction such that

the ion parallel velocity is vz and the ion cyclotron precession occurs in the x̂ � ŷ

plane with perpendicular velocity v?, Larmor angle ✓, and ion cyclotron frequency

⌦i = qB0/mi where B0 denotes the magnitude of the magnetic field, q is the charge,

and mi is the ion mass. We also show an obliquely-propagating ES wave where we

have oriented the transverse component of the electrostatic wave in the x̂ direction.

Since this is an electrostatic mode, the wave vector and electric field are parallel E||k

and the wave’s electric field in the laboratory frame of reference is given by

E = (Exx̂ + Ez ẑ) cos (kxx + kzz � !t) . (1.1)

2



Figure 1.1: A single ion in a constant magnetic field B = B0ẑ is subject to an
obliquely-propagating electrostatic wave. The electrostatic wave (E||k) is assumed
without loss of generality to have ky = 0.

The position of the unperturbed particle, on the other hand, is

x =
v?
⌦i

sin ✓

y =
v?
⌦i

cos ✓

✓ = ⌦it

z = vzt,

(1.2)

where (x, y, ✓, z) = (0, v?/⌦i, 0, 0) at t = 0.

We can substitute these zeroth order orbits into Eq. 1.1 in order to estimate the

electric field Ep the ion sees in its frame of reference:

Ep = (Exx̂ + Ez ẑ) cos

✓

kx

⌦i

v? sin (⌦it) + kzvzt � !t

◆

= (Exx̂ + Ez ẑ)
1
X

m=�1
Jm

✓

kx

⌦i

v?

◆

cos ([m⌦i + kzvz � !] t) ,
(1.3)
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where we have used an apt identity [11] to express the field in terms of a series

expansion of Jm,the Bessel function of the first kind.

It is immediately evident from this result that ions with parallel velocity that

satisfy the so-called ion cyclotron resonant condition [7, 10], ! � kzvz � m⌦i = 0,

encounter on average a constant electric field in their frame of reference. This can

lead to significant energy exchange with the ion. Alternatively, ions with velocities

outside the resonant condition experience time-dependent electric fields that average

to zero—thus imparting no energy. The perpendicular velocity has a part to play too

since we see that when the ion cyclotron condition on the parallel velocity is satisfied,

the magnitude of the electric field in the particle’s reference frame is proportional to

Jm (kxv?/⌦i) where m = (! � kzvz) /⌦i. Since the magnitude of the Bessel function

has a peak value that depends monotonically on the index [11], the ion’s perpendicular

velocity also must satisfy a resonant condition, v? ⇡ !/kx � (kz/kx) vz, in order to

achieve significant acceleration.

In translating this single particle description to the heating of an ensemble of ions,

the resonant conditions in the parallel and perpendicular directions become non-trivial

requirements since the frequencies and wavenumbers of the modes that propagate in

a plasma are limited by an electrostatic wave dispersion relation, D (!,k) = 0 [10]. In

particular, the situation may arise for relatively low temperature plasmas where the

phase velocity of the wave in both directions is significantly larger than the average

thermal velocity of the ensemble, vti ⌧ !/kz,!/kx. The parallel resonant condition

in this case is only satisfied for waves that are on-resonance, i.e. with a frequency that

is an integer multiple of the ion cyclotron frequency, ! ⇡ m⌦i. The perpendicular

resonant condition similarly collapses to v? ⇡ !/kx such that only a few ions in the tail

of the thermalized ensemble distribution satisfy the perpendicular resonant condition.

We illustrate this case in Figs 1.2 (a) and (b) where we show a Maxwellian distribution

of the perpendicular component of the ion velocity along with the perpendicular phase

4



velocities of two di↵erent modes. We include a small range around the phase velocities

denoted by the shaded region to indicate qualitatively that finite amplitude e↵ects

can bring slightly o↵-resonant ions into the resonant condition [12]. It is evident from

these figures that for a single electrostatic wave (SEW) with a large phase velocity

relative to the thermal velocity, the energy exchange with the ion distribution is

confined to a small number of particles. In some cases, it is possible to overcome this

limitation by employing a wave with a lower perpendicular phase velocity relative

to the thermal velocity. This procedure is only e↵ective to a point, however, since

the dispersion relation for ES waves in a plasma frequently places a lower bound

on the wave phase velocity. For example, in the acoustic limit of the low-frequency

neutralized ion Bernstein wave, denoted the electrostatic ion cyclotron mode [13, 10],

this lower bound is given approximately by the acoustic velocity !/kx >
p

Te/mi

where Te is the electron temperature in units of energy and mi is the ion mass. Since

for many low temperature plasmas Ti ⌧ Te, it is evident that !/kx � vti and thus

the resonant condition on the phase velocity of the wave prevents significant energy

exchange with the plasma ions.

We thus are forced to turn to nonlinear processes in an e↵ort to target the low

energy ions outside the resonant condition. A promising and elegant nonlinear method

for achieving this end is to employ two electrostatic waves with frequencies that satisfy

the so-called beat criterion [14, 15, 16, 17]:

!2 � !1 = n⌦i, (1.4)

where n is an integer. The interaction of the two modes is illustrated in Fig. 1.2c

where we see that the beating of the individual waves can be approximated as a

virtual mode at the di↵erence frequency �! = !2 � !1 with wavenumber �k =

k2 � k1. The resonant condition for this beat mode in the parallel direction is given

5



(a)

(b)

(c)

Figure 1.2: Maxwellian distribution of the perpendicular ion velocity. a) Perpendicu-
lar phase velocity of the wave couples to a small number of particles in the distribution.
b) The second mode targets even fewer ions. c) The beat mode at �! and �kx has
a lower phase velocity and is capable of targeting more of the thermally distributed
ions. Grey regions denote resonance broadening due to finite amplitude e↵ects.
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by �! � �kzvz � p⌦i = 0 and in the perpendicular direction by �!/�kx ⇡ v?.

Given the beat condition for the two frequencies, we see that this driven mode is

already on-resonance such that the resonant condition is satisfied for arbitrarily low

energy ions in the parallel direction vz ! 0. Similarly, depending on the frequencies

and wavenumbers of the electrostatic modes, the beat mode also can have a lower

perpendicular phase velocity than the individual SEW, �!/�kx < !1/k1x,!2/k2x.

There is no lower bound on phase velocity for this di↵erence mode imposed by the

dispersion relation since it is not a natural plasma wave. Rather, it is locally driven by

the beat oscillations in amplitude produced by the superposition of the two naturally

propagating waves [18]. The beating electrostatic waves (BEW) therefore can be

tailored in some cases to couple energy to ions whose initial velocities do not satisfy

the resonant condition for the individual waves. This possibility of enhanced heating

recommends the BEWH process for the many magnetized plasma applications we

have outlined above.

1.2 Dissertation objective

In light of the advantages of BEW heating we have motivated qualitatively in the

previous section, a large body of work has risen to investigate the BEW acceleration

process [14, 15, 19, 16, 20, 17, 21, 22, 23, 24, 25]. Yet, in spite of all of the insight

provided by these studies into the means by which BEW accelerate individual ions,

a central question of both practical and academic importance remains: is BEW

heating (BEWH) superior to SEW heating (SEWH)? The goal of this thesis is to

answer this question by first analytically and experimentally characterizing BEWH

and SEWH and then using these results to determine the conditions for when BEWH

is the superior process.

7



1.3 Review of previous theoretical work

The BEW e↵ect is inherently nonlinear since it results from the second-order e↵ect

of the slow variations in the wave amplitude that occur at the beat frequency. This

nonlinearity leads to complicated behavior for both the acceleration of individual ions

as well as the heating of an ion ensemble in the presence of the beating waves, and as

consequence, we invariably find that any attempt to characterize this process requires

a perturbative approach that uses the wave amplitudes as the expanding parameter.

These perturbation analyses have proceeded on two fronts—separated both by

time and approach. The first falls within the realm of weak turbulence theory where

the BEW can be identified as a subset of a process termed nonlinear Landau damping.

The advantage of this analysis is that it provides a framework for determining how

the waves e↵ect macroscopically relevant parameters of the plasma, e.g. temperature

and power absorption. On the other hand, this technique inherently averages over

the ensemble of ions—washing out some of the telling dynamical e↵ects associated

with single ion acceleration. As an alternative, a second and more recent perturba-

tive method, the method of Lie transforms, examines the dynamics of a single ion

subject to BEW. The beat e↵ect—especially the slow acceleration that results from

the amplitude variation at the cyclotron frequency–can be explicitly seen with this

technique. Both methods provide unique insight into the problem, and we employ

each in measure in our analysis of the e�cacy of BEW. In the present discussion, we

review the work that has been done from each perspective.

1.3.1 Kinetic analysis

Sagdeev and Galeev in their classic text on plasma-wave interactions make the obser-

vation that “nonlinear plasma theory is usually referred to as the theory of weak tur-

bulence” (p. 1 [18]), a formalism where the nonlinear electrostatic wave interactions

8



are examined through a perturbation analysis of the Vlasov and Poisson equations.

The nonlinear interactions in this context fall into three categories: quasilinear wave-

particle interactions, nonlinear wave-wave interactions, and nonlinear wave-particle

interactions. SEW plasma heating is an example of a quasilinear particle interac-

tion where particles at the resonant condition are subject to energy exchange with

the wave. This is commonly referred to as Landau damping or in the case of mag-

netized plasmas, cyclotron damping. Nonlinear wave-wave interactions result when

three waves with !1,k1, !2,k2 and the di↵erence frequency and wave vector �!,�k

exchange energy by means of the background plasma. A condition for this coupling is

that all the waves are natural modes of the plasma, i.e. they all satisfy the dispersion

relation. The nonlinear wave-particle interaction, on the other hand, is a two-wave

process with a driven mode at the di↵erence frequency �! and wavevector �k that

is not included in the plasma’s dispersion relation. This driven mode acts like a

virtual wave, and in directly analogy to the way a single wave resonantly delivers

energy to particles through a quasilinear interaction, it imparts energy directly to the

plasma species through a resonant exchange at its di↵erence frequency and wavevec-

tor. Given the nonlinear nature of the damping of the driven mode, this process is

commonly referred to as nonlinear Landau damping or nonlinear cyclotron damping

(NICD) when a magnetic field is present.

Rosenbluth and Coppi [14] first examined NICD for the special case of purely

perpendicularly-propagating electrostatic waves. The authors of this study employed

a combination of perturbation analysis and a dressed particle treatment to derive

a kinetic wave equation for the damping of the individual wave amplitudes in the

presence of nonlinear wave-particle coupling. Porkolab and Chang [15] in the 1970s

extended this analysis to the case of two, obliquely-propagating modes in a magne-

tized plasma by examining the Vlasov and Poisson equations to fourth order. In

an elegant Hamiltonian formulation that relied on a transformation to an oscillation
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center coordinate system, Johnston et al. [19] successfully reproduced Porkolab and

Chang’s result. This approach was unique, however, in that the wave damping was

inferred by first estimating the power absorbed by the particles subject to nonlinear

Landau damping.

The work of Porkolab and Chang as well as Johnston was particularly useful for

explaining anomalous heating at the half-harmonics of the ion cyclotron frequency

that had been observed in fusion experiments [26, 27, 28]. Indeed, the nonlinear self-

interaction of an electrostatic wave with itself occurs at �! = 2! such that at the

half-harmonics, the nonlinear coupling is on-resonance (at a harmonic of the cyclotron

frequency). This can lead to substantial energy exchange. Additional studies have

delved more in depth into this nonlinear process [29, 30, 31] through a combination of

analytical and numerical results—most of which draw upon the conclusions of Porko-

lab and Chang. These works have lent an additional component of self-consistency in

that they allow for the evolution of the background distribution of ions when subject

to the nonlinear damping. This is in contrast to the original work by Porkolab and

Chang who assumed the plasma was su�ciently lossy that the background distribu-

tion of ions remained at a constant temperature.

In the context of kinetic theory, the BEW interaction is an example of NICD

where instead of relying on the self-interaction of a single mode, two waves that

satisfy the beat criterion are launched into the plasma. The advantage of analyzing

this interaction through the lens of weak turbulence and the methods outlined above

is that it leads directly to approximations for the power absorbed by a background

species of an ion population when subject to BEW. This power absorption is the

metric we ultimately adopt for contrasting the BEW and SEW processes. On the

other hand, one of the most significant disadvantages of the weak turbulence theory

is that in solving the Vlasov equation for the power absorption of the ions subject

to BEW, we average over the individual particle orbits. This averaging procedure
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assumes the existence of a randomizing element to destroy the phase coherence of the

particle orbits, and while typically a small spread in the spectrum of the waves or

weak collisionality are employed to justify this random assumption, in the presence

of monochromatic waves with small collisionality, this procedure may not be correct.

Examining the problem from a single particle perspective therefore is a necessary step

to determine if particles orbits can be approximated as random.

1.3.2 Single particle analysis

In an e↵ort that has evolved largely independently of NICD research, a number of

studies have examined the BEW e↵ect from the single particle perspective. These

analyses, which are based on formulating a Hamiltonian for the motion of a single

ion subject to externally imposed electrostatic waves, were first inspired by a need

to explain anomalous acceleration of ions in regions of the earth’s ionosphere known

as Lower Hybrid Solitary Structures (LHSS) [32]. Sounding rocket studies of the

LHSS revealed that oxygen and hydrogen ions undergo prodigious acceleration in

the direction perpendicular to the earth’s magnetic field (see Ref. [33] for a review)

and that these acceleration zones are typically characterized by a broad spectrum of

perpendicularly-propagating electrostatic waves. Given the correlation between these

two phenomena, there have been a number of analytical attempts to link the ion

acceleration to an interaction with these electrostatic modes.

Traditional quasilinear cyclotron damping cannot explain the observed energiza-

tion since this process does not allow for power absorption in the limit of perpendicular

propagation [34]. Karney et al. [35, 12, 36] (for the case of an o↵-resonance wave) and

Fukuyama [37] (for the case of on-resonance), on the other hand, showed from a sin-

gle particle perspective that for su�ciently large amplitude waves, particle orbits in

the presence of a perpendicularly-propagating electrostatic can become stochastic—

thereby leading to a random walk of the particle in velocity phase space and a net
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increase in energy. The only caveat is that this process occurs primarily for particles

with velocities near the resonant condition, v? = !/kx—ions with velocities outside

of this zone have relatively unperturbed orbits. Thus, while the amplitudes of the

electrostatic waves in the ionosphere are su�ciently large to allow for this stochastic

acceleration, Ram et al. [16] showed that the initial velocity of the ions were too

di↵erent from the phase velocities of the propagating modes in the ionosphere to

undergo energy exchange. This is illustrated in Fig. 1.3.

Figure 1.3: Figure from Ref. [16] that shows the observed initial energy of ions in the
LHSS and the predicted regions where energy exchange with the waves can occur.

Given the failure of single wave theory to explain the anomalous acceleration,

Ram et al. performed a numerical simulation to solve the equations of motion for

a single ion subject to two electrostatic waves. Through a parametric investigation

of frequency combinations, they demonstrated that when two waves satisfy the beat

criterion, !2 � !1 = n⌦i, some low energy ions with velocities significantly di↵erent

from the phase velocities of the individual waves are subject to a slow, coherent

acceleration. This process energizes an ion until its velocity reaches the SEW resonant

condition. Stochastic acceleration then becomes the dominant e↵ect. Ram et al.
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proposed that in the spectrum of propagating modes of the LHSS, some of the waves

could satisfy the beat criterion. They then demonstrated through the same simple,

non-self-consistent numerical model that given the reported experimental data, this

process could explain the anomalous acceleration of ions.

Interestingly, in a more recent review of the LHSS structure in 2003, Schuck et

al. [32] pointed out that the data set used by Ram et al. to perform their analysis

contained significant errors in the estimates for the electrostatic wavelengths. In light

of this, these authors demonstrated that Ram et al.’s simulations did not in fact

predict the correct levels of acceleration observed in the ionosphere. This ruled out

the BEW as a likely explanation for the anomalous acceleration.

Ram et al.’s work was still significant, however, in that they had identified a non-

resonant mechanism for particle acceleration. A number of studies correspondingly

have been devoted to understanding this interaction. In particular, Chia et al. [20]

actually predate Ram et al. in attempting to characterize the underlying coherent

acceleration that results when multiple waves are present that satisfy the beating

wave criterion. Benisti et al. [17, 21] similarly published a detailed analytical and

numerical analysis of single particle dynamics when subject to two externally imposed,

perpendicularly-propagating electrostatic waves. They ultimately demonstrated that

the beating condition is a necessary criterion to couple energy to low energy ions

outside the resonant zones of the individual waves.

Strozzi et al. [22] were the first to examine the BEW e↵ect on individual ion

orbits for the more general case of oblique propagation. They demonstrated that

coherent acceleration persists provided the di↵erence in the parallel wavenumbers is

small, and they also showed that the coherent acceleration characteristic of BEW

will only accelerate ions up to the resonant velocity if the initial Hamiltonian of the

ion falls within a certain range of values. This finding was a precursor to the more

rigorous but specialized investigation performed by Spektor and Choueiri [23], who
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in 2004 returned to the case of perpendicularly-propagating modes and demonstrated

through an analysis of the single particle Hamiltonian that for the special case of

two waves with equal amplitudes and equal perpendicular wavenumbers, the beating

criterion is only a necessary condition for acceleration. There is in fact an additional

requirement on the initial Hamiltonian of the ions in order for coherent acceleration

to occur.

The culmination of this work is shown in Fig. 1.4 where we have a Poincaré cross-

section [38] defined at the least common time period of the two beating waves. This

portrait [23, 24], which shows the ion velocity as a function of Larmor angle, concisely

depicts the types of dynamical behavior that ions will encounter when subject to two

transversely-propagating BEW with equal wave amplitudes and wavenumbers. The

three classes of trajectories are dictated by fixed points in the plane, HH , HE with the

hyperbolic fixed point HH corresponding to the phase velocity of the lower frequency

wave. Particles near the elliptic point HE are in the forbidden region and are only

subject to sinusoidal changes in their perpendicular velocity with no net change in

energy. On the other hand, ions in the stochastic region are su�ciently close to the

phase velocity of the wave that they undergo SEW stochastic acceleration. Indeed,

the SEW Poincaré cross-section is similar to the one shown in Fig. 1.4 where the

entire area below the phase velocity becomes the forbidden region. The BEW e↵ect

occurs in the third, regular acceleration region where ions are subject to slow, coherent

BEW acceleration until they reach the resonant condition. At this point they undergo

stochastic acceleration.

From this portrait, the advantage of a single wave analysis becomes clear. We

immediately can identify the nonlinear e↵ect of the beating waves (the slow coherent

acceleration) as well as the stochastic e↵ect brought on by the individual SEW. For

sparse, non-thermalized plasmas where individual acceleration is important and the

waves can be approximated as externally imposed, the single particle analysis thus
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Figure 1.4: Left: Poinaré figure adapted from Spektor and Choueiri [23] that illus-
trates the necessary and su�cient conditions for coherent acceleration to occur for
the case of two BEW with equal amplitudes and wavenumbers. The wave frequencies
are !1 = 20.2⌦i,!2 = 21.2⌦i. The phase velocity of the lower frequency wave is
denoted by the solid line. Right: sample trajectories in time for ions in each region
of the Poincaré cross-section.

is the most apt for describing the dynamical system. On the other hand, when

trying to characterize the heating of an ensemble of ions, single particle analysis has

significant shortcomings – not only due to its lack of self-consistency but because of

the fundamental di�culty of translating the inherently deterministic orbits predicted

by the single ion Hamiltonian to the randomization of energy that is characteristic

of ensemble heating. In the context of plasma heating then, single particle analysis

best serves as a complement to the kinetic analysis from the previous section in that

it indicates when the use of the random phase approximation is appropriate.

1.4 Previous laboratory experiments

A number of experiments have focused on NICD with the goal of explaining half-

harmonic heating in magnetically confined fusion plasmas. These studies [26, 28,

39, 40] have experimentally demonstrated that nonlinear damping on both particle
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species does in fact occur in magnetically confined fusion plasmas for SEW with

su�ciently large wave amplitudes. As for the case of the BEW process where the

nonlinear interaction arises from two externally imposed waves, there have been sig-

nificantly fewer investigations. The first experimental work was performed by Porko-

lab and Chang [41, 42] who investigated the electron equivalent of NICD, nonlinear

electron cyclotron damping (NECD), by examining wave damping and amplification

in the presence of two nearly perpendicularly-propagating beating electron Bernstein

modes. They confirmed to within an order of magnitude their predictive model for the

nonlinear damping of electron modes and thus illustrated for the first time the reality

of the nonlinear process for two externally-coupled waves. More recently, Spektor

[43, 44, 24] constructed the first Beating Waves Experiment to explicitly compare

the ion heating levels produced by SEW when compared to BEW. In this config-

uration, electrostatic ion cyclotron waves were launched in a magnetically confined

argon plasma by means of a small plate antenna situated in the plasma, and the ion

temperature increase was monitored with a laser induced fluorescence (LIF) system.

The results from this setup indicated the superiority of BEW at the only set of wave

frequencies and antenna power that were investigated.

While this study set the stage for more detailed investigations of nonlinear ion

heating BEW, we note here that a few issues cast the results of this investigation

into doubt. In particular, while there was an e↵ort made to maintain equal input

power to the antenna for both the SEW and BEW cases, the antenna coupling to

the plasma from the individual waves was not taken into account. It therefore is

possible that the second mode coupled to the plasma more e�ciently by virtue of

its higher frequency and longer parallel wavenumber. In this event, the total power

carried into the plasma would have been greater than the SEWH case—even though

the input power from the wave amplifier was the same. Thus, while the absorption

of BEW could in fact have been the more e�cient mechanism, the uncertainty about
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the input power in this experiment precluded a direct comparison between processes.

Additionally, the observed discrepancy between heating levels barely exceeded error

bars such that the conclusion that the BEW heating was superior to SEW heating is

suspect. Thus, while this study laid the ground work for more detailed investigations

of the BEW plasma heating process, given the limited scope and limited statistical

significance of results of this investigation, the work’s conclusions are tenuous. BEW

heating consequently has yet to be systematically compared with the SEW process.

1.5 Dissertation outline and approach

From previous theoretical, experimental, and numerical work, several aspects of the

BEW mechanism have been examined. The ultimate goal of this dissertation is

to build on these previous results with the purpose of answering the fundamental

question: is the BEW process superior to SEW heating? To this end, we use in this

thesis a common metric, the total input energy density to the waves, to compare the

e�cacy of the two processes in heating the plasma. We proceed by

1. Determining analytically the threshold for the onset of heating as a function of

input energy density.

2. Comparing analytically and numerically SEWH and BEWH once the onset of

heating has occurred.

3. Predicting analytically the criteria for the superiority of BEWH over SEWH.

4. Presenting experimental results to support our analytical findings.

In Chapter 2, we accomplish the first aim by employing a single particle description

for BEW ion acceleration to predict the onset of stochastic particle orbits. This

section largely follows the treatment of Karney et al. [36] who performed a similar

analysis in determining the threshold for the onset of stochasticity in the presence of
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a SEW. In Chapter 3, we present two models for BEW and SEW heating of an ion

ensemble. The first connects directly to the single particle description outlined by

Spektor and Choueiri [23] while the second is a kinetic model for power absorption

that is largely inspired by Johnston’s Hamiltonian treatment for the same problem

[19]. We use this second description to determine a criterion in terms of energy

density for when BEWH is the superior process to SEWH. In Chapter 4, we describe

our experimental setup, methods, and diagnostics for investigating the BEWH and

SEWH in the second generation of the Beating Waves Experiment. In Chapter 5,

we present our experimental results for a parametric investigation of the BEWH and

SEWH processes and discuss these in context of our analytical predictions. Finally, in

Chapter 6, we outline the implications of our work for future applications of BEWH

as well as suggest additional avenues of research.
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Chapter 2

Heating onset

From a single ion description it has been demonstrated that when two electrostatic

waves satisfy the so-called beat criterion, !2 � !1 = n⌦i where !1,!2 are the wave

frequencies, ⌦i is the ion cyclotron frequency, and n is an integer, ions with initial

velocity below the SEW phase velocity can experience significant acceleration through

a two-stage process. First, the ions are coherently accelerated by the slowly varying

beat envelope at the di↵erence frequency !2�!1 of the BEW. Second, after these ions

have been accelerated to the phase velocities of the individual waves that comprise

the BEW, the much faster stochastic e↵ects characteristic of SEW dominate and ions

are accelerated to higher energies through a random walk in velocity space.

The coherent acceleration of the low energy ions characteristic of the two-stage

BEW process has been the subject of a number of theoretical and numerical studies

[20, 16, 17, 21, 22, 23, 45, 25]. These investigations have not only predicted analyt-

ically the orbits followed by the low energy and coherently accelerated ions subject

to BEW [17, 21, 22] but also—for a special case of wave parameters—the necessary

and su�cient conditions for this acceleration to occur [23].

Most of these single ion results are valid only for velocities below the SEW resonant

conditions of each wave, however, and with the exception of a first-order on-resonance
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analysis done by Benisti et al. [21] and a numerical argument presented by Sheng et

al. [45], the full extent of acceleration for ions after they reach this resonant condition

is unknown. Indeed, the stochastic acceleration produced by BEW is not well under-

stood, and to date it simply has been assumed without proof that these high energy

orbits follow the well-established trends of stochasticity for SEW ion acceleration

[22, 17, 25]. This is a critical oversight given the two-fold importance of stochastic ef-

fects to the BEW acceleration process. First, without decorrelation of particle orbits

to supplement the coherent acceleration provided by BEW, the increase in ion energy

can be significantly limited [20, 21]. Second, in addition to the coherent acceleration

provided by the BEW, the existence of the beat resonance between the two waves

suggests that for equal wave energy density, the onset of stochasticity for BEW should

be lower than the SEW case [45]. Since the loss of phase information produced by

this stochastic e↵ect can lead to e�cient power absorption of the waves, we anticipate

enhanced heating for lower input energy with the BEW case—even when the coher-

ent beat acceleration of low energy ions is suppressed (when extreme collisionality,

for example, is dominant).

Stochasticity is thus an important consideration for the BEW process, and the

need is apparent for a systematic evaluation of this e↵ect. The goal of this chapter

is to achieve this end by deriving an expression that indicates three critical aspects

of the stochasticity: the threshold wave amplitudes for the onset of stochasticity;

the lower bound in ion velocity at which this stochastic e↵ect occurs; and the upper

bound in ion velocity for particles subject to stochasticity.

In the first section, we begin with the case of perpendicular propagation and review

the relevant equations of motion for the interaction of a single ion with BEW. In the

second part, we examine analytically and numerically the particle dynamics through

the use of the Poincaré cross-section. We also demonstrate in that section trends for

the onset of stochasticity and its boundaries in phase space. In the third section, we
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derive an analytical condition for the onset of stochasticity, which we subsequently

verify numerically in the fourth section through an analysis of the maximum Lyapunov

exponents. For the fifth part, we use our analytically derived condition to compare

the onset of stochasticity for the SEW, BEW, and two non-beating waves. In the last

section, we extend our results from the perpendicularly-propagating case to allow for a

finite parallel wavenumber and derive a modified form of the stochasticity parameter.

2.1 Equations of motions

The equation of motion for an ion subject to two, perpendicularly-propagating elec-

trostatic waves in a uniform magnetic field is given by [22]

mi
d2x

dt2
= q

2
X

j=1

�jkjx sin(kjxx � !jt + ↵j) + qv ⇥ B, (2.1)

where mi denotes the ion mass, q is the charge, �j is the potential amplitude, kjx is

the wave vector where we have denoted the direction of propagation as x̂, !i is the

wave frequency, B = B0ẑ denotes the background magnetic field, and ↵i is the phase

of the wave.

We can express this dynamical system in a normalized, action-angle formulation

that is more easily analyzed by perturbation methods (Appendix A). This yields

H = I +
2
X

i=1

"j cos (j⇢ sin ✓ � ⌫j⌧ + 'j) , (2.2)

where capitalized letters denote normalized quantities, I = 1
2

�

V 2
x + V 2

y

�

is the kinetic

energy of the particle, ⌫j = !j/⌦i, ⇢ =
p
2I, "j = (qk2

1x�j/mi⌦2
i ), j = kjx/k1x, ✓

is the angle of cyclotron precession measured from the ŷ direction, and ⌧ = ⌦it. In

this system, lengths have been normalized by the wavelength k�1
1x and velocities have

been normalized by the term ⌦i/k1x.
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It should be noted that in this formulation, the definition of the normalized wave

amplitude "j di↵ers from those in related references [17, 23] by a factor of k1x/⌦i.

This stems from our anticipated need to accommodate obliquely propagating waves

with respect to the background magnetic field. Further implicit in this derivation is

the result that the guiding center of motion in the x̂ direction is a constant of motion.

This allows for the elimination of a degree of freedom in the problem.

We now see that the equations of motion can easily be separated into an action

H0 = I that is modified by a phase- and time-dependent term H1 (I, ✓, ⌧). This

form lends itself to perturbation analysis techniques that we employ in di↵erent mea-

sure throughout our investigation. Specifically, we can transform Eq. 2.2 to a more

tractable form K by employing a second-order (in amplitudes "1, "2) canonical trans-

formation derived with the method of Lie transforms (Appendix B) in Ref. [17]:

K = Ĩ +
2
X

j=1

"2jS
⌫
j

1 (⇢̃) + "1"2 cos
h

(⌫1 � ⌫2)
⇣

✓̃ � ⌧
⌘

+ '1 � '2

i

S6 (⇢̃) , (2.3)

where ✓̃, Ĩ denote the transformed coordinates and we have

S
⌫
j

1 (⇢̃) =
X

m

mJm (j ⇢̃) J 0
m (j ⇢̃)

2⇢̃ (⌫j � m)

S6 (⇢̃) =
X

m

mJm (1⇢̃) J 0
m+1 (2⇢̃)

2⇢̃ (⌫1 � m)
+

mJm (2⇢̃) J 0
m�1 (1⇢̃)

2⇢̃ (⌫2 � m)
.

(2.4)

The summation is over all integer m, and Jm denotes the Bessel function of the

first kind. This transformation was derived for the so-called o↵-resonance case where

⌫2 � ⌫1 = 1 and for ⌫1 6= n, and 2⌫1 6= n where n is an integer. However, as we will

demonstrate in the following sections, the threshold for stochasticity we find from

this expression is numerically validated even for these exceptional cases. Additionally,

the relationship between the canonical and the transformed variables is a first order

transformation I = Ĩ + O ("j) , ✓ = ✓̃ + O ("j) [17]. For our purposes, we follow
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the precedent of Refs. [17, 21, 22, 23] in adopting the small perturbation limit such

that the transformation of coordinates is of order unity. We therefore drop the tilde

coordinates in our subsequent analysis and allow K ! H.

2.2 Web structure

In order to illustrate the dynamics governed by Eq. 2.2, we employ the Poincaré cross-

section (PC)—alternatively known as the surface of sections method [38]. We follow

the previously established convention for BEW investigations [23] in defining our PC

with respect to time. Numerical solutions are plotted in this case by integrating the

equations of motion from Eq. 2.2 for a number of initial conditions, (✓, ⇢) at ⌧ = 0,

and sampling these values at a fixed time interval equal to the least common period

of the two waves, ⌧c.

We show a series of these PC in Fig. 2.1 for the representative parameters ⌫1 =

24.2, ⌫2 = 25.2;1 = 2 = 1;'1 = '2 = 0; and increasing values of the perturbation "

where we have let "1 = "2 and defined " = "1. The initial conditions in each plot are

the same; however, the time of integration is larger for smaller wave amplitudes in

order to account for the slower orbit frequency around islands in the PC. It is evident

from these results that in the case of small perturbation strength (" = 0.1), the beat

e↵ect produces a web structure in phase space characterized by a series of islands

with intervening separatrices around which particle trajectories orbit. This island-

populated phase space is well documented [21, 23] and can be predicted analytically

by using a generating function of the second kind, F2 = J [✓ � ⌧ ] [46], to canonically

transform Eq. 2.3 to an autonomous form:

Ĥ =
2
X

i=1

"2iS
⌫
i

1 (⇢) + "1"2 cos [ +�']S6 (⇢) , (2.5)

where we have used J = I,  = ✓ � ⌧ , �' = '2 � '1, and we have invoked the
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Figure 2.1: Poincaré cross sections in time defined at the least common period of
the two waves, ⌫1, ⌫2. The same initial conditions are used in all plots with the
common wave parameters ⌫1 = 24.2, ⌫2 = 25.2;1 = 2 = 1;'1 = '2 = 0. The wave
amplitudes are also set equal such that "1 = "2 = ". The markers (N, 4) indicate the
locations of the analytically predicted elliptic points.
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beating wave criterion, ⌫2 �⌫1 = 1. In this form, lines of constant Ĥ describe particle

trajectories in the PC, and therefore, the islands and elliptic points should appear at

the fixed points of the autonomous Hamiltonian, i.e. where

 ̇ = 0 =
2
X

i=1

"2i
1

⇢

@S⌫
i

1 (⇢)

@⇢
+ "1"2 cos [ +�']

1

⇢

S6 (⇢)

@⇢

İ = 0 = "1"2 sin [ +�']S6 (⇢) .

(2.6)

We denote the location of the analytically predicted elliptic points from this result

as markers in Fig. 2.1 where good agreement is observed with the particle orbits

over the plotted phase space. This correspondence helps establish the validity of the

second-order approach in the small amplitude limit. Furthermore, we note that the

web structure predicted from Eqs. 2.5 and 2.6 persists with increasing values of " for

trajectories below the SEW resonant velocity, 1⇢ = ⌫1. This observation permits

the continued use of Eq. 2.6 in characterizing this region of phase space for large

wave amplitudes, and it is in part because of this expedient result that the coherent

acceleration has been the primary focus of previous BEW investigations.

On the other hand, the analysis for trajectories above the SEW resonant condi-

tions j⇢ > ⌫j is significantly complicated for wave amplitudes where the second-order

description begins to break down. Indeed, as can be seen from Fig. 2.1, with increas-

ing perturbation strength the predicted web structure gives way to chaotic orbits.

The stochasticity first appears with increasing " for particles close to the resonant

condition and near initial cyclotron phase ✓ ⇡ 0 where they are in phase with the two

waves. Ions with initial cyclotron angle out of phase with the waves ✓ ⇡ ⇡ remain in

trapped orbits until su�ciently large amplitudes are reached (" = 3.9). For interme-

diate values of perturbation strength (" = 1.1, 2.4), the second-order prediction for

the elliptic points remains approximately correct near the trapped orbits, and as al-

ready noted, below 1⇢ ⇡ ⌫1 the web structure persists for all cases. We also observe
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that the stochastic region exhibits an upper bound above which the web structure

persists and that the lower bound actually extends below the approximation 1⇢ ⇡ ⌫1

for increasing values of ".

These finite amplitude e↵ects which are inherently tied to stochastic acceleration

cannot be predicted by the second-order description in Eq. 2.5 since the integra-

bility of this expression precludes stochastic dynamics. Spektor and Choueiri [23]

circumvented this problem in part for the special case of equal wave amplitudes and

wavenumbers "1 = "2,1 = 2 by identifying—as we have done here through a visual

inspection of the PC— the location of the lower bound with the lowest analytical

predicted hyperbolic point from Eq. 2.6. They thus recovered 1⇢ ⇡ ⌫1. A similar

analysis can be followed from the work of Strozzi et al. [22] whose derivation of the

autonomous Hamiltonian in the case of obliquely propagating waves allows for a sim-

ilar (though numerical) calculation of critical points. These estimates for the lower

bounds are only approximations, however, in that they do not take into account the

root of the stochasticity in phase space. It is for the same reason that these studies

do not provide general predictions for the upper bound of the stochastic region or a

threshold condition for the onset of stochasticity. The need is thus apparent to give

special attention to the chaotic orbits in the system, and in the following section we

motivate a description of the dynamics that accounts for these e↵ects.

2.3 Stochastic onset

2.3.1 Resonances

One commonly employed method to establish the onset of stochasticity for a dynam-

ical system is the so-called Chirikov condition [47], which states that stochasticity

occurs when the separation between resonances in phase space becomes smaller than

their average frequency half-widths. The physical reason behind this criterion stems
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from the frequency mixing produced by the overlap of resonances, which in turn can

lead to the decorrelation of particle orbits.

For our dynamical system, we expect to see two classes of resonances: 1) those

associated with the SEW resonance between cyclotron motion and the individual

wave frequencies such that h✓̇i/⌫i = m/n where hi denotes the time average and

n, m are integers and 2) those associated with the BEW resonance between the cy-

clotron motion and the beat frequency of the waves, h✓̇i/ (⌫2 � ⌫1) = 1. Both of these

resonances—when they exist—will appear as fixed points in the PC we defined in

the previous section. This can be seen explicitly by considering the criterion for the

formation of fixed points in this PC:

⌫c

h✓̇i
=

p

s
, (2.7)

where s, p are positive integers, ⌫c = 1/⌧c is the frequency of the common period of

⌫1, ⌫2, ✓̇ is derived from the non-autonomous Hamiltonian, and h..i here denotes the

average over p periods of the sampling time, ⌧c. We can see from this prescription that

BEW resonance corresponds to first-degree islands where p = 1, i.e. island chains

that only exhibit a single fixed point in the PC. This is exactly the web structure

shown in the " = 0.1 case of Fig. 2.1 and predicted from the autonomous Hamiltonian

in Eq. 2.5. On the other hand, we anticipate the islands from interactions with the

SEW resonances first to occur where h✓̇i = ⌫i/k⌫ik [35, 12] (k..k denotes the nearest

integer function). This suggests that these resonances should appear as p = k⌫ik fixed

points in the cross-section, and indeed, the e↵ects of these islands can be observed as

the periodic ripples in the first degree island orbits.

We have noted from the analytical work in the previous section that the islands

due to the BEW e↵ect (p = 1) persist for arbitrarily small wave amplitudes. How-

ever, as can be seen qualitatively from Fig. 2.1, the resonances associated with in-
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dividual waves, ⌫1, ⌫2, exist exclusively near the SEW resonant velocities in phase

space ⇢ = ⌫j/j. It is only with increasing perturbation strength that these higher

degree islands expand into higher velocities, i.e. larger values of ⇢. This can be

explained by considering the source of these respective resonances. In the BEW

case, the resonances arise from the di↵erence frequency of the two waves—a fixed

parameter—which is inherent to the system. On the other hand, SEW resonances

require nonlinear perturbations in the average frequency of cyclotron precession h✓̇i

in order to be satisfied. This distinction between resonances is important, for even

though the BEW islands exist for small amplitudes, we can see from a qualitative in-

spection of Fig. 2.1 that it is the SEW resonances and their overlap with the inherent

BEW resonances that lead to stochasticity.

In order to demonstrate this overlap analytically from the Chirikov criterion it

is necessary to identity the location of these resonances as well as the perturbation-

dependent width. We can analytically do the former through a second-order pertur-

bation analysis. Characterizing the widths, however, in a global and analytical way is

significantly more di�cult: while there is an established method [47] for determining

island widths, the linearity of H0 = I in our system precludes the necessary step in

this prescription of approximating the motion as a non-linear pendulum.

In light of this limitation, we are forced to turn in the following section to a nu-

merical analysis to complement our investigation. In a technique inspired by Karney

and Bers [35, 12] we start by identifying analytically a perturbation-dependent term

that predicts the existence of the higher degree SEW resonances and assume that the

onset of stochasticity scales with it. We then use this scaling term in conjunction

with a numerical investigation of the PC to derive a quasi-analytical condition for

the onset of stochasticity.
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2.3.2 Parameter for stochastic onset

We begin by referring to the non-autononomous, second-order Hamiltonian from

Eq. 2.3 to derive a condition for the formation of SEW islands. As we have noted

previously, this integrable Hamiltonian cannot map out stochastic orbits. We there-

fore only use it to predict the appearance of higher degree, integrable islands in phase

space. The stochastic overlap of these islands is reserved for the numerical discussion.

With this in mind, we first determine the equations of motion from Eq. 2.3:

✓̇ = 1 +
2
X

j=1

"2j
1

⇢

@S
⌫
j

1 (⇢)

@⇢
+ "1"2 cos [✓ � ⌧ +�']

1

⇢

@S6 (⇢)

@⇢

İ = "1"2 sin [✓ � ⌧ +�']S6 (⇢) .

(2.8)

From the first line of this expression, we can infer that ✓ ⇡ ⌧ + ✓0 + O("2j) where ✓0

denotes an initial Larmor angle. For our analysis, we let this initial condition satisfy

✓0 + �' = 0 since we have already pointed out from the plots in Fig. 2.1 that this

relative phase with respect to the BEW waves is the most favorable for the onset of

stochasticity. For small potential amplitudes, we consequently see that hİi ⇠ O("4j),

which allows us to assume constancy to second order for the action in our estimates.

We further use the approximation ✓ ⇡ ⌧ + ✓0 + O("2j) to assert the periodic term in

✓̇ is constant when taking the average indicated in Eq. 2.7. This yields

h✓̇i ⇡ 1 +
2
X

j=1

"2j
1

⇢

@S
⌫
j

1 (⇢)

@⇢
+ "1"2

1

⇢

@S6 (⇢)

@⇢
. (2.9)

With this expression, we first consider the resonances produced by the lower

frequency wave: h✓̇i/⌫1 = n/m where n and m are integers. For di↵erent values

of n, m, we follow a treatment similar to that of Karney in defining a parameter
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R = k⌫1kh✓̇i � ⌫1 such that from Eq. 2.9

R = �� + k⌫1k
"

2
X

i=1

"2j
1

⇢

@S
⌫
j

1 (⇢)

@⇢
+ "1"2

1

⇢

@S6 (⇢)

@⇢

#

. (2.10)

where � = ⌫1 � k⌫1k. Large values of |R| correspond to the onset of additional

resonances and islands in the BEW PC. Indeed, R = 0 corresponds to the first onset

of islands where n = 1, m = k⌫1k, while deviations from R = 0 indicate the formation

of increasingly non-linear h✓̇i 6= 1 resonances. This suggests an appropriate scaling

term for the onset of stochasticity:

F1 = f (�) k⌫1k
"

2
X

j=1

"2i
1

⇢

@S
⌫
j

1 (⇢)

@⇢
+ "1"2

1

⇢

@S6 (⇢)

@⇢

#

, (2.11)

where we have collapsed the dependence on � into a function f (�). We find a similar

result for the onset of islands around the resonances of the second wave:

F2 = f (�) k⌫2k
"

2
X

i=1

"2i
1

⇢

@S⌫
i

1 (⇢)

@⇢
+ "1"2

1

⇢

@S6 (⇢)

@⇢

#

. (2.12)

In the case of large ⌫1 � 1, these results converge to a global parameter for island

overlap at the resonances of each wave. For the remainder of the discussion then,

we invoke this large frequency assumption in Eq. 2.11 by defining F = F1 ! F2 and

similarly k⌫jk ! ⌫j. We note here that solving this term for the case where F = 0

corresponds to calculating the location of the elliptic points in the ⌫c cross-section

from Eq. 2.5. This is not surprising since following the same treatment above for the

BEW resonance (substituting ⌫1 ! 1;n = m = 1) should produce a condition for the

formation of p = 1 islands in the PC.

For higher-order resonances and F 6= 0, however, we seek a simpler form of

Eq. 2.11. In the limit of large j⇢ > ⌫j +
�

1
2⌫j
�1/3

, we see that this term can be
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expressed as (Appendix C):

F = f (�)
⌫21⇡

2 sin (⇡�)

⇥

("1A1 (⇢) sin↵1 + A2 (⇢) "2 sin↵2)
2

�"1"2
(A4

1 (⇢) + A4
2 (⇢))

A1 (⇢)A2 (⇢)
cos↵1 cos↵2 � ("1A1 (⇢) cos↵1)

2 � ("2A2 (⇢) cos↵2)
2

�

,

(2.13)

where we have defined

Ai (⇢) =
|H10

⌫
i

(i⇢) |
⇢

↵i =



�

(i⇢)
2 � ⌫2i

�1/2 � ⌫i cos
�1

✓

⌫i
i⇢

◆

� ⇡

4
(1 � 2�)

�

.

(2.14)

Here H1
⌫
i

denotes the Hankel function of the first kind and the derivative is with

respect to ⇢. In order to simplify this result further, it is desirable to find a method

for factoring the additional terms. With this purpose in mind, we show in Appendix

C that in the large velocity limit (2⇢,1⇢ � ⌫2, ⌫1) and assuming 2 ⇠ 1, we can

reduce the second term to

⌫21⇡

2 sin (⇡�)
("1A1 (⇢) cos↵1 + A2 (⇢) "2 cos↵2)

2 , (2.15)

such that the total expression for the scaling parameter is given by

F =f (�)
⌫21⇡

2 sin (⇡�)

⇥
⇥

("1A1 (⇢) sin↵1 + "2A2 (⇢) sin↵2)
2 � ("1A1 (⇢) cos↵1 + "2A2 (⇢) cos↵2)

2⇤ .

(2.16)

Finally, we note that since both ↵1 and ↵2 are rapidly varying functions of ⇢, we

need only retain the amplitudes of the scaling terms. This suggests that the correct

31



parameter for the onset of stochasticity is given by

F = f (�)G (⌫1, "1, "2,1,2, ⇢) , (2.17)

where we have folded the constants into the function f (�) and defined

G (⌫1, "1, "2,1,2, ⇢) = ⌫1 ("1A1 (⇢) + "2A2 (⇢)) (2.18)

This final expression provides a simple term for the onset of stochasticity in the

case of perpendicularly-propagating BEW that is valid for ion velocities greater than

the wave velocity and for normalized wavenumbers that satisfy 2 ⇠ 1. It is of

particular importance that we were able to factor this result since this form suggests

that the BEW e↵ect has a lower threshold for stochasticity than the case with two

non-beating waves. We postpone this discussion for the moment, however, in order

to numerically verify Eq. 2.17 and determine the appropriate form of f(�). To this

end, in the following section we use a numerically calculated criterion—the maximum

Lyapunov exponent— for stochasticity in phase space.

2.4 Numerical analysis

For dynamical systems, the maximum Lyapunov exponent � provides a measure of

the separation |Z| in phase space of two particle trajectories as it depends on the

small initial separation, |Z
0

| [38]:

|Z| = |Z
0

| e�⌧ . (2.19)

Since a positive � corresponds to exponentially diverging trajectories, this parameter

can serve as a metric for the degree of stochasticity in a local region of phase space. For
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our system, we used a prescribed algorithm (Appendix D) to numerically estimate the

maximum Lyapunov exponents (MLE) of Eq. 2.2 as a function of initial conditions,

(✓, ⇢) at ⌧ = 0. This method yielded values of � that converged for ⌧ < 150 in all

cases considered. Additionally, in order to approximate this stochastic parameter as

a function strictly of ⇢, we selected five equally spaced initial values of ✓ for a fixed ⇢

and averaged them to find � (⇢) = 1
5

P5
n=1 � (n2⇡/5, ⇢).

Figure 2.2: The angle-averaged maximum Lyapunov exponent as a function of nor-
malized velocity for the same wave parameters as in Fig. 2.1. The dashed line repre-
sents the stochastic value of MLE where the majority of orbits in phase space of the
corresponding PC are chaotic.

We show � (⇢) in Fig. 2.2 for the same wave parameters as the four cases in

Fig. 2.1. Based on the criterion that � > 0 corresponds to the appearance of non-

integrable, diverging orbits, we see that the average MLE accurately predicts the

trends depicted in the BEW PCs. For the non-stochastic case in Fig. 2.1 (" = 0.1),

the value of the average MLE is � ⇡ 0 for the entire range of phase space. On the

other hand, the MLE becomes finite with increasing perturbation strength. This
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occurs first in the vicinity of the SEW resonant condition 1⇢ = ⌫1, which as can be

seen from the " = 1.1 case of Fig. 2.1 is where stochasticity first appears in the PC.

As the normalized amplitude becomes even larger, the region of stochasticity extends

to a wider range of velocities around the resonant SEW velocity. This trend reflects

the orbits shown in the corresponding PC where stochasticity is most prevalent near

the SEW resonant condition but gives way to the BEW web structure away from

this velocity. A more detailed visual inspection of these PCs reveals that while non-

zero, finite values of the MLE indicate the first appearance of stochastic orbits, the

phase space becomes dominated by chaotic orbits above a finite threshold value that

we denote �
? ⇡ 3 ⇥ 10�2. We adopt this numerical estimate as a local metric for

stochasticity in the following discussion.

Armed with this criterion for stochasticity, we now can investigate the validity

of the analytically derived term in Eq. 2.17 by examining the dependence of the

average MLE on the stochasticity parameter. In particular, since larger values of F

correspond to increased stochasticity, we anticipate a monotonic relationship between

F and � where at a threshold value F ⇤ stochasticity will occur, i.e. � (F ⇤) = �
⇤
. The

term f(�), however, is an unknown function, which bars us from explicitly examining

the impact of the stochastic parameter, F . To overcome this limitation, we make

the a priori assumption that f(�) is approximately constant for our analysis, and we

instead plot � as a function of the defined parameter G (⌫1, "1, "2,1,2, ⇢) in Fig. 2.3.

We made our numerical investigation of this term comprehensive by generating

values of G from a wide range of possible parameters. This was accomplished by

randomly selecting 1000 sets of values ("1, "2, ⌫1,1,2, ⇢) that satisfied G < 0.4 from

the parameter spaced defined by "1 2 (1, 20), "2 2 (1, 20), ⌫1 2 (10, 100), 2 2

(0.7, 1.2), and ⇢ 2 (1, 100). On-resonance values ⌫1 = n where n is an integer were

included in this range, but since 1 = 1 by virtue of our normalization scheme, it was

not necessary to vary this parameter. Using these 1000 values, we then determined
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numerically the corresponding phase-averaged MLE, �. The mean trend from this

calculation for G(�) is shown in Fig. 2.3 along with confidence intervals, denoted by

the shaded range, where 93% of the 1000 selected points fell.

Figure 2.3: The average MLE plotted as a function of the stochastic parameter,
G. The solid line indicates the mean trend while the gray region marks the 93%
confidence interval for the numerically calculated values. The stochastic condition �

⇤

is also shown as a horizontal line.

In spite of the wide range of initial conditions, we see the anticipated monotonically

increasing trend of � with G. This dependence serves to validate our derivation of

G as a correct scaling parameter for the local stochastic state of phase space—even

when ⌫1 = k⌫1k where our analytical derivation is not strictly valid. Moreover, we can

use our threshold value �
⇤
= 3 ⇥ 10�2 to estimate from Eq. 2.17 that phase space is

stochastic when G > 0.1�0.27. Our assumption that f(�) is approximately constant

is thus borne out with an appropriate range of values given by f(�) = 3.7 � 10. It is

important to note that this spread in value persists even when the above investigation

is repeated only allowing for a constant o↵-resonance condition that satisfies � 6= 0.

This suggests that the uncertainty in f(�) is not a result of the breakdown in the
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validity of Eq. 2.17 in the on-resonance case. Rather, this variance likely stems from

small di↵erences in the dynamical orbits brought about by the widely di↵erent wave

parameters we considered.

We note here that for the SEW case ("2 ! 0) Karney [12] numerically found

f(�) = 4 while Fukuyama [37] with a less stringent condition of stochasticity found

f(�) = 6.7. Both of these investigations were limited in scope, however, in that

the numerical analyses were performed for one value of k⌫1k and a small range of ⇢

values. An analysis over a wider range of parameters introduces less certainty for the

estimate of f(�). We can confirm this explicitly by investigating our BEW result,

F = f(�)G, in the SEW limit ("2 = 0) where our expression converges to the criteria

for stochasticity derived in these previously cited studies. With this term, we have

repeated the above analysis in the SEW limit over the same range of wave variables

to find f(�) = 5 � 10. This range lies just above the value reported by Karney—

a di↵erence that likely stems from the definition for when phase space is primarily

stochastic. The more important insight from this result, however, is that the precision

of the previously reported SEW case is an artifact of the small range of values that

were numerically investigated.

With this in mind, our above analysis allows us to assert the final, linear result

for the stochastic parameter in the BEW case:

↵ < ⌫1 ("1A1 + "2A2) , (2.20)

where ↵ = 0.1�0.27. This simplified form incorporates the e↵ects of both waves while

it reduces to the previously derived SEW stochasticity limit for small "2 ! 0. This

expression also provides a means for characterizing the upper bound of stochasticity

in the BEW system for a fixed set of wave parameters. Indeed, for finite "1, "2, we see

the upper bound in stochastic space occurs where ⇢ is su�ciently large that Eq. 2.20
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is violated. This is shown in Fig. 2.4 where we have plotted the analytical result

for " = "1 = "2 along with the numerically calculated upper bound. The parameter

↵ = 0.27 yielded the best fit line in this case.

A similar calculation for the lower bound in phase space is precluded by the

underlying assumptions we made in deriving A1 (⇢) , A2 (⇢) in Eq. 2.14. Specifically,

the Hankel functions are approximations for the amplitude of the Bessel function

that are only valid in the limit ⇢i > ⌫i +
�

1
2⌫i
�1/3

, and while these functions diverge

at ⇢ ! 0, we anticipate from our numerical observations of phase space that the

coe�cients A1 (⇢) , A2 (⇢) should in fact approach 0. We therefore are forced to search

for an approximate form of the coe�cients in the small ⇢ limit. A reasonable choice

is to infer that Ai (⇢) will continue to scale with the amplitude J 0 (i⇢). This is

expedient since it not only approaches 0 for small ⇢ but monotonically increases in

the prescribed range until exhibiting a local maximum near ⇢ ⇡ ⌫i/i. Given these

considerations then, we can recover an approximate form for these coe�cients by

extending the definition of A1, A2 to encompass the lower values of ⇢:

Ai (⇢) =
1

⇢

⇥

envl
�

J 0
⌫
i

(i⇢)
�⇤

, (2.21)

where in order to ensure continuity we have defined envl as a fourth degree interpo-

lating polynomial that satisfies

envl (⇢) =

8

>

>

<

>

>

:

|H10
⌫
i

(i⇢) | for i⇢ � ⌫i +
�

1
2⌫i
�1/3

J 0
⌫
i

(i⇢) for i⇢ < ⌫i.

From this result, we plot the predicted lower bound of the stochastic region as a

function of " in Fig. 2.4 along with the numerically observed values. We see general

agreement in spite of the approximations we made in deriving this term. In par-

ticular, the lower bound is characterized by the phase velocity of the slower wave

⇢ = ⌫i/i with a weak dependence on the perturbation strength— a similar result to

that previously reported for SEW [12] and a special case of BEW [23].
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Figure 2.4: Upper and lower bounds of stochastic region as a function of normalized
wave amplitude. The markers represent numerically calculated values for the same
wave parameters as Fig. 2.1 with " = "1 = "2. The dashed lines are the analytically
derived bounds for ↵ = 0.27.

The modified definitions of A1 (⇢) and A2 (⇢) allow us to determine the full extent

of phase space that is stochastic, and in some special cases, they can be used in

conjunction with Eq. 2.20 to identify analytically the minimum set of wave amplitudes

"1, "2 for when stochasticity first appears. Specifically, when ⌫1 > 1 and ⌫1/1 ⇡

⌫2/2, such as may be found in acoustic modes, we see that both coe�cients exhibit

maxima at ⇢ ⇡ ⌫1/1. At this maximum value and in the limit of large normalized

frequency, we see that the Bessel functions can be simplified to J 0
x(x) ⇡ x�2/3 [11]

such that the coe�cients become Ai (⇢) = 2i ⌫
�5/3
i . We substitute this into the above

criterion to find the threshold condition for the onset of stochasticity:

↵ = 21⌫
�1
1

⇣

"1⌫
1/3
1 + "2⌫

1/3
2

⌘

. (2.22)

This concise form, which is applicable to perpendicularly-propagating acoustic modes,
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shows explicitly that the condition for onset depends linearly on perturbation strength

where the amplitude of each mode is weighted by the frequency. Of course, the

validity of this expression is violated for waves with greater dispersion, but even in

this limit, it still can serve as a first test for stochasticity. More generally, this linear

dependence is an important consideration for the next section where we demonstrate

how stochasticity can be achieved with BEW for lower input energy densities of the

exciting waves than with the SEW and non-BEW two-wave systems.

2.5 Comparison between SEW, BEW, and non-

beating waves

By comparing the SEW limiting case of Eq. 2.20 to the full expression, we see that

stochasticity can be achieved with BEW for lower individual wave amplitude values. A

more important question when comparing the e�ciency of the two processes, however,

is whether stochastic onset occurs for a lower total energy density in the BEW case. To

consider this possibility, we first note that the total energy density of each electrostatic

wave depends quadratically on the potential [10] such that

W = �1"
2
1 + �2"

2
2, (2.23)

where W is the total energy density and �1, �2 are two constants that depend on the

individual wave parameters, ⌫i,i. Let us denote ⌘ = �1"
2
1/W , i.e. the fractional

energy density in the first mode. The threshold for stochasticity in the BEW case

then becomes

⌫1
p

WBEW

h

A1 (⇢) �
�1/2
1

p
⌘ + A2 (⇢) �

�1/2
2

p

1 � ⌘
i

= ↵. (2.24)
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Similarly, the thresholds for the individual SEW are

⌫1
�

W1(SEW )/�1

�1/2
A1 (⇢) = ↵

⌫2
�

W2(SEW )/�2

�1/2
A2 (⇢) = ↵,

(2.25)

where we have assumed the total energy density is concentrated in each mode. The

ratio of the required energy density for the onset of stochasticity of BEW compared

to that required for the onset of stochasticity for each SEW is thus given by

✓

W1(SEW )

WBEW

◆1/2

=
hp

⌘ + �
p

1 � ⌘
i

✓

W2(SEW )

WBEW

◆1/2

=
h

��1p⌘ +
p

1 � ⌘
i

,

(2.26)

where we have denoted � = (A2/A1)
�

�1/�2

�1/2
and made the simplifying assumption

that ⌫2/⌫1 ⇡ 1. The BEW process has a lower energy density threshold for the onset

stochasticity if there exists ⌘ 2 (0, 1) when both expressions are greater than 1. It

is evident from Eq. 2.26 that this condition is only satisfied provided � 6= 0, 1.

These limiting cases can be discounted, however, as they represent the non-physical

scenarios where the energy content of one of the BEW is 0.

BEW—subject to the assumptions outlined above—thus will produce stochasticity

for lower energy densities than a SEW. This is a significant result as the onset of

stochasticity has been shown to coincide with a threshold for plasma heating [48, 49].

The onset of heating therefore may occur for lower levels of energy density with

BEW, though of course once this threshold has been exceeded, the level of heating

is dependent on the self-consistent exchange of energy of both the SEW and BEW

processes. An analysis of this is reserved for the following chapter.

For a final comparison, we examine the case for when there are two waves that

do not satisfy the beating criterion, i.e. there is no beat resonance. The second-

order cross term in Eq. 2.3 that is proportional to "1"2 consequently disappears in the
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derivation outlined in Sec. 2.3.2 such that the threshold for the onset of stochasticity

becomes

↵ = ⌫1
�

["1A1 (⇢)]
2 + ["2A2 (⇢)]

2�1/2 , (2.27)

where we have assumed the same range for ↵. Comparing this result with the BEW

case, we immediately see that without the benefit of the beat e↵ect, the onset condi-

tion for stochasticity is higher for a given energy density. This stems mathematically

from the missing cross-term in the threshold and physically from the loss of the ad-

ditional resonances in phase space.

Moreover, without the beat e↵ect, the two waves do not appear to o↵er any energy-

saving advantage over SEW stochasticity. We can see this explicitly by expressing

Eq. 2.27 in terms of energy densities:

⌫1
p

WnBEW

h

A2
1 (⇢) �

�1
1 ⌘ + A2

2 (⇢) �
�1
2 (1 � ⌘)

i1/2

= ↵, (2.28)

where we have denoted the total energy density of the non-beating waves as WnBEW .

When we compare the cases for the energy density for the onset of stochasticity with

the SEW case, we find

W1(SEW )

WnBEW

= ⌘ + �2 (1 � ⌘)

W2(SEW )

WnBEW

= ��2⌘ + (1 � ⌘) .
(2.29)

Again, the condition for when the non-BEW process is superior to the SEW

occurs when there is some value ⌘ such that W1(SEW )/WnBEW , W2(SEW )/WnBEW >

1. Solving from the above equations, we see this condition cannot be satisfied for

⌘ 2 (0, 1). Therefore, we must conclude that in the non-BEW case, even though

lower individual wave amplitudes are required to produce onset of stochasticity, this

two-wave process is not superior to the SEW case when examined in the context of
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total wave energy density.

2.6 Oblique propagation

The above findings have applications for physically realizable cases where collinear,

perpendicularly-propagating modes are employed. However, in order to extend this

discussion to encompass situations where oblique propagation is allowed, we consider

briefly in this section the impact of a finite parallel wavenumber.

When including the e↵ects of parallel wave propagation, the Hamiltonian from

Eq. 2.2 becomes (Appendix A)

H = I +
1

2
P 2
z +

2
X

j=1

"j cos (j⇢ sin ✓ + jzZ � ⌫i⌧ + 'i) , (2.30)

where jz denotes the normalized wavenumber in the parallel direction and Pz is the

normalized velocity in the parallel direction. It is evident from this form that the

investigation of stochasticity is complicated by the necessity of examining a large

range of cyclotron resonances at m + jzPz � ⌫j = 0 where m is an integer. We

can avoid this di�culty, however, by exploiting the fact that in many physically

realizable experiments, the parallel wavenumber of the electrostatic modes coupled

into the plasma is dictated by the geometry of the antenna that launches the waves.

This allows us to make the approximation that regardless of frequency, the parallel

wavenumber is constant, i.e. z = 1z = 2z.

In this special case of equal parallel wavenumbers, Strozzi et al.[22] demonstrated

from a second-order perturbation analysis that to second order Pz is a constant of

motion. As a consequence, we can infer that Z = Pz⌧ where initial conditions are

incorporated into the phases 'i. These two observations allow us to convert Eq. 2.2
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into the more general form of Eq. 2.30 through the following substitutions:

H ! H � 1

2
P 2
z ⌫j ! ⌫j � zPz. (2.31)

We can apply this same transformation to Eq. 2.20 to yield the limit for the onset of

stochasticity in the case where the parallel wavenumbers in the parallel direction are

equal:

↵ < ⌫1
⇣

"1Ã1 (⇢) + "2Ã2 (⇢)
⌘

, (2.32)

where we have defined Ãi = Ai (⌫i ! ⌫i � zPz). This criterion reduces to the previ-

ously derived result [12] in the SEW limit ("2 ! 0).

2.7 Chapter discussion and summary

Through a combination of perturbation theory and numerical analysis, we have ar-

rived at an expression for the onset and bounds in phase space of stochasticity for the

case of two beating electrostatic waves. We have verified our expression numerically—

even in the case of on-resonance ⌫1 = k⌫1k which was not explicitly accounted for in

our analytical derivations— and our result has been shown to converge in the single

wave case onto the SEW threshold previously derived by Karney and Fukuyama.

The above results o↵er a number of new insights into the BEW process. For

example, while it has been pointed out in previous work [21] that BEW can lead

to ion acceleration without stochasticity, only particles subject to the appropriate

initial conditions will experience significant acceleration along the separatrices of the

BEW web structure. The rest remain trapped in coherent orbits around the first

degree BEW islands. It is only when a region of the web becomes stochastic that the

coherently accelerated ions can reach even higher energies by a random walk through

chaotic phase space. Our new understanding of when and how this stochastic onset
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occurs therefore allows for improved estimates of single particle energization through

BEW.

The onset of stochasticity has additional bearing on the heating of a plasma with

BEW. Indeed, the decorrelation in particles orbits allows us to model the interaction of

the waves with the plasma as a random phase process. This critical assumption, which

we invoke in the next chapter, provides a link from our discussion of the acceleration

of a single particle to the interaction of the waves with an ensemble of ions.

Finally, since the linear dependence of this threshold on wave amplitude suggests

that BEW stochasticity occurs for lower energy densities than with SEW or two non-

beating waves, we anticipate that the onset of heating should occur for lower energy

densities with BEW when compared to SEW heating. In other words, in the regime

of low energy densities, BEWH should be the superior process. This is a result we

investigate experimentally in Chapter 5.
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Chapter 3

Ensemble heating

In the previous chapter, we examined the BEW problem from the single particle

perspective in an e↵ort to derive the criterion for when particle orbits first become

stochastic. We then conjectured that the appearance of stochasticity, by virtue of its

randomizing e↵ect, should lead to the onset of heating in an ensemble of ions. Once

this onset has occurred, however, the single particle treatment is no longer appropriate

for describing the degree of heating for a collection of ions. Extending our analysis

from the acceleration of a single ion to the heating of an ensemble of ions is therefore

both fundamental and of practical importance to understanding plasma heating. In

this chapter we carry out this extension numerically and analytically in an e↵ort

to answer the following questions: Once heating has onset for both processes, does

BEWH outperform SEWH for equal wave energy densities? Is it always the superior

process? And if yes, given experimental constraints, can we predict the performance

of BEWH?

We attempt to address these questions in the following analysis by developing an

accurate model for both types of heating. This is a particularly challenging task for

BEWH since individual particles in the ensemble exhibit two significantly di↵erent

types of motion: stochastic orbits near the resonant condition and integrable trajec-
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tories that coherently accelerate particles up to the resonant velocity. Any model we

develop to compare BEWH to SEWH must approximate the average of both behav-

iors. In the following discussion, we present two approaches to achieve this end. First,

we make a direct connection to the single particle description by deriving a second-

order expression for the increase in kinetic energy of an ion ensemble subject to

perpendicularly-propagating BEW. We invoke the stochastic condition in this case to

justify a time average while the beating wave e↵ect is introduced through an analysis

of the Poincaré cross-section. For our second approach, we derive a self-consistent ex-

pression for the power absorbed by an ion ensemble subject to obliquely-propagating

BEW. The onset of stochasticity is used in this case as a justification for a random

phase approximation while the beat e↵ect appears explicitly as a fourth-order term.

In this chapter, we adopt a di↵erent normalization scheme than the one employed

in the single particle discussion from Chapter 2. In the previous treatment, the most

logical treatment was to normalize to the characteristic length scale of the waves,

k1x. However, since we now investigate the impact of ensemble heating, we choose

instead to normalize lengths and velocities to the characteristic length and velocity

of an initially thermalized, ion ensemble, i.e. rL = vti/⌦i the thermal Larmor radius

in the initial ensemble, and vti =
p

Ti/mi the initial thermal velocity where Ti is

expressed in units of energy.

3.1 Average kinetic energy

In this section, we begin with the simple case of pure perpendicular propagation of the

waves (kz = 0) where we further assume that the modes are collinear. These restric-

tions significantly simplify our analysis by reducing the problem to two dimensions.

We proceed by constructing a model for the average increase in the perpendicular

kinetic ion energy for an ensemble by following Gibelli et. al. [50] in assuming the
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ions are collisionless and the waves are uninfluenced by the ion dynamics. The first

assumption restricts our analysis to plasmas where heating timescales are faster than

collisions. The second assumption limits our scope to small perturbations as it pre-

cludes self-consistent e↵ects that would inherently limit the maximum amplitude of

the waves [51]. In spite of these restrictions, assuming the waves are uninfluenced

by the particle dynamics still allows an approximation for the average result of the

stochastic energization of an ensemble [50]. Moreover, this assumption enables us

to examine BEWH and SEWH in the most general sense: while a self-consistent

simulation requires we specify plasma characteristics such as the dielectric response,

assuming the waves are uninfluenced by ion dynamics results in a Hamiltonian formu-

lation where the wave parameters are independent variables. We thus can generally

compare SEWH and BEWH over all wave parameter space without having to specify

a plasma mode.

With this in mind, we formulate the problem in terms of the normalized Vlasov

equation with electrostatic waves propagating perpendicularly to a uniform magnetic

field:

0 =
@f

@⌧
+ VX



@f

@X
� @f

@VY

�

+
@f

@VX

"

VY +
X

j=1,2

⇠j cos (jX � ⌫j⌧)

#

, (3.1)

where X = x/rL, VX,Y = vx,y/vti, ⌫j = !j/⌦i, ⌧ = ⌦it, ⇠j = (qEj)/(mirL⌦2
i ),

j = kjxrL, and ⌧ = ⌦it. Here Ej is the electric field amplitude of the jth wave,

and we have neglected the phase of the wave ↵j for simplicitly. In the summation

above, we define ⌫1 = ⌫ for SEWH and ⌫1 = ⌫, ⌫2 = ⌫ + 1 for BEWH as this

was found [17] to yield the greatest single ion acceleration. In order to approximate

equal energy densities for each case, we define ⇠1 = ⇠0, and ⇠2 = 0 for SEWH and

⇠1 = ⇠2 = ⇠0/
p
2 for BEWH. This is valid under the assumption that the waves are

dispersionless. Finally, we note that for two waves, 1 6= 2 has been shown to have
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an impact on the level of single ion energization [17, 21]. However, it is also evident

from previous studies that if |2 � 1|/1 ⌧ 1 – a restriction valid for large group

velocities– the resulting acceleration is on par with 1 = 2. In order to simplify our

analysis then and invoke the results of previous BEW single ion work [52, 23], we

define 1 = 2 = .

3.1.1 Numerical investigation

With the constraints of the previous section in mind, we first solve Eq. 3.1 using a

Monte Carlo particle method [53, 54, 50] where we select particles from the initial

distribution function and integrate the equations of motion along the characteristics

of Eq. 3.1. We then construct the spatially averaged function f(VX , VY , ⌧) at time ⌧

from the discrete velocity distribution of the particles. The initial velocity distribution

we adopt for this technique is a two-dimensional Maxwellian:

f(V 0
X , V 0

Y , X0, Y0, 0) =
1

2⇡
e
� 1

2

h
(V 0

X

)
2
+(V 0

Y

)
2
i

. (3.2)

The characteristics are the solutions to the Hamiltonian

h =
1

2

⇥

P 2
X + (PY � X)2

⇤

+
X ⇠j


cos (X � ⌫j⌧) , (3.3)

where VX = PX , VY = PY � X, and PY is a constant of motion. For our numerical

integration, 1000 particles were uniformly spaced in the interval �⇡/ < X < ⇡/

with initial velocities randomly selected from the Maxwellian distribution with the

Box-Muller method [55]. The equations of motion were solved using a symplectic

solver algorithm [56].

Since the collisionless ion ensemble evolves without thermal equilibration, we fol-

lowed the convention of Sheng et al. [45] in using the average kinetic energy K(⌧)

in the direction perpendicular to the magnetic field instead of temperature to gauge
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the energization of the ensemble:

K(⌧) =
1

2

Z

h
�

V 2
X + V 2

Y

�

f(VX , VY , X, Y, ⌧)iX,Y dVXdVY . (3.4)

where h..iX,Y denotes the spatial average with respect to X and Y. With our numerical

solution for f(⌧), we calculated K(⌧) for a wide range of the wave parameters, ⇠0, 

and ⌫. In each case, this quantity equilibrated to a steady state value, Keq, although

as predicted from single ion energization considerations [22], the heating timescale

decreased with ⇠0. We show in the top of Fig. 3.1 plots of the magnitude of Keq for

⇠0 = 5.

These results serve to illustrate for this special case that BEWH does produce

equal or greater heating than SEWH over a wide range of wave parameters. In or-

der to identify exactly why this is the case and ultimately to see if we can establish

BEWH superiority beyond the numerically investigated range, we now use these nu-

merical plots as both a guideline and validation in deriving an analytical expression

for heating.

3.1.2 Analytical formulation

Given the periodicity of the exciting waves in the X direction, f(VX , VY , �⇡/, Y, ⌧) =

f(VX , VY , ⇡/, Y, ⌧), and the absence of Y in the equations of motion, we can re-write

Eq. 3.4 as

K(⌧) =


2⇡

Z

�

V 2
X + V 2

Y

�

f(VX , VY , X, ⌧)dXdVXdVY . (3.5)

We then can examine this expression in greater detail by performing a change of

coordinates to an action-angle formulation by means of a generating function of the

first kind similar to the ones employed by Karney [12] and Chia [20] : F1(X, Y, ✓1, ✓2) =
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Figure 3.1: Numerical and analytical contour plots of equilibrated kinetic energy, Keq

for both SEWH and BEWH as a function of wave parameters  and ⌫: ⇠0 = 5 in
all cases and �c = 0.25 for analytical results. Each set of plots is normalized to the
maximum SEWH value in the shown domain.
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1/2 (X � ✓2)
2 cot ✓1 + Y ✓2. This yields the transformed Hamiltonian (Appendix A):

H = I1 +
X

j=1,2

⇠j

cos(

p

2I1 sin ✓1 + ✓2 � ⌫j⌧), (3.6)

where the coordinate and momenta transformations are given by X =
p
2I1 sin ✓1+✓2,

Y =
p
2I1 sin ✓1 � I2, VX = Ẋ =

p
2I1 cos ✓1, and VY = Ẏ = �

p
2I1 sin ✓1. In this

case, I1 = (V 2
X + V 2

Y ) /2 is the normalized kinetic energy of an ion, ✓1 is the angle

of Larmor precision, ✓2 is the position of the guiding center in the X direction, and

�I2 is the position of the guiding center in the Y direction. Since I1 represents the

particle kinetic energy, we can perform a change of coordinates from the cartesian

formulation in Eq. 3.5 to the action-angle coordinates to find a simplified form for

K(⌧) given by

K(⌧) =


2⇡

Z

I1f (I1, ✓1, ✓2, ⌧) dI1d✓1d✓2, (3.7)

where we have denoted the density distribution expressed as a function of action-

angle coordinates as f . Since the ion dynamics are Hamiltonian, we can invoke

Liouville’s theorem to yield the result consistent with the above Vlasov formulation

that f is constant along the characteristics: f (I1, ✓1, ✓2, ⌧) = f (I0
1 , ✓

0
1, ✓

0
2, 0) where

f (I0
1 , ✓

0
1, ✓

0
2, 0) = (2⇡)�1 e�I01 . Coupled with the conservation of phase space, this

allows us to express Eq. 3.7 as

K(⌧) =

Z

hI1
�

I0
1 , ✓

0
1, ✓

0
2, ⌧
�

i✓0e�I01dI0
1 , (3.8)

where h..i✓0 denotes the average over the angles 0 < ✓01 < 2⇡ and �⇡/ < ✓02 < ⇡/.

The leading factor /2⇡ has been folded into the definition of the average over angles.
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Figure 3.2: Figure adapted from Ref. [23]. Poincaré section for the o↵-resonance case
of an ion subject to SEW (left) and BEW (right). The section is a projection into
the coordinate plane of ion orbits at fixed time interval ⌧c corresponding to the lowest
common period of ⌫ and ⌫ + 1. Typical trajectories for varying initial conditions are
shown.

3.1.3 Heating model from the Poincaré cross-section

With the recasting of Eq. 3.5 in the coordinates of Eq. 3.8, an evaluation of the

equilibrated kinetic energy requires a careful consideration of (I0
1 , ✓

0
1, ✓

0
2, ⌧)i✓0 . Before

we proceed with an analytical estimate for this term, however, we first use Poincaré

cross-sections (PCs) for single particle acceleration to motivate the forms we antic-

ipate Keq to take for BEWH and SEWH. To this end, we show in Fig. 3.2 PCs

(adapted from Spektor and Choueiri [23]) that are generalizations to energy space of

the plots we generated in Fig. 2.1. These PC are defined for fixed  and ⌧ = N⌧c

where N = 0, 1, 2, .. and ⌧c is the least common period of the exciting waves. They

depict the trajectories of individual ions in action-angle coordinates for di↵erent ini-

tial conditions and serve to illustrate the acceleration regions characteristic of each

process. The upper and lower bounds of the stochastic regions are denoted as IUB

and Ith in these plots and are related to the solutions of Eq. 2.20, ⇢0th, ⇢
0
UB, by the

transformation I = [⇢0/ (rLk1x)]
2 /2.
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We summarize briefly the behavior depicted by these dynamical plots. On one

hand, SEW acceleration is a resonance-broadened process where only ions with initial

velocity close to the wave phase velocity, v? = !/kx, are stochastically accelerated.

The range of initial actions that satisfy this condition is bounded in phase space by

the stochastic threshold [35], Ith, and the upper bound, IUB. Ions with initial action

outside this resonance zone, i.e. in the forbidden region, are not accelerated. The par-

ticle orbits in the marked BEW forbidden and stochastic acceleration regions exhibit

approximately the same behavior as their counterparts in the SEW case; however,

the fundamental di↵erence for the BEW mechanism—wherein lies its potential for

superiority over the SEW process—is that it accelerates a number of ions outside the

resonance zone to the stochastic regime. This e↵ect occurs in the regular acceleration

region, defined by the elliptic point HE = (I1, ✓1) = ([⌫/ �
q

⇠0/]
2/8, ⇡), and the

hyperbolic point, HH = ([⌫/�
q

⇠0/]
2/2, ⇡), that intersects the separatrix between

regular and forbidden regions [23].

Since ✓01 and ✓02 are isotropic and the Hamiltonian is independent of I0
2 , we see

from Fig. 3.2 that particles in the SEW forbidden region will have hI1(eq)(I0
1 )i✓0 = I0

1 ,

i.e. the average value of the equilibrated action is constant. On the other hand,

particles in the stochastic region, averaged over initial angles, equilibrate to some

value Ith < Ih(⇠0, ⌫,) < IUB. Assuming IUB � 1, we see that all ions in an initial

Maxwellian with I0
1 > Ith will be in the stochastic region while the remainder will be

in the forbidden region. Therefore, Eq. 3.5 yields for the SEW equilibrated kinetic

energy:

Keq(S) = 1 + hIeffie
�
h
⌫/�

p
⇠0/

i2
/2

, (3.9)

where hIeff (⇠0, ⌫,)i = Ih � Ith � 1 and hI0
1 i = 1 corresponds to the initial average

action of the ensemble. We note here that for simplicity we have approximated the

solution for the lower bound solution to Eq. 2.20 with an expression that is consistent
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with previous analytical work on the BEW problem [23]: Ith ⇡
✓

⌫/�
q

⇠0/

◆2

/2,

a result that exhibits the same weak dependence on wave amplitude that appears

in Fig. 2.4. With this approximation, we can see explicitly from Eq. 3.9 that hIeffi

indicates ions in the stochastic region gain more energy with increasing frequency

due to the widening of stochastic phase space while in opposition to this, the term

e�[⌫/�
p

⇠0/]
2/2 shows that more of the initial distribution falls in the forbidden region

with increasing frequency ⌫.

We use a similar approach as in Eq. 3.9 to estimate Keq(B) for BEWH. In order to

account for the slow coherent acceleration of particles that results from the beat e↵ect,

we define a new e↵ective threshold I 0
th = [⌫/�

�

⇠0/
p
2
�1/2

]2/8 at the elliptic point.

This corrective term accounts for the ultimate depletion of the regular acceleration

region by particles as they transition to the stochastic region. This occurs over a

long time scale ⌧ > 1000 but is a valid estimate under our simplified, collisionless

assumption where non-interacting particles follow their single particle trajectories

indefinitely. For simplicity, we further assume that all of the initially stochastic

particles as well as those that enter the stochastic region through the beat e↵ect

ultimately equilibrate to the same value I 0
h. The modified Eq. 3.9 is thus

hIieq = 1 + hI 0
effie

�

⌫/�(⇠0/[

p
2])

1/2
�2

/8
, (3.10)

where hI 0
effi = I 0

h � I 0
th � 1.

Both Eqs. 3.9 and 3.10 are based on the analysis of a Poincaré cross-section valid

only for o↵-resonance frequencies (⌫ 6= integer). However, as we have seen from the

previous chapter, on-resonance e↵ects only have a small impact on the boundary of the

stochastic region. The significant di↵erence in the on-resonance case is the appearance

of an enhanced web structure in the stochastic region that leads to acceleration beyond

the maximum, IUB [17, 21]. This suggests that Eqs. 3.9 and 3.10 can be universally

54



applied provided the on-resonance e↵ects are folded into Ieff and I 0
eff .

Eqs. 3.9 and 3.10 are simple, physically intuitive models for the forms of SEWH

and BEWH that we have evaluated from a simple inspection of the Poincaré cross-

section. While these models lack detail—particularly the forms of Ieff and I 0
eff—

they o↵er qualitative insight into the heating process. Of particular importance is

our estimation of the BEW e↵ect, which as we will see is a necessary approximation

when the analysis is truncated to second-order. In the next section, we justify these

models and provide more detail into the heating mechanism by explicitly evaluating

Eq. 3.8.

3.1.4 Second-order estimate for heating

Since the nonlinearity of Eq. 3.6 precludes a closed form solution for I1 (I0
1 , ✓

0
1, ✓

0
2, ⌧),

we again invoke the results of Lie transform theory [57]. For small amplitude (⇠0 < 1)

and our appropriately conditioned Hamiltonian, we see that (Appendix B)

hI1(⌧)2i✓0 = hI0
1 i✓0 +

1

2
@I01

Dh

@✓10w1@✓10w1

iE

✓0
, (3.11)

where w1 = �
R ⌧

0 d⌧H1 is the first-order generating function, H1 is the first-order term

in ⇠i from Eq. 3.6, the subscript 2 denotes second-order quantities, and the integral is

performed over the orbits in phase space pertaining to the solution of the unperturbed

Hamiltonian, H0 = I1. This expression is valid provided the generating functions up

to second order from the Lie transform of Eq. 3.6 are periodic with respect to phase

angle and the transformed Hamiltonian is independent of the phase angles. These

criteria are satisfied for small ⇠0 and in the o↵-resonance case, ⌫ 6= integer, such that
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Eq. 3.11 becomes

hI1(⌧)2i✓0 = I0 +
1
X

m=�1
i,j=1,2

⇠i⇠j
2



m2Jm(
q

2I0
1 )

2

�

⇥

cos [(⌫i � ⌫j) (⌧ � ⌧0)] � cos [(m � ⌫i) (⌧ � ⌧0)] � cos [(m � ⌫j) (⌧ � ⌧0)] + 1

4(⌫i � m)(⌫j � m)
,

(3.12)

where ⌧0 denotes the initial time. We derived this result from a second-order inte-

grable approximation of the Hamiltonian dynamics, and as such, it does not explicitly

incorporate the stochasticity we observed from our numerical analysis in Chapter 2.

Rather, we can interpret this expression in the context of small orbit perturbations

in response to the waves. For fixed I0
1 , the interaction with the waves produces a

forced oscillation of the ions around an equilibrium point. We can see this quivering

in the non-stochastic regions of Fig. 2.1 where the complex BEW web structure is

the result of non-resonant interactions with the beat mode (the first order island) as

well as the individual waves (higher order oscillations). Averaging over all of these

forced oscillators with respect to initial phase leads to the result shown in Eq. 3.12

where the aggregate e↵ect is to produce coherent variations about the fixed points

I 0 = 1/ [4(⌫i � m)(⌫j � m)]
h

m2Jm(
p

2I0
1 )

2
i

. The dominant terms are the slowly

varying contributions close to the frequencies of the SEW m = k⌫ik (where k..k

denotes the nearest integer function) as well as that of the beat mode at ⌫2 � ⌫1 = 1.

Since our result stems from an integrable approximation for the Hamiltonian, it is

evident that over a su�ciently long time period, our expression for the average kinetic

energy for a fixed initial action will be periodic. There is a net increase in energy in so

much as the formation of equilibrium points shifts more particles of the monotonically

decreasing background distribution from lower energies to higher values than it shifts

higher energy particles to lower values. However, in light of the stochastic nature

of the orbits which occur for the full solution of the single particle Hamiltonian, the
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oscillatory motion about these fixed points in the stochastic region seems unphysical.

In order to approximate the e↵ects of this randomizing motion then, we invoke the

results from the previous chapter to suggest that the decorrelation of particle orbits

allows for the deconstructive interference of the time dependent terms in Eq. 3.12.

Consequently, within the stochastic region, Ith < I0
1 < IUB, there is a net, steady-

state increase in the average kinetic energy for ions that begin with the same initial

velocity:

hI1(⌧)2i✓0 = I0 +
1
X

m=�1
i,j=1,2

⇠i⇠j
2

h

m2Jm(
p

2I0
1 )

2
i

2(⌫i � m)(⌫j � m)
. (3.13)

Under the assumption of su�ciently large wave amplitude, IUB � 1, Eq. 3.8 thus is

given by

K(⌧)2 = 1 +
1
X

m=�1
i,j=1,2

⇠i⇠jm
2

22(⌫i � m)(⌫j � m)



Z 1
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@

@I0
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Jm(
q

2I0
1 )

2

�

e�I01dI0
1 (3.14)

+
1

2

Z I
th

0

@

@I0
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Jm(
q

2I0
1 )

2

�

e�I01dI0
1

⇥ ((1 � �ij) cos [(⌫i � ⌫j)⌧ ] � cos [(m � ⌫i)⌧ ] � cos [(m � ⌫j)⌧ ])] , (3.15)

where �ij denotes the Kroenecker delta and we have split the integral in order to

incorporate the stochastic e↵ects at I0
1 > Ith while retaining the oscillatory motion at

lower energy values.

From this result, we see that the beat frequency ⌫2�⌫1 is averaged out by stochastic

e↵ects above the threshold value. This same second-order beat mode does have a

slowly varying e↵ect on the ions in the regular acceleration region where I0
1 < Ith,

but it is evident that this oscillation in average kinetic energy does not capture what

we have observed from our single particle analysis. That is, this time-varying term

does not reflect the loss of ions in the regular acceleration zone to the stochastic
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zone. This is to be expected from an inspection of the PC shown in the first plot of

Fig. 2.1. For low perturbation strengths where stochasticity has not occurred, there is

no connection between the regular acceleration region and the higher energy orbits—

a consequence of the integrability of our second-order approximation. Without this

connection, the contribution of the time-varying term can be ignored.

We can see this explicitly by considering that the dominant contributions to

Eq. 3.14 stem from the slowly varying terms at ⌫2 � ⌫1 = 1 and m = k⌫ik. But

since J2
m(

p

2I0
1 )/J

2
m (m) ⌧ 1 as I0

1 ! 0, the regular acceleration integral must be

small compared to the stochastic contribution such that we can approximate

Keq ⇡ 1 +
1

2

X

j=1,2

1

(k⌫k � ⌫)2 + �2c

⇠
2
j

2

Z 1

0

@

@I0

h

k⌫ik2Jk⌫
i

k(
p

2I0)
2
i

e�I0dI0, (3.16)

where we have dropped the second-order subscript, simplified the infinite summation

over m by retaining only the dominant m = k⌫ik terms and introduced the constant

�2c ⌧ 1 in order to remove the non-physical singularity at on-resonance (⌫ = k⌫k).

With this justified neglect of the time-dependent terms, it is even more readily ap-

parent that while our second-order expression captures the stochastic e↵ects of the

BEW and SEW waves, the slow connection between BEW acceleration and SEW

stochasticity is absent.

Eq. 3.16 is quite close to our qualitatively motivated model from Sec. 3.1.3, which

we can see explicitly by evaluating the expression with Weber’s second exponential

integral identity (Watson [58], p. 395)

Keq = 1 +
e�2

2
⇥

(k⌫k � ⌫)2 + �2c
⇤

X

i=1,2

✓

⇠ik⌫ik


◆2

Ik⌫
i

k(
2), (3.17)

where Ik⌫
i

k(2) is the modified Bessel function of the first kind. In the ⌫/ > 1 limit,
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we can expand out the Bessel function to find

Keq = 1 +
1

2
p
2⇡
⇥

(k⌫k � ⌫)2 + �2c
⇤

X

j=1,2

 

⇠jk⌫ik
3/2

!2

e
� 1

2

✓
k⌫

j

k


◆2

. (3.18)

From this result, we see that the exponential terms in Eq. 3.9 and Eq. 3.18 are

almost identical where k⌫jk has replaced ⌫j and in our small ⇠0 analysis the amplitude

dependent term
q

⇠0/ is absent. This result thus implies that to second order

hIeffi ⇡ (k⌫k � ⌫)2 + �2c )
�1

✓

(⇠0k⌫k)
3/2

◆2

, which we use in conjunction with Eqs. 3.9

and 3.18 to find an approximation for SEWH:

Keq(S) = 1 +
1

2
p
2⇡
⇥

(k⌫k � ⌫)2 + �2c
⇤

✓

⇠0k⌫k
3/2

◆2

e�

✓
⌫/�

p
⇠0/

◆2

2 . (3.19)

This expression was derived under the assumption ⇠0 < 1; however, we have found

it to accurately predict the correct trends (though not magnitude of energy increase)

over the numerically investigated range 0.5 < ⇠0 < 10. This is illustrated by Fig. 3.1

where we see that a normalized plot of Eq. 3.19 corresponds quite well to the numer-

ically indicated data.

Turning to the case of BEWH, we now can see by comparing Eq. 3.10 and Eq. 3.18,

that our second-order expression for Keq(B) is not accurate. The discrepancy in the ex-

ponential term in Eq. 3.18 for the BEWH case reflects the fact that our approximation

for the Hamiltonian fails to capture the connection between the regular acceleration

regime and the stochastic region. This failing leaves us with two choices. On one

hand, we can continue this formulation to higher order in ⇠, though such an approach

requires an estimation of the higher order generating functions w2, w3 whose evalu-

ation become prohibitively complicated. As an alternative, we can assume that our

qualitative description for the fraction of ions connected to the regular acceleration

region, i.e the exponential term in Eq. 3.10, is correct since it stems from a detailed
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analysis of the PC. We then can estimate the energization term with the simplifying

assumption (consistent with Ref. [17]) that once the stochastic region has formed,

the e↵ectively randomized particle trajectories remain qualitatively the same for both

the BEW and SEW processes. This enables us to approximate hI 0
effi = hIeffi such

that our expression for BEWH is

Keq(B) = 1 +
1

2
p
2⇡ (k⌫k � ⌫)2 + �2c

✓

⇠0k⌫k
3/2

◆2

e�
(⌫/�

p
✏0/2)

2

8 . (3.20)

By comparing Eq. 3.20 with numerical results for the investigated range of ⇠0 in

Fig. 3.1, we see this expression successfully describes BEWH without expanding to

fourth order. Eq. 3.20 thus generalizes our numerical results and subsequently per-

mits a direct analytical comparison between SEWH and BEWH for arbitrary wave

parameters. This comparison reveals that under the condition of our simplifying as-

sumptions, for all positive values of , ⌫, and ⇠0, BEWH is always greater than or

equal to SEWH. Furthermore, the good agreement of our results with numerical work

provides strong support for our supposition in the above derivations that the major

di↵erence between BEWH and SEWH lies in the fraction of particles subject to ac-

celeration (as indicated by the di↵erent exponential terms in Eqs. 3.19 and 3.20).

We thus confirm the physically intuitive result that BEWH’s superiority stems from

its ability to energize more of an ion ensemble concurrently for a given wave energy

density.

3.1.5 Conclusions and limitations

In the above formulation we solved the equations of motion for individual particles,

used a thermal distribution as an initial condition, and then averaged the energy of all

the particles as they followed their non-interacting trajectories. While this procedure

required that we approximate the ion dynamics as integrable, we incorporated the
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e↵ects of stochasticity by averaging out the time dependent terms. Similarly, we

estimated the connection between the coherent acceleration of the BEW and the

stochastic region by introducing a correction motivated by the Poincaré cross-section.

Our result compared favorably to a non self-consistent, collisionless numerical

simulation, and it has o↵ered insight into the nature of the BEWH process. In spite

of these advantages, however, there are a number of limitations on the applicability

of this model. From a strictly physical perspective, our analysis does not allow for

oblique propagation nor does it permit unequal perpendicular wavenumbers–both

of these assumptions are violated for most real plasma waves. Additionally, the

model is not self-consistent in that arbitrary waves are imposed upon the system

rather than determined from the Poisson equation and the dielectric response of

the plasma. This can be an advantage–as we have already noted–since it permits a

general exploration of parameter space; however, when we examine a real plasma,

it is necessary to re-incorporate an element of self-consistency. We can do this by

substituting a known dispersion relation, D(⌫,) = 0, into Eq. 3.20. But ultimately,

this relation must be assumed—the above formulation does not provide a mechanism

for determining D(⌫,). This lack of self-consistently also is problematic when we

consider that in our model an initial Maxwellian distribution is allowed to evolve

to an extremely non-thermalized state since the individual ions are non-interacting

and governed only by the single-particle equation of motion. In most real plasmas of

interest, saturation e↵ects (such as found with BGK solutions [59] or trapping e↵ects

[60]), particle collisions, or other loss processes will prevent this unhindered evolution

of the distribution function.

The unchecked evolution of the velocity distribution also calls into question the

validity of the ad hoc term we introduced to account for the BEW acceleration.

Indeed, the slow acceleration in this region occurs over several cyclotron periods, and

it is only by virtue of our assumption that the distribution evolves uninterrupted to
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its non-Maxwellian steady state that we can assume the regular acceleration region

is depleted at equilibrium. The good agreement with numerical results stems from

the fact that the simulated particles also were allowed to evolve independently of

eachother to an equilibrium state. Thus, while this collisionless and non self-consistent

model permits us to estimate the BEW e↵ect without expanding to higher order

terms, we must recognize that the assumed evolution of the distribution—particularly

the full depletion of the regular acceleration region— probably will not be realized in

an actual plasma.

In light of the limited applicability of the average kinetic energy model, it is desir-

able to find a more physically relevant way to characterize the heating e↵ectiveness of

both the BEWH and SEWH processes. To achieve this end, we approach the problem

from the other limit in time. Instead of estimating the long-term equilibrated kinetic

energy, in the next section we self-consistently investigate the instantaneous power

absorbed by a thermalized ion ensemble.

3.2 Power absorption

In order to evaluate the power absorbed by a thermalized ion ensemble subject to

BEW, we consider a steady-state system with unchanging, local electric field ampli-

tudes. This is the situation we encounter in most plasmas with externally driven

waves where an equilibrium is reached between introduced power from the waves and

absorption by the plasma ions. The evolution of the density distribution of collision-

less particles in such a system is governed by the Vlasov equation:

@f

@t
+ v · @f

@x
+ a · @f

@v
= 0, (3.21)
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where f denotes the density distribution function and a is the acceleration that con-

tains terms from both electrostatic waves as well as the magnetic field:

a =
q

mi

"

2
X

i=1

kj�j sin (kj · x � !jt + ↵j) +�k�nl sin (�k · x � �!t +�↵) + v ⇥ B

#

.

(3.22)

Here mi denotes the ion mass, �j is the potential amplitude of the wave, B = B0ẑ,

kj = kjxx̂ + kjz ẑ, ↵j is a constant phase, and �k = k2 � k1, �! = !2 � !1. We

implicitly assume in this formulation that the plasma density is homogenous and

the waves are collinear in the perpendicular direction (denoted x). We also have

included for completeness an unspecified, second-order term �nl to account for the

dielectric response of the plasma to the driven beat mode of the two waves. Mode-

mode coupling terms are not included since we assume the beat wave is not a natural

mode of the plasma [19].

In the average kinetic energy formulation in the previous section, we used a single

particle Hamiltonian to estimate the phase-averaged kinetic energy as a function of

the initial conditions and time. This required an integral over the initial coordinates

at ⌧ = 0 and the initial velocity distribution function f0. For this analysis, however,

we instead focus on the time evolution of the distribution function f . In particular,

we are interested in the quantity

@W

@⌧
=

1

2

@

@⌧

Z

�

v2
? + v2

z

�

hfid3v, (3.23)

which represents the spatially-averaged power density absorbed by the ions. In order

to evaluate Eq. 3.23, it is necessary to solve for the phase-averaged, time evolution

of the density distribution, f . The goal of the following discussion is to arrive at

an approximation for this through a fourth-order perturbation analysis of the Vlasov

equation, Eq. 3.21.
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3.2.1 Oscillation center formulation

While there are a number of methods available to self-consistently solve the Vlasov

equation in the presence of wave-wave and nonlinear wave-particle interactions [18,

61], these analyses in large part depend on a lengthy perturbation analysis of Eq. 3.21

and the Poisson equation expanded to fourth order [15]. In contrast, it was pointed

out by Johnston [19] that we can arrive at an approximation for the power absorp-

tion due to nonlinear e↵ects through a less complicated perturbation analysis of a

Hamiltonian formulation of the Vlasov equation. Johnston’s formulation relied on

a transformation of Eq. 3.21 to an oscillation center coordinate system where the

slowly varying terms that represent energy exchange with the waves are isolated and

the rapidly varying contributions that carry the energy of the waves are transformed

away. The system Johnston employed to achieve this transformation was developed

to first order by Dewar [62], which Johnston then expanded to second order. For

our perturbation analysis, we choose to follow a similar technique, but we instead

adopt the more formulaic Lie transform analysis [63, 64, 65]. This technique, which is

outlined in Appendix B, has been used to estimate the second-order ponderomotive

force produced by a single wave in a plasma [66], and in our formulation, it provides

a systematic way to identify the resonant terms responsible for absorption.

As a first step for applying this perturbation technique, it is necessary to ex-

press Eq. 3.21 in a simplified Hamiltonian formulation. To this end, we rewrite this

expression in terms of a governing, normalized Hamiltonian (Appendix A)

@f

@⌧
+
n

f, H̃
o

= 0, (3.24)
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where {..} denotes the Poisson bracket and we define

H̃ =
1

2

⇥

P 2
X + (PY � X)2

⇤

+
1

2
P 2
Z +

2
X

j=1

"j cos (jX + jzZ � ⌫i⌧ + ↵j)

+"nl cos (�X +�jzZ � �⌫⌧ +�↵) .

(3.25)

Here we have employed the same normalization scheme we introduced in the previous

section along with the definition jz = kjzrL. We note that in contrast to our analysis

for the average kinetic energy where electric field amplitude is employed, this expres-

sion is a function of the normalized potential amplitude "j = (q�j/mir2L⌦
2
i ). The

reason for this discrepancy is that in the case of oblique, electrostatic propagation,

the electric field with its multiple components can no longer be treated as a scalar.

The relationship between ⇠j and "j is given by ⇠j = "jj.

We next perform the same action-angle transformation to this Hamiltonian dis-

cussed in the previous section such that the Z dependent terms remain unchanged

[22]:

H = I +
1

2
P 2
z +

2
X

i=1

"j cos (j⇢ sin ✓ + jzZ � ⌫j⌧ + 'i)

+ "nl cos (�⇢ sin ✓ +�zZ � �⌫⌧ +�') ,

(3.26)

where we have let I = I1, ✓ = ✓1, and we have defined 'i = ↵i + i✓2, the guiding

center correction to the phase. From this formulation, we immediately note that

the symmetry in Y has eliminated the dependence of the Hamiltonian on I2. As

a consequence, we find that ✓2 is a constant of motion—the guiding center in the

x direction is unchanged by the particle dynamics—and we similarly can neglect

the degree of freedom I2 in our formulation. The Vlasov equation in action-angle
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coordinates is thus given by

@f

@⌧
+ {f, H} = 0, (3.27)

where the Poisson bracket is defined only with respect to the coordinates ✓ and

Z and their conjugate momenta. In this simplified formulation, Eq. 3.27 dictates

the evolution of the velocity density distribution of the ions as perturbed by two-

electrostatic waves in a uniform magnetic field. The normalized expression for power

absorbed by the ions subsequently is given by

@W

@⌧
= 2⇡

Z

H0h
@f

@⌧
i✓dIdPZ , (3.28)

where H0 = I + P 2
Z/2 and hi✓ denotes the average over the guiding center ✓2 as well

as ✓ and Z.

In this normalized system, Eq. 3.28 still requires that we evaluate f as a function

of time, and we are still hindered by the intractability of the nonlinear Hamiltonian

governing the equations of motion. However, in the new form, Eq. 3.26 can be

analyzed through the aforementioned Lie transform analysis. In particular, we make

a canonical transformation to an oscillation-center coordinate system where F is the

density distribution of the oscillation centers and the two quantities are related to

fourth order by (Appendix B)

f = F � {w1, F} +
1

2
{w1, {w1, F}} � 1

2
{w2, F} +

1

8
{w2, {w2, F0}} , (3.29)

where w1, w2 denote generating functions given from the Lie transformation as

@w1

@t
+ {w1, H0} = K1 � H1

@w2

@t
+ {w2, H0} = 2(K2 � H2) � L1(K1 + H1).

(3.30)
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where L1 = {w1, ..}. In this expression K1, K2 are the first and second order elements

of the transformed Hamiltonian, and the H components refer to the unperturbed and

higher order elements of the untransformed Hamiltonian:

H0 = I +
1

2
P 2
z

H1 =
1

2

2
X

i=1

X

n

"jJn (zj) exp
⇥

i
�

n✓ + jzZ � ⌫j⌧ + 'j

�⇤

+ c.c.

H2 =
"nl
2

X

p

Jp (�z) exp [i (p✓ +�zZ � �⌫⌧ +�')] + c.c.,

(3.31)

where zj = j
p
2I, �z = �

p
2I, the summation is over all integer n and p, and

we have assumed the self-consistent term is second-order in amplitude. Since this is

a canonical transformation, the equations of motion for the oscillation center distri-

bution are also governed by the transformed Hamiltonian formulation of the Vlasov

equation:

@F

@⌧
+ {F, K} = 0. (3.32)

We have not yet specified the form of the transformed Hamiltonian, but we can

see from Eq. 3.32 that with the appropriate choice of K, the evolution of the new

density distribution can be significantly simplified. In the next section, we calculate

K1 and K2 and the generating functions w1 and w2 for our system.

3.2.2 First and second-order components of the oscillation-

center Hamiltonian

The typical procedure [65] for determining K is to identify the components from H

that contribute secular terms to the generating functions, w1 and w2, and to relegate

these to the transformed Hamiltonian. This prescription physically translates to
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isolating the wave components that contribute to irreversible energy exchange with

the ions (the so-called oscillation center contributions) while neglecting the quickly-

varying perturbations of the actual particle motion that do not introduce preferential

acceleration in the system.

Following this procedure, we identify from Eq. 3.30 the first-order contribution to

K:

K1 =
1

2

2
X

j=1

X

n

"jD (⌫j � n � jzPZ) Jn (z) gj (⌧) + c.c.. (3.33)

Here we have defined D as a narrow filter [19] that picks out the resonant terms at

⌫j � n � jzPZ , which we approximate as

D (x) = lim
k!1

u
✓

k



1

2
� x

�◆

, (3.34)

where u denotes the Boxcar function. The time dependent terms in Eq. 3.33 have

been folded into

gj (⌧) = exp
⇥

i
�

�⌫j⌧ + jzZ + n✓ + 'j

�⇤

. (3.35)

The first-order generating function on the other hand is given by

w1 =
i

2

2
X

j=1

X

n

"j [1 � D (⌫j � n � jzPZ)] Jn (zj)

⇥gj (⌧) [exp [�i (⌧ � ⌧0) (n � ⌫j + jzPZ)] � 1]

⌫j � n � jzPZ

+ c.c.,

(3.36)

where ⌧0 denotes an initial time and we have solved for w1 by employing the method

of characteristics in Eq. 3.30. We note that in the limit ⌧0 ! �1 and assuming a

slight damping element in ⌫j in order preserve causality, the result for w1 reduces

to the generating function employed in Refs. [17, 23, 22]. We, however, retain the
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initial condition for the time being in order to investigate the decorrelating e↵ect

stochasticity has on the orbits. Physically, this corresponds to assuming the trajec-

tories follow zeroth order motion for small increments until being randomized by a

stochastic e↵ect.

For the second-order contribution to the transformed Hamiltonian, we only include

the beat terms in our evaluation from Eq. 3.30 since we are interested primarily in

this driven mode:

K2 =
X

p

D (�⌫ � p � �PZ)
⇣

"(p)nl + "(p)b

⌘

exp [i (p✓ � �⌫⌧ +�zPZ +�')] ,

(3.37)

where we have grouped the self-consistent shielding of the plasma into "(p)nl and the

beat term due to the second-order interaction of the waves into "(p)b . From Eq. 3.30,

we use this second-order transformed Hamiltonian to calculate the form of the second-

order generating function:

w2 =
i

2

X

p

[1 � D (�⌫ � p � �PZ)]
⇣

"(p)nl + "(p)b

⌘

⇥g� (⌧) [exp [�i (⌧ � ⌧0) (p � �⌫ +�zPZ)] � 1]

�⌫ � p � �zPZ

+ c.c.,

(3.38)

where we have defined

g� (⌧) = exp [i (��⌫⌧ +�zZ + p✓ +�')] . (3.39)

This expression along with the first-order generating function, w1, carries non-resonant

contributions that are necessary for transforming from F to the cartesian density dis-

tribution f . The transformed Hamiltonian K, on the other hand, only contains

components that are resonant with the two SEW and the driven beat wave, i.e. the

wave components that contribute to resonant energy exchange with the ions. In light
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of Eq. 3.32 and the transformed K, we thus see that the oscillation center density

distribution will carry information on the net energy gained by the ions.

3.2.3 First and second-order contributions to the oscillation-

center density distribution

In order to evaluate the first and second-order contributions to the oscillation-center

density distribution, we begin by expanding F = F0 + F1 + F2 where F0 = f0, the

background ion velocity distribution. We then substitute into the modified Vlasov

equation from Eq. 3.32 to find to first order

@F1

@⌧
+
@F1

@✓
+ PZ

@F1

@PZ

= � {F0, K1} . (3.40)

Integrating via the method of characteristics yields

F1 =
1

2

2
X

i=1

X

n

"jD
n
j Jn (zj)

✓

jz
@F0

@PZ

+ n
@F0

@I

◆

⇥ gj (⌧) [exp [�i (⌧ � ⌧0) (n � ⌫j + jzPZ)] � 1]

⌫j � n � jzPZ

+ c.c.,

(3.41)

where we have condensed the filter function into Dn
j = D (⌫j � n � jzPZ). We follow

a similar technique for the F2 contribution,

F2 =
1

2

X

p

⇣

"(p)nl + "(p)b

⌘

Dp
�

✓

�z
@F0

@PZ

+ p
@F0

@I

◆

⇥ g� (⌧) [exp [�i (⌧ � ⌧0) (p � �⌫ +�zPZ)] � 1]

�⌫ � p � PZ�
+ c.c.,

(3.42)

where Dp
� = D (p + PZ�� �⌫).

Taken together, F1 and F2 represent the kinetic response of the oscillation centers

to the perturbing waves. With these simplified forms, we proceed in the next section

to evaluate the power absorption by ions in the plasma.
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3.2.4 Fourth-order expression for power absorption

From the previous discussion, we see that the first and second order components of

the distribution functions as well as the generating functions are periodic with respect

to the generalized coordinates–a property we assume to be the case for the higher

order corrections as well. This periodicity significantly simplifies our calculation of the

change in the phase averaged energy density in Eq. 3.28. In particular, after averaging

with respect to these coordinates, we can see from Eq. 3.29 that the expression for

hfi✓ is given to fourth order by

hfi✓ = F0 � h{w1, F1}i✓ +
1

2
h{w1, {w1, F0}}i✓

+
1

2
{w2, F2}i✓ +

1

8
h{w2, {w2, F0}}i✓,

(3.43)

where we have specified that F0 = F0 (I, PZ) is independent of phase. We immediately

see that the product of the filter functions between w1 and F1 and between w2 and

F2 allows us to neglect the contributions h{w1, F1}i✓ = {w2, F2}i✓ = 0. Eq. 3.28 thus

becomes

2⇡
@

@⌧

Z

hH0fi✓dI = 2⇡

Z

dIdPZ

✓

I +
1

2
P 2
Z

◆

[@⌧F0+
1

2
@⌧ h{w1, {w1, F0}}i✓

+
1

8
@⌧ h{w2, {w2, F0}}i✓

�

.

(3.44)

In order to evaluate this expression, we begin with the first term on the right,

which contains the traditional quasilinear and nonlinear Landau damping terms for

power dissipation. By averaging the modified Vlasov equation Eq. 3.32 to fourth

order with respect to the generalized coordinates, we find the time dependence of the

background distribution F0 is

@

@⌧
F0 = �h{F1, K1}i✓ � h{F2, K2}i✓. (3.45)

Exploiting the periodicity with respect to the coordinates, we integrate by parts to
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h{F1, K1}i✓ = �h @
@I
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i✓

h{F2, K2}i✓ = �h @
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F2
@K2

@✓

�

+
@

@PZ



F2
@K2

@Z

�

i✓.

(3.46)

Substituting these results into Eq. 3.44 and integrating by parts over the action yields

2⇡

Z

dIdPZH0
@

@⌧
F0 = PQL + PNL (3.47)

where we have defined

PQL = �2⇡Im
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(3.49)

We have chosen the nomenclature QL and NL for these expressions since both

terms contain the traditional quasilinear (QL) di↵usion and nonlinear Landau (NL)

damping e↵ects. We show this explicitly in the next section when we take into

consideration the decorrelation produced by stochastic onset. The remaining terms

in Eq. 3.44 represent polarization corrections that arise from transforming from the

oscillation center coordinate system to the particle frame of reference. Indeed, while

there is only a small subset of the ion density distribution that is subject to irreversible

energy exchange with the electrostatic waves, which is represented by the di↵usion

of the oscillation centers in F , the remaining particles adiabatically carry the energy
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of the waves as they propagate across the plasma [10]. These polarization terms,

commonly referred to both as a mass renormalization [19] and fake di↵usion [18, 66],

represent this non-resonant energy.

We can see this explicitly through a calculation of the first-order polarization

contribution. Integrating by parts with respect to the generalized coordinates and

then with respect to the action yields

2⇡
@

@⌧

Z

dIdPZH0h
1

2
{w1, {w1, F0}}i✓ =

@

@⌧
Ww + PS, (3.50)

where we have divided the expression into two terms. The first term on the left is

given by

Ww = 2⇡
2
X
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"2j
X

n
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n (zj) (n + PZjz)
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@F0
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Z

+ n@F0
@I

⌘

2 (n + PZjz � ⌫j)
2 , (3.51)

where we have eliminated the filter term Dn
j in light of the fact that taking the real

component of this expression yields the principle value. This term corresponds to the

particle contribution to the energy density of propagating electrostatic modes (c.f.

Chapter 10 of Stix [10]) and thus is the so-called fake di↵usion that represents the

wave energy carried by the non-resonant particles. Under the assumption of steady

state, the local wave energy density remains constant such that the contribution of

this term to the power absorption is 0.

On the other hand, the second term in Eq. 3.50 does not necessarily cancel as it

depends explicitly on the initial condition ⌧0:

PS = �⇡
2
X

j=1

"2j
X

n
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dIdPZ

�
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j
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(n + PZjz � ⌫j)
.

(3.52)

As we will discuss in the next section, in the short decorrelation limit and case of near

perpendicular propagation, this term can lead to a power absorption that arises from

stochastic e↵ects; however, in the long term limit, it disappears–relegating energy
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deposition to the quasilinear e↵ects.

The higher order polarization contributions have analogous contributions to Ww

and Ps that are given by

2⇡
@

@⌧

Z

dIdPZH0h
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8
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where we have defined
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(3.54)

This term is an approximation for the energy density of the beat mode where again

under the assumption of a steady-state wave, we neglect its contribution to the power

absorption. On the other hand, the finite-time contribution to the di↵usion produced

by the beat mode is given by

PSBEW = �⇡
4
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X

j=1

X

p

Z

dIdPZ (1 � Dp
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✓
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.

(3.55)

This term represents the fourth-order contribution to stochastic damping in the limit

of short decorrelation times.

Taken together with the other contributions from Eqs. 3.48, 3.49, and 3.52, we

thus find the final expression for total power absorbed by the BEW process:

Pd = PQL + PNL + PS + PSBEW . (3.56)

In contrast to the investigation of the average kinetic energy we presented in Sec. 3.1

where the BEW e↵ect was introduced in an ad hoc manner, the BEW e↵ect explicitly

appears in Eq. 3.56 as fourth-order contributions in PSBEW and PNL. On the other

hand, just as we found in our approach in Sec. 3.1, we note that the sinusoidal time

dependence of the power absorption terms is a direct result of our use of an integrable

approximation to the governing Hamiltonian. In the next section, we introduce the
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e↵ect of stochasticity and employ it as a means to eliminate this unphysical time

dependence.

3.2.5 Coarse grain analysis

The onset of stochasticity leads to the loss of phase information for particles with

respect to the wave and ultimately irreversible behavior. In the previous discussion

of the average, equilibrated kinetic energy, we used this fact to justify that on a su�-

ciently long time scale, phase mixing should result in the deconstructive interference

of the time dependent terms. We were able to make this simplification since we were

investigating the final state of the distribution after an arbitrarily long time period:

Keq = lim
�⌧!1

h�TEi, (3.57)

where hTEi denotes kinetic energy of the ensemble averaged over phase and action.

Applying a similar argument to the power absorption is problematic since this

quantity represents the instantaneous change in kinetic energy. And while the e↵ect

of the stochasticity is to randomize the particle orbits over a characteristic time ⌧ac,

denoted the autocorrelation time, our integrable expression assumes the ion ensemble

begins in an initial state at time ⌧0 which then evolves uninterrupted according to the

second-order, integrable Hamiltonian. In order to account for the initial condition at

⌧0 as well as the missing stochastic e↵ects in our description, we apply the concept

of coarse graining to our expression for power absorption. In e↵ect, we discretize the

time in our problem into intervals of length �⌧ such that we can approximate the

power absorption as

Pd (⌧) ⇡ 1

�⌧

Z �⌧

0

d⌧ 0Pd (⌧
0) , (3.58)

where ⌧ 0 = ⌧�⌧0. In other words, we approximate the instantaneous power absorption

as the change in kinetic energy divided by the characteristic time.

The decorrelation of particle orbits leads to the decay of the time coherent terms in
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Eq. 3.56 such that we can introduce an e↵ective damping term e�⌧ 0/⌧
ac (characteristic

of a Markovian process though we do not prove that here [67, 68]) in front of the

time-dependent terms. We then choose �⌧ > ⌧ac such that on the coarse-grained time

scale, the time dependent terms evaluate to 0. This damping is implicitly assumed

in the traditional derivation of the nonlinear power absorption terms [15, 19], and in

light of Eq. 3.58, the decay of the time dependent terms similarly allows us to simplify

Eq. 3.56 to

Pd = PQL + PNL, (3.59)

where we have denoted

PQL = �2⇡Im
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(3.61)

The reason for the nomenclature QL now becomes apparent since in this limit of

short decorrelation time, the linear absorption associated with the individual waves

PQL is the traditional quasilinear term for power absorbed by an electrostatic wave in

a magnetic field [10]. Similarly, the PNL term is comparable to the nonlinear Landau

damping terms previously derived by Porkolab and Chang [15] and Johnston [19].

We note here that the validity of Eq. 3.59 depends on the existence of a mechanism

to e↵ectively destroy the phase information of orbits over all areas of phase space

where particles in the plasma velocity distribution exist. This e↵ect can stem, for

example, from weak collisions in the plasma or the phase mixing that arises when a

small band of frequencies is excited around the central wave frequency [69]. For our

collisionless model where the two waves are monochromatic, however, we assume the
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onset of stochasticity is the decorrelating process. In particular, while we have already

investigated in Chapter 2 stochastic onset, we now assume that the wave amplitudes

are su�ciently large that the stochastic condition is satisfied for the entire thermalized

ensemble we investigate.

With this assumption in mind, we continue to employ the power absorption terms

in Eqs. 3.60 and 3.61 and simplify them by invoking the Plemelj formula [70] to

perform the velocity integrals in the parallel direction:

Im
⇥

(n + PZjz � ⌫j)
�1⇤! ⇡� (n + PZjz � ⌫j) , (3.62)

where � denotes the Dirac delta function. With this relation, our expressions reduce

to

PQL = �⇡2
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✓
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PNL = �⇡2
X

p

Z

dIdPZ

⇣

"(p)nl + "(p)b

⌘2
✓

�z
@F0

@PZ

+ p
@F0

@I

◆

⇥ (p + PZ�z) � (p + PZ�z � �⌫) ,

(3.64)

where we have eliminated the filter function in favor of the Dirac delta. Next, we

assume a thermally isotropic Maxwellian distribution with a parallel drift Vd:

f (I, PZ) = (2⇡)�3/2 e�Ie�
1
2 (PZ

�V
d

)2 . (3.65)

Substituting this into Eq. 3.63 yields the simplified result for the quasilinear term
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⇡1/2
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We then employ Watson’s identify for Bessel functions [58] to find the reduced form

PQL =
⇡1/2

2
p
2

2
X

j=1

1

jz

X

m

e
� 1

2

✓
⌫

j

�m�V

d



jz



jz

◆2

"2j⌫j (⌫j � jVd) e�2
j Im

�

2j
�

, (3.67)
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where In denotes the modified Bessel function of the first kind.

As for the nonlinear term, we substitute the Maxwellian distribution into Eq. 3.64

to find

PNL =
⇡1/2
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(3.68)

where we have retained the � function in PNL since the nonlinear amplitude is a

function of the parallel velocity. In particular, the non-shielded amplitude of the beat

wave in Eq. 3.64 is given by (Appendix F.1)
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(3.69)

where the filter functions Dn
j serve to illustrate that this prescription is only valid for

ion velocities that do not satisfy the resonant conditions for individual waves. This

term represents the amplitude of the beat mode driven by the two waves. We similarly

denote "(p)nl = "nlJp (�z) with "nl = q�nl/(mir2L⌦
2
i ) where �nl is given by Eq. F.26 in

Appendix F. This term is the dielectric response of the plasma to the driven mode,

which serves to shield the beat wave but is typically smaller in magnitude than "(p)b .

3.2.6 Interpretation of terms

For the special case of an isotropically thermal Maxwellian distribution, we are now

in a position to assign physical significance to the terms in Eq. 3.59. PQL contains the

power absorption from the individual modes that occurs through the classic quasilin-

ear process of ion cyclotron harmonic damping (c.f. [7, 10]). It is the rigorous form

for power absorption of an ion ensemble that we motivated through a simple single
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particle argument in the introduction. As such, we anticipate that the qualitatively

motivated conclusions from the single particle description should generalize to the

ensemble case. Indeed, we see the cyclotron resonant condition for the ensemble in

the parallel direction direction is manifest in the leading exponential term in Eq. 3.67

where we require |⌫j � m � jzVd| ⌧ 1 in order for significant power absorption to

occur. In the case of a small drift velocity, Vd ! 0, this condition indicates that maxi-

mal heating occurs where m ⇡ k⌫jk. In turn, the maximum contribution at m = k⌫jk

to the power absorption from the terms dependent on the perpendicular wavenumber

j is given by j ⇡ k⌫jk, which translates to the perpendicular resonant condition

⌫j/j ⇡ 1. In physical coordinates, this is simply !j/kjx = vti, the phase velocity of

the wave in the perpendicular direction is equal to the average, thermal velocity of

the ions. We thus recover the macroscopic resonant conditions for power absorption

of an ion ensemble that we motivated qualitatively in Chapter 1: on-resonance fre-

quencies with perpendicular phase velocity close to the thermal velocity lead to the

greatest heating. When these conditions are not satisfied, the power absorbed can be

significantly reduced.

Turning to the nonlinear term, Eq. 3.68, we can see that this contribution has a

similar form to the quasilinear result, and indeed, we can interpret the e↵ect of this

mode partly in the context of quasilinear theory. Specifically, the beat mode generated

at the di↵erence frequency �! with wavenumber � has a nonlinear (quadratic

in potential) amplitude. Since the quasilinear damping of a mode depends on the

square of its amplitude, we thus anticipate that the power absorption from this virtual

mode should be the fourth order exhibited in Eq. 3.69. Similarly, in direct analogy

to the QL case, the cyclotron resonant condition in the parallel direction for the

nonlinear term is evident from the exponential term in Eq. 3.68. This is where

one of the advantages of the beating criterion becomes immediately evident since

waves that satisfy ⌫2 � ⌫1 = 1 automatically produce a beat mode in ion cyclotron
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resonance at p = 1. The interpretation of the perpendicular resonant condition, on

the other hand, is more complicated due to the intricacy of the nonlinear amplitude

Eq. 3.69. However, we note that in contrast to the quasilinear result of single wave

where we require ⌫j/j = 1 for significant power absorption, "1b (the resonant p = 1

contribution) exhibits a number of terms that are significant even when this condition

is not satisfied. The NL power absorption term thus reflects the ability of BEW to

target low energy ions—both in the parallel and perpendicular directions—and in so

doing it more rigorously captures the regular acceleration that we described with a

qualitative model in our average energy description from Sec. 3.1.

3.2.7 Limit of perpendicular propagation

Stochastic contribution to power absorption

While our description from Eq. 3.59 seems general, we find that in the limit of per-

pendicular propagation, 1z = 2z = 0, this term is ill-defined. This was first pointed

out by Baldwin [34] for the case of single wave propagation where he noted that in the

absence of parallel resonances, the classical derivation for single electrostatic modes

indicates that these waves do not deliver any power to the plasma. This can be seen

explicitly by considering Eq. 3.60 when jz ! 0:
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n2J2
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@F0
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, (3.70)

where P̃QL denotes the limit of perpendicular propagation. Since there are no poles

with respect to PZ , there are no imaginary components to contribute to power ab-

sorption. This is a paradoxical conclusion given the results of our simulations and

discussion of the average kinetic energy where we have seen that perpendicular waves

can exchange energy with the ions. The key to resolving this apparent contradiction,

as first pointed out by Baldwin, is that power absorption can occur provided there is

some decorrelation mechanism to destroy the phase coherence of the ions on the time
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scale of the ion cyclotron frequency.

We can see this explicitly from our formulation by examining the single wave

power absorption terms we derived before coarse graining in the limit of perpendicular

propagation:

P̃QL = �2⇡Im
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"2j
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In this limit, decorrelation of orbits can happen on the time scale ⌧ac = ⌧ � ⌧0 < 2⇡

[12]. We therefore anticipate that the stochastic e↵ects will e↵ectively destroy all time

dependent terms in this limit with the exception of those where |(⌫j � m) ⌧ac| < 2⇡.

Expanding the above terms in this limit, we only retain n = k⌫jk to find
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where we have defined the integral with respect to action to reflect the regions where

stochasticity occurs and again made the approximation ⌫j ⇡ k⌫jk where appropriate.

In this limit, we see that the P̃QL term does not contribute since in the short time

limit there are no poles. However, the stochastic term, which we assumed to average

to zero in the quasilinear analysis actually has a finite contribution. Indeed, assuming

su�ciently large amplitude such that the stochastic threshold extends to values for

⇢ < ⌫j/j and noting that J2
⌫
j

(zj) ! 0 as ⇢ ! 0, we extend this integral to the entire

domain in I to find
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where again we have assumed a Maxwellian distribution for the ion ensemble. At last,

allowing ⌧ac ⇡ ⇡, i.e. the energetic particle in the stochastic region experiences inter-

actions with the wave twice each orbit (when its velocity is close to the perpendicular

phase velocity), we thus find the contribution to damping in the perpendicular limit

as

P̃S =
⇡

2
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This is the same form as derived by Karney [12] who found the power absorption term

in the perpendicular limit by first deriving a di↵usion equation. We, on the other

have, have implicitly recovered di↵usion through the assumption of stochasticity in

our kinetic formulation. Employing again our apt identity for Bessel functions from

Watson [58], we can simplify the result further to yield
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We thus retain power absorption even in the limit of perpendicular propagation—

provided there is a decorrelation mechanism to destroy orbit coherence.

We follow a similar treatment to evaluate the nonlinear term in the limit of perpen-

dicular propagation, though we make special note that the filters exclude on-resonance

terms ⌫j = k⌫jk from this formulation. Since we have already satisfied the beat cri-

terion such that �⌫ = 1, the P̃SBEW result for the case where we retain finite time

e↵ects is given by

P̃SBEW =
⇡

8

2
X

j=1

Z

dI
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"(1)b + "(1)nl

⌘2

e�I , (3.78)

where we have only retained the dominant p = 1 term in PSBEW . We thus find that

power absorption does occur for both the beat waves as well in the perpendicular

limit of propagation.
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Quasilinear and nonlinear contributions to power absorption

In light of the results rigorously derived above, we now see that we can recover the

same stochastic terms through a judicious choice of limits for the traditional QL term.

In particular, we take the limit zi ! 0 after performing the integral with respect to

PZ in Eq. 3.60 to find

P̃QL = �⇡2
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n
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Substituting in a Maxwellian distribution yields the result
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which is the result we found by explicitly considering the stochastic e↵ects in the

perpendicular limit with the exception that in this case, the absorption only occurs

exactly at on-resonance. From our explicit inclusion of the stochastic e↵ects, we have

introduced a broadening in this exact on-resonance condition. A similar treatment

reveals that taking the appropriate limits allows us to recover P̃SBEW ⇡ P̃NL within

a constant factor.

3.3 Comparing descriptions

From our above analysis for the case of average kinetic energy in Sec. 3.1 as well as our

estimate for power absorption in Sec. 3.2, we see that the e↵ect of the BEW modes

is to introduce additional energy absorption into a plasma by virtue of a nonlinear

coupling. From the average kinetic energy description, we interpreted this e↵ect in

terms of individual particle orbits where the frequency coupling between the beat

mode and the ion cyclotron frequency can lead to regular, coherent acceleration of

low energy particles. From the power absorption description, we examined the beat

e↵ect as an induced virtual wave at the beat frequency and beat wavelength. We

implicitly averaged over particle orbits by invoking a stochastic criterion and as such
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we could not see the precise e↵ect of the BEW waves. Ultimately, we recovered

an approximation for the coherent acceleration of individual particles through the

resonant interaction of the beat mode with the plasma.

Since both descriptions o↵er di↵erent insight into the energy exchange of BEW

with the plasma ions and ultimately lead us to similar conclusions, we anticipate that

the two descriptions should predict similar behavior under the same assumptions.

With this in mind, we examine Eq. 3.59 subject to the restrictions we adopted for the

average kinetic energy description, 1 = 2 = , 1z = 2z = 0, and "1 = "2 = "0. In

this limit of perpendicular propagation, we substitute these assumptions into Eq. 3.77

from the previous section to find
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which is equivalent to our expression for Eq. 3.17 within a constant factor–bearing in

mind that ⇠ = ". The constant 1 in Eq. 3.17 represents the initial average kinetic

energy of the ensemble and does not appear in Eq. 3.81 since this term is the power

absorption— the instantaneous change in kinetic energy over time. The e↵ect of

enhanced heating at on-resonance � = 0 also is also equivalent to Eq. 3.17 provided

that �2c = 6/⇡2.

The beating wave contribution under the assumptions of our average kinetic en-

ergy formulation is given by Eq. 3.78 with the dielectric response amplitude "nl = 0

and the amplitude term

"(1)b =
"1"2
4

X

m

m

 

Jm (z1) J
0

1+m (z1)

"

1 � D̃m
1

⌫1 � m
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1 � D̃1+m
2

⌫2 � (1 + m)

#

+Jm (z1) J
0

m�1 (z1)
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1 � D̃m
2

⌫2 � m
+

1 � D̃m�1
1

⌫1 � (m � 1)

#!

.

(3.82)

From this expression, we can immediately see that the e↵ect of the nonlinear term

is to enhance the power absorption. In this sense then, the average kinetic energy

description from Eq. 3.20 and this power absorption formulation capture the same
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essential feature. There is a significant di↵erence, however, in that the nonlinear

power absorption term is fourth order in amplitude while for the average kinetic en-

ergy case, the BEW e↵ect was described to second order. We already alluded to this

distinction in our previous discussion of the averaged kinetic energy where we noted

that our expression for BEWH required an estimate for how the coherent accelera-

tion and stochastic acceleration regimes interact. Our simplification that permitted a

second-order estimate for this energy exchange was justified by the fact that we were

approximating a steady-state distribution in a non self-consistent regime where par-

ticle orbits were allowed to evolve indefinitely. On the other hand, our more physical

derivation for the power absorption indicates the instantaneous power absorption that

occurs for a Maxwellian distribution of ions. This is a more valid description for most

thermal plasmas where collisionality is su�ciently high to maintain a Maxwellian

distribution. Of course, finding the true steady state distribution would require that

we introduce collisionality as a loss term into our power absorption [12].

3.4 Dispersion relation

We can use the formalism from Sec. 3.2 to determine the self-consistent dispersion

that constrains the relationship between the frequency and wavenumber of the indi-

vidual modes. This was not possible with the average kinetic energy model since this

description did not provide information on the kinetic response, f1, of the plasma to

the waves. With the kinetic formalism, however, we can find such a relationship in

physical coordinates (Appendix E):

D (!,k) = k2✏ (!,k) = 0, (3.83)
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where the dielectric tensor is given by

✏ (!,k) = 1 +
X

s

!2
ps

k2
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Z

v?dv?dvz
X

n

J2
n

�

z(s)
�
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n⌦s
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@v?
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(3.84)

Here z(s) = v?kx/⌦s, f0(s) denotes the three-dimensional velocity distribution of the

species, and !2
ps = q2sn0/ms✏0 is the species plasma frequency. Allowing for back-

ground Maxwellian distributions with parallel drift velocities and isotropic tempera-

ture, we can integrate this relation to find [10]:

D (!,k) = k2
z + k2

x +
X

s=e,i

k2
ds

"

1 +
X

n

e�a
sIn (as)Z (⇣n)

 

⇣n +
n⌦p
2kzvt(s)

!#

, (3.85)

where we have defined k2
ds = n0q2/✏0Ts; ⇣n =

�

! � n⌦s � kzvd(s)
�

/
p
2kzvt(s); the

thermal velocity, v2
t(s) = Ts/ms; as = (kx⇢s)

2; the plasma dispersion function, Z (⇣n) =

1/
p
⇡
R1
�1

h

e�s2/ (s � ⇣n)
i

ds; ⇢s = vt(s)/⌦s; vd(s) is the drift velocity of the given

species; and In is the modified Bessel function of the first kind.

3.5 Condition for superiority of BEWH

Armed with our expression for the power absorption that occurs in BEWH, we now

are in a position to compare this process to SEWH. Indeed, while in our simplified

calculation for the average kinetic energy in Sec. 3.1, we found that BEWH is superior

for roughly equivalent input energy densities, we see that for the more general case of

power absorption, the quartic dependence on amplitude of the nonlinear term suggests

that there may be a regime where SEWH heating is the preferable process.

To identify this regime, we compare the SEW process with the BEW process

under the condition that each has the same total wave energy density, WT . From the

electrostatic dispersion relation, we know that the energy density in a single mode is

86



given in unnormalized coordinates by [10]:

Wj = ✏0
!i

4
�2

i

@

@!
D (kj,!j) . (3.86)

We thus see that the energy density for a single wave depends quadratically on the

potential amplitude. For the case of two propagating modes then, the total energy

density is

WT = �1�
2
1 + �2�

2
2, (3.87)

where �j is the coupling coe�cient that depends on the dispersion relation of the

propagating mode. In order to simplify our analysis further, we define the fraction of

the total energy in the first wave as

⌘ =
�1�2

1

WT

, (3.88)

such that we have

�2
1 =

⌘

�1
WT

�2
2 =

WT

�2
(1 � ⌘) .

(3.89)

Given these definitions, we can re-write our expression for power absorption as

Pd = ↵1�
2
1 + ↵2�

2
2 + �2

1�
2
2�12, (3.90)

where ↵j corresponds to the single wave absorption process, and �12 is the coe�cient

for the nonlinear term that arises from the beat mode at the di↵erence frequency

�! = !2 � !1. Substituting our expressions for total energy density into Eq. 3.90,

we thus find

Pd = WT

✓

↵1

�1
⌘ +

↵2

�2
(1 � ⌘) + WT

�12
�1�2

⌘ (1 � ⌘)

◆

. (3.91)

This result expresses the power deposition in the plasma due to the BEW e↵ect as

a function of fraction of the total energy density in the first mode. It permits us to

formulate a simple criterion for the case where BEW is superior to SEW. Specifically,

if BEW produces superior heating to SEW (where ⌘ = 0 or 1), then for the same total
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energy density, there should be some combination of the two waves where the increase

in ion temperature for BEW is greater than the equivalent temperature increase at

either SEW frequency. More succinctly, if we define F (⌘) = [Ti(⌘) � Ti0] /Ti0, the

fractional increase in ion temperature Ti due to wave heating, then if BEW is the

more e�cient process for fixed WT , there exists a range of ⌘ 2 (0, 1) such that

F (⌘) > F (0), F (1).

Since Pd is a smoothly varying function, we see that this requirement for the

superiority of BEW can be translated into calculating the optimal value of ⌘:

⌘ =
1

2
+

↵1↵2

2�12WT

✓

�2
↵2

� �1
↵1

◆

. (3.92)

This result is physically intuitive. For increasing total energy density or a larger

nonlinear coupling term, we see that the optimal value approaches an equal split

between the two density modes. We further can see from this criterion that in order

for BEW to be the more e�cient process (where ⌘ 2 (0, 1)), it is necessary that

WT >

�

�

�

�

↵1↵2

�12

✓

�2
↵2

� �1
↵1

◆

�

�

�

�

. (3.93)

In other words, there is a threshold value for total wave energy density for the BEW

process to be superior to SEW. The interesting consequence of this expression is

that while BEW is always the superior process for su�ciently large input energy

(provided the perturbative expansion is still valid, i.e. "j  1 at these values), at low

wave energies this advantage can disappear. For experiments and applications where

the input power to the waves is limited, it may be possible that it is preferable to

employ SEW.

This formulation also provides insight into our results for the special case we

examined in Sec. 3.1. In particular, we now see that implicit in our assumption for

equating the equilibrated average energy terms hI 0
effi = hIeffi, we e↵ectively assumed

↵1 = ↵2. Furthermore, we did not include dispersion in our estimate for total wave

energy densities, i.e. we assumed �j = 1. Substituting these coe�cients into our
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expression for Eq. 3.93, we see that the criterion for BEW superiority is satisfied for

arbitrarily small WT . Our assertion for the superiority of BEWH to SEWH that we

derived from our average kinetic energy description therefore is vindicated from our

power absorption model.

As a final note, we determine the forms for the coe�cients in Eq. 3.93. From

Eq. 3.67 we find in physical coordinates that
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(3.94)

where we have defined �j = (Ti/mi) (kjx/⌦i)
2. The nonlinear term similarly is derived

from Eq. 3.68:
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where we have defined �kz = kz2 � kz1, �! = !2 � !1, and

f?
(0) =

✓
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e�m
i
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i . (3.96)

The velocity-dependent terms are given by

Am
p =

1

4



m
⌦i

v?

✓

Jm (z1) J
0

p+m (z2)



1 � Dm
1

!1 � m⌦i + vzk1z
+

1 � Dp+m
2

!2 � (p + m)⌦i � vzk2z

�

+Jm (z2) J
0

m�p (z1)



1 � Dm
2

!2 � m⌦i � vzk2z
+

1 � Dm�p
1

!1 � (m � p)⌦i � vzk1z

�◆

+k1zk2zJm

�

z1(s)
�

Jm+p (z2)

✓

1 � Dm
1

(m⌦i + vzk1z � !1)
2 +

1 � Dm+p
2

((m + p)⌦s + vzk2z � !2)
2

◆�

� Jp (�z)
mi

q�1�2
[✏ (�!,�k)]�1



!2
pi

(�k)2

�

2⇡

Z

v?dv?dvzJm

�

�z(i)
�

⇥
"

�(m)
b(i)

�! � m⌦i � vz�kz

✓

�kz

@f0(i)
@vz

+
m⌦i

v?

@f0(i)
@v?

◆

+ D(m)
i

#

,

(3.97)

89



where �(m)
b(i) and Dm

i are given in Sec. F.2 and the derivatives are with respect to v?.

The coe�cients �j stem directly from our definition of the energy density and the

unnormalized dispersion relation Eq. 3.85.

3.6 Chapter summary

In this analytical treatment, we set out with the goal of describing the heating of

an ensemble of ions that occurs once the particle orbits have become decorrelated.

This is a critical step for relating our understanding of the single particle dynamics

to the physical heating of a plasma. As a first attempt toward this end, we started

with an ensemble description that translated directly to the single particle description

from Chapter 2. This model was based on an inspection of the Poincaré cross-section

and a second-order estimate for the average increase in kinetic energy of particles. It

provided direct insight into how the BEW e↵ect can lead to enhanced heating, though

ultimately it su↵ered from a lack of self-consistency, an overly restrictive assumption

of perpendicular propagation, and a need to account for the BEW e↵ect through a

qualitatively modeled corrective term.

In order to more directly model the plasma heating then and allow for oblique

propagation, we explored a second description based on examining the power absorbed

by ions subject to BEW. We found that this approach not only produced traditional

ion cyclotron damping due to individual waves but also provided a fourth-order term

that accounted for the power deposited by the beat mode. On the other hand, this

model did have a failing in that the averaging required to arrive at our expression for

power absorption make it di�cult to link our understanding of single particle orbits

to this model.

The two descriptions ultimately illustrated the same behavior under the same as-

sumptions, but since the power absorption approach allowed both for self-consistency
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as well as oblique propagation, we chose this model as the basis for comparison be-

tween SEWH and BEWH. The interesting result we found is that there are some

cases when the SEWH process may be superior to BEWH, and the condition for this

superiority depends directly on the total wave energy density, the wave parameters,

and the background temperature of the plasma.

We can combine this result with the conclusions from the last chapter. In par-

ticular, let us denote the threshold total energy density for when stochasticity first

appears for the single wave case as W ⇤
T , i.e. the lower value of W1(SEW ) and W2(SEW )

from Eq. 2.25, and let us denote the total energy density for when stochasticity first

appears for the BEW case as W0. Similarly, we label W T as the condition when

Eq. 3.93 is an equality. The results from our analytical investigation thus suggest

separable regions of behavior in terms of the input energy density:

Total Energy Density Superior Process
WT < W0 —

W0 < WT < W ⇤
T BEWH

W ⇤
T < WT < W T SEWH
W T < WT BEWH

In the following chapters, we describe an experimental setup and procedure for

examining these analytically predicted trends.
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Chapter 4

Experimental setup and diagnostics

The goal of the experimental investigation is to explore the SEWH and BEWH pro-

cesses over a wide range of wave energy densities and to compare the results with our

theoretical predictions. We describe in this chapter the Beating Waves Experiment

II (BWX II), the setup constructed to achieve this end. In Section 4.1, we provide a

detailed schematic of the entire setup with a special emphasis on the vacuum chamber

and magnetic field of BWX II. In Section 4.2, we present the plasma source along

with typical plasma parameters. In Section 4.3, we describe the antenna geometry

we adopted to launch electrostatic modes in the BWX II plasma. In Section 4.4, we

include a discussion of the low frequency matching network we employed to couple

two beating electrostatic modes to the antenna concurrently. And in Section 4.5, we

describe the primary diagnostics in the experimental setup. These include a double

Langmuir probe array for electron temperature and density measurements and a laser

induced fluorescence system to examine ion temperature and wave properties.

4.1 Vacuum chamber and solenoid

We show a detailed schematic of BWX II in Fig. 4.1 along with a computer generated

image and photograph in Fig. 4.2. In this configuration, the vacuum vessel is a Pyrex
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cylinder 132 cm in length with a 16.5 cm inner diameter placed concentrically in a

122 cm long, 10 ring solenoid. A small window at the end of the chamber allows

longitudinal optical access while argon gas can flow into the chamber through a feed

in the cross at the opposite end of the vessel. The RF plasma source and plasma

heating regions are located on opposite sides of the vacuum vessel in order minimize

stray RF noise in the experimental region.

During experimental runs, a constant pressure of 0.1 mT is maintained in the

vessel by a 140 l/s turbo pump backed with a roughing pump. Two klystron Varian

1955A magnets placed end to end provide a magnetic field in the experimental test

region. Each magnet is calibrated experimentally as well as numerically modeled to

produce a uniform field in this region with a magnitude of 525 G, corresponding to

an ion cyclotron frequency of 20 kHz. We show in Fig. 4.3 a plot of the magnitude

of this magnetic field along the central axis of the plasma as a function of position.

4.2 Plasma source

The plasma discharge in BWX II is produced by a Boswell-type saddle antenna with a

18.4 cm inner diameter placed around the vacuum chamber at one end of the solenoid.

The antenna is powered by a 1.25 kW source operated at 13.56 MHz and matched

to the plasma with an L network consisting of two Jennings 1000 pF 3kV variable

vacuum capacitors. In order to minimize RF noise from this antenna as well as provide

a low energy background for contrast to the heating, we operate this antenna in the

inductive mode at 275 W.

Typical electron density and temperature radial profiles that were measured with

an array of double probes (Sec. 4.5.1) are shown in Fig. 4.4. From these plots, we see

that the electron temperature in BWX II is approximately uniform over the majority

of the heating volume with Te ⇡ 3.5 eV. The small increase in temperature at the

93



O
D

:  
3.

18
 c

m
!

Py
re

x 
cy

lin
de

r!
O

D
: 1

6.
5 

cm
!

ID
:  

15
.5

 c
m
!

L:
  1

32
 c

m
!

M
ag

ne
tic

 c
as

in
g!

O
D

: 5
0.

2 
cm
!

L:
  5

9 
cm
!

A
lu

m
in

um
 e

nd
 c

ap
s!

O
D

: 5
0.

2 
cm
!

L:
  0

.6
35

 c
m
!

Ra
il!

W
: 1

.9
 c

m
!

L:
  7

6.
8 

cm
!

H
: 3

.1
8 

cm
!

St
ra

p 
an

te
nn

a!
L:

 2
5 

cm
!

O
D

:  
1.

27
 c

m
!

A
lu

m
in

um
 fl

an
ge
!

O
D

:  
18

.0
 c

m
!

Py
re

x 
w

in
do

w
:!

O
D

:  
10

.1
6 

cm
!

O
pt

ic
al

 a
cc

es
s p

or
t!

W
:  

30
 c

m
!

H
:  

10
 c

m
!

M
ag

ne
tic

 c
oi

ls!

Pr
ob

e 
ar

ra
y!

Sa
dd

le
 a

nt
en

na
!

O
D

:  
19

.1
 c

m
!

3.
2 

cm
!

5.
4 

cm
!

5.
9 

cm
!

7.
6 

cm
!

7.
6 

cm
!

7.
6 

cm
!

3.
8 

cm
!

11
.4

 c
m
!

2.
4 

cm
!

3.
4 

cm
!

3.
4 

cm
!

4.
1 

cm
!

10
 c

m
!

F
ig
u
re

4.
1:

S
ch
em

at
ic

d
ra
w
in
g
of

B
W

X
II

94



(a) Computer generated schematic of the BWX II.

(b) Photograph of the experimental apparatus showing the LIF system in the foreground.

Figure 4.2: Experimental setup
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Figure 4.3: Plot of the magnetic field along the central axis of the plasma.

plasma edge is consistent with cylindrical inductively coupled sources [71]. As for

the density, there is an approximately uniform region near the center of the plasma

with a small dip at r = 0. This same trend has been reported for similar inductive

discharges at low power [72]. The axial dependence of both temperature and density

is uniform for the length of the heating volume.

The background ion temperature for our experimental conditions is approximately

Ti = 0.25 eV, and we use this parameter in conjunction with the density and electron

temperature measurements to show typical frequencies for BWX II in Fig. 4.5 [73].

The Hall parameter for ion-neutral collisions, ⌦i/⌫in � 1, is particularly important

since it suggests that for our weakly ionized plasma ( < 5%) where these collisions

are the dominant contributor to momentum transfer, we are in a regime where our

collisionless model for ion heating has applicability.

96



(a) Typical radial profile for electron temperature.

(b) Characteristic radial profile for density in BWX II.

Figure 4.4: BWX II experimental parameters.
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Figure 4.5: Characteristic frequencies for BWX II.

4.3 Antenna

While a number of studies have indicated electrostatic waves can be generated e�-

ciently in a magnetized plasma by capacitive plates [74], capacitively coupled concen-

tric rings [49], planar antenna [13, 48], and current-carrying wires along the axis of the

plasma [75, 76], all of these methods subject the antenna to significant erosion. Since

potential applications of the two-wave process depend on maintaining component in-

tegrity, BWX II employs a strap antenna placed outside the plasma for launching

the electrostatic waves. In this configuration, the antenna generates a time-varying

magnetic flux in the direction perpendicular to the ambient magnetic field. This in

turn induces a substantial charge gradient in the plasma, which couples to both per-

pendicular and oblique electrostatic waves. The type of wave that is excited depends

on the geometry of the inductive antenna. Two commonly employed configurations

include the Nagoya III for coupling to the electric field component of helicon modes in

a magnetized plasma [77] and a Helmholtz coil antenna that excites the electrostatic

ion cyclotron wave [78].

The waves in the BWX II are launched by means of a simpler form of these two
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configurations, a strap antenna 5.5 cm in width and 25 cm in length with 40 turns.

The antenna is located outside the vacuum vessel with the longer dimension parallel to

the magnetic field. The face of the antenna is pressed directly against the Pyrex vessel

with the normal vector oriented parallel to the ground. We selected this geometry

to launch near planar modes across the plasma in order to facilitate a comparison

between the experimental results and theoretical predictions that we derived under

the assumption of planar modes in a cartesian geometry.

Power is coupled into the two electrostatic waves launched concurrently from the

antenna by means of an ENI 1140 LA amplifier that is matched to the antenna’s

inductive load with the variable dual frequency wave [79] launcher discussed in the

next section. This provides near optimized matching over the frequency range of

interest in this investigation, f = fci � 5fci = 20 � 100 kHz. The maximum current

excited in each mode is 22 A—the value where excessive heating of the matching

network by resistive losses significantly changes the matching characteristics. The

power output from the amplifier at this point is 400 W.

4.4 Variable dual-frequency wave launcher

For a full parametric investigation of the BEW process, it is necessary to have the

capability of easily and independently tuning the frequencies, f1 and f2, of the con-

currently launched waves. With this end in mind, we have designed the Variable

Dual-frequency Wave Launcher (VDWL) — a system that (I) maximizes power into

two waves simultaneously at the variable frequencies f1, f2 and (II) attenuates any

undesired frequencies not equal to f1 and f2. These criteria ensure that only the

waves of interest are excited in the plasma while harmonic distortions that may arise

from the non-ideal amplifier are blocked. In describing the VDWL, which we show

in the context of BWX II in Fig 4.6, we first motivate the choice of the matching
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Figure 4.6: Representative drawing of the Variable Dual-frequency Wave launcher in
relation to BWX II.

network as a means to tune to the strap antenna we employ in BWX II. We then

evaluate the performance of the system with the BWX II antenna.

The strength of the coupling of the antenna we employ in BWX II depends on

the magnetic flux through the plasma volume, which is a function of the antenna

inductance. We model this inductance with an equivalent circuit for the antenna that

consists of a series resistor, RA, and inductor, LA, in parallel with a parasitic capacitor,

CA. The real and imaginary components of the impedance of the strap antenna were

measured directly at the leads by comparing the magnitude and phase of a sinusoidal

signal from the ENI 1140LA at the indicated frequency. These measurements were

verified with a low-frequency dual directional coupler. The results are shown in

Fig. 4.7 for the case of an input power of 50 W and correspond to a small capacitance,

CA = 66 pF and inductance LA = 317 µH. The calculated series resistance, RA,

which is shown in Fig. 4.7, increases by a factor of four over our frequency range due

to AC resistive losses.

As the wave coupling for the inductive antenna depends directly on the aver-

age magnetic flux density, the criteria outlined in I and II for our wave launching
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Figure 4.7: The measured impedance of the strap antenna with an interpolation fit.
The dashed line corresponds to the reactance and the solid is the overall resistance.
The dotted line is the calculated value of the resistor, RA, for an equivalent circuit
model of the antenna that is comprised of the series resistor and inductor (LA =
317µH) in parallel with a capacitor (CA = 66 pF).

system are now framed in the context of this physical parameter. Specifically, we

need a matching network for the antenna that is capable of maximizing the mag-

netic flux density for two variable frequencies while simultaneously attenuating the

flux at frequencies other than the selected values, f1, f2. We note here that while

this selectivity is necessary to block undesirable harmonic distortions from the wave

source, this latter feature also has added value for experiments in which the plasma is

initially created by radio frequency waves. The noise from such a process can induce

voltage fluctuations on the heating antenna that unattenuated could produce harmful

feedback into the signal amplifier.

The magnetic flux density for the strap antenna depends linearly on the current it

carries. This leads to an expression for the average flux density in the plasma volume,

hBi = �cNIA, (4.1)
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where N is the number of turns in the antenna, IA is the current per turn, and �c

is a fixed constant that depends on the geometry. Since the number of turns and

geometry of the strap antenna are constrained by the availability of space and the

type of excited mode that is desired, the antenna current is the free parameter we

manipulate to achieve the performance goals cited above. This is accomplished with

the dual frequency network shown in Fig. 4.8 along with the equivalent circuit for the

strap antenna.

C1 

C2 

L1 

L2 

Cp1 

Cp2 

Rp2 

R0 

RA LA 

Rp1 

n:1 

CA 

Antenna 

Tuning network 

Source 

Figure 4.8: Dual frequency tuning circuit with equivalent circuit models for each
component. The transformer has an n:1 turns ratio.

The tuning network consists of an n:1 step-down transformer between the source

with impedance R0 and two parallel LC traps connected in series with the antenna.

The parasitic components (Cp1, Rp1, Cp2, Rp2) account for the non-ideal behavior of the

inductors. During operation, the LC traps provide two separate and isolated paths

for the waves from the source’s combined signal. As a result, only one frequency

f1 is passed through the top arm, while the second frequency f2 is passed through

the bottom arm. By tuning the series resonance of the inductors L1, L2 and the

variable capacitors C1, C2, not only can the values of f1, f2 be changed, but the

circuit will provide a conjugate match to the load at these values. The step down
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transformer serves to match the residual resistance to the source impedance, which

in turn multiplies the current through the antenna at the tuned frequencies. In this

way, the circuit is capable of selectively passing two frequencies concurrently and

attenuating the surrounding frequency spectrum.

We can quantify the performance of this system with an expression for the current

through the antenna. For a fixed voltage VS at the source, the current through LA is

given by,

IA = nVS

�

�

�

�

ZA

(RA + j!LA) (R0 + n2 [ZT + ZA])

�

�

�

�

, (4.2)

where ! is the angular frequency and the factors of n and n2 stem from the trans-

former. ZT is the impedance of the tuning network which is given by

ZT =

0

@

X

i=1,2

"

✓

1

Rpi + j!Li

+ j!Cpi

◆�1

+
1

j!Ci

#�1
1

A

�1

. (4.3)

ZA denotes the impedance of the antenna, which from the equivalent circuit model is

ZA =

✓

1

RA + j!LA

+ j!CA

◆�1

. (4.4)

It is evident from Eq. 4.2 that the LC traps introduce poles at two frequencies,

which we denote f1, f2. Moreover, since these resonant frequencies are functions of the

component values, we can use Eq. 4.2 to calculate numerically the values necessary

to produce resonances at arbitrary f1 and f2. While this procedure will yield a

wide range of valid component values for isolating f1, f2, we choose to constrain our

inductor values such that L1, L2 � LA. We do this for two reasons. First, provided

the parasitic resistances Rp1, Rp2 are su�ciently small, this constraint yields simplified

expressions for the resonant frequencies,

f1 ⇡ 1

2⇡
p

L1C1

f2 ⇡ 1

2⇡
p

L2C2

. (4.5)

This convenient relationship between the tuned frequencies and capacitances gives us

a first-order approximation for how to tune our components. The second reason for
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this restriction on inductance is that the strap antenna has a low inductance. As a

consequence, for our low-frequency application, if we were to let L1, L2 ⇡ LA, commer-

cially available variable capacitors would be unable to produce su�cient capacitance

for the LC traps to function. In order to continue to employ variable capacitors for

e↵ective tuning, we instead are forced to use large inductors L2, L1 � LA.

With these considerations in mind, we use Eqs. 4.1 and 4.2 to find an approx-

imation for the normalized magnetic flux density, �, produced by the antenna as a

function of component values and frequency

� =
hBi
hB0i

=

�

�

�

�

�

2n (R0RA)
1/2 ZA

(RA + j!LA) (R0 + n2 [ZT + ZA])

�

�

�

�

�

, (4.6)

where we have normalized the flux density by the maximum magnetic flux density

hB0i that can be generated through the antenna. This field occurs when the antenna

current is I0 = Vs (4R0RA)
�1/2, i.e. the maximum amount of power from the amplifier

is dissipated across the resistor RA that is in series with the antenna inductor.

With Eq. 4.6 we have a metric—analogous to the transducer power gain [80]

employed for power matching systems—that represents the relative performance of

the tuning network in generating a magnetic flux density from a single source. With

the goal in mind of maximizing �, we thus can use this equation to guide the choice

of real circuit components in Fig. 4.8 and to gauge the e�cacy of our chosen system

in achieving (I) and (II).

Variable capacitors

Each LC trap of the circuit employs a 1-1000 pF vacuum variable Jennings capacitor.

We used a set of fixed elements (four 1000 pF Mica capacitors and one 10,000 pF

Mica capacitor) placed in parallel with the vacuum variable capacitors in order to

yield a variable range of capacitance of C1 from 1-10,000 pF and C2 from 1- 5000 pF.
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In general, we have found the parasitic inductance and resistance of the capacitors

are small when compared to the parasitic elements of the inductors. This verifies our

depiction in Fig. 4.8 of C1, C2 as ideal elements.

Inductors

We chose to use air-core, cylindrical inductors in order to avoid core losses [81] at

the high inductances and powers required for BWX II. The disadvantage of this

configuration is that a large number of turns are required, which can lead to large

parasitic interwinding capacitance, AC series resistance, and stray capacitances. We

minimized these e↵ects by isolating the inductors from the surrounding environment

and winding them in single layers with length to diameter ratios of approximately

one [82]. In this way, we constructed two inductors from 14 AWG copper wire that

measured 35.6 cm and 26.7 cm in diameter with inductances of L1 = 3.7 mH and

L2 = 1.7 mH. The parasitic capacitances were found to be Cp1 = 90 pF and Cp2 =

110 pf. As with the case of the strap antenna, the values of Rp1, Rp2 increased over

the frequency range due to AC resistive e↵ects. However, since the calculation of � in

Eq. 4.6 only requires an estimate for the total impedance ZT , instead of determining

the explicit frequency dependencies of the equivalent circuit elements Rp1, Rp2, we

used interpolation fits to the total measured impedances of each inductor in our

calculations for the normalized flux density.

Transformer

For the BWX II application, we employ a 2:1 (n = 2) current transformer to pro-

vide an approximate match of the combined resistance from the non-ideal inductors

and antenna to the 50 ⌦ source impedance over the frequency range. Conventional

power transformers, which employ ferrite or iron cores, are plagued by the same sat-

uration e↵ects and core losses in BWX II as the aforementioned inductors. This
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Figure 4.9: Impedance of the two air-core inductors employed in the matching network
for an input power of 50 W. The solid line (r) corresponds to the real component of
the impedance while the dotted (�) represent the reactive component. L1 = 3.7 mH
and L2 = 1.7 mH.

is a consequence of the core’s primary role in transferring energy between primary

and secondary windings. An air core transformer avoids saturation; however, the

loss in magnetic coupling that results from the absent core significantly reduces the

transformer’s performance. Given these inherent di�culties with the conventional
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configuration, we instead chose to employ a Ruthro↵ transmission line transformer

[83] that consisted of several windings of 50 ⌦ coaxial cable around a toroidal magnetic

core of type W-material. The advantage of this method is that instead of transferring

energy, the core serves as a choke to prevent current imbalance between the center

conductor and shield. We have found that the core performance is close to ideal

over our ultrasonic frequency range when connected to e↵ective resistive loads on

both ends. It is for this reason that this type of transformer works particularly well

with the VDWL shown in Fig. 4.8 as it is placed between the resistive source and a

conjugately matched load at the frequencies of interest.

Antenna Flux density

Ignoring the small e↵ects of plasma loading, we now examine the normalized flux

density in our antenna as a function of wave frequency and capacitance by numerically

evaluating Eq. 4.6 with the measured impedances of our components reported in

the previous section. In order to illustrate the parameters we will investigate, we

show in Fig. 4.10 a sample plot of the normalized magnetic flux density produced

by the BWX II antenna in the heating region as a function of frequency for fixed

capacitor values of C1 = 1640 pF and C2 = 1770 pF. This figure shows two peaks

at the frequencies f1(60 kHz) and f2(85 kHz) with values of �1(0.57) and �2(0.6).

The full-width half maximum (FWHM) of each peak is denoted as w1(1.5 kHz) and

w2(1.5 kHz) respectively. It is evident from this figure that the network is capable

of producing magnetic flux densities at over 50% of the ideal case at two frequencies

simultaneously. Moreover, the small width of each peak indicates that the network

e↵ectively attenuates the surrounding spectrum.

In order to gauge the success of the VDWL over the entire frequency spectrum,

we devised a procedure to find a single term that could reflect the average tun-

ing capability of the network. To this end, we fixed f1 and f2 in the frequency
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Figure 4.10: The normalized, magnetic flux density for the wave launching system
as a function of frequency. The peaks occur at frequencies f1(60 kHz), f2(85 kHz);
�1(0.57), �2(0.6) correspond to the values of the normalized flux density at the peaks;
and w1(1.5 kHz), w2(1.5 kHz) are the FWHMs. C1 = 1640 pF, C2 = 1770 pF.

range and numerically determined from Eq. 4.6 the capacitor values that yielded

the highest average value of the two peaks �1, �2. We denote this as �⇤ (f1, f2) =

[(�1 (C1, C2) + �2 (C1, C2)) /2]max |f1,f2 where f1, f2 are constant and C1, C2 are the

variables used to maximize the term. We then held f1 constant and repeated this

procedure for incremented values of f2 in the frequency range. With this data set, we

averaged over f2 to yield � (f1) = h�⇤ (f1, f2)if2 as a function of f1. The process was

then iterated for a new value of f1 in order to arrive at the plot shown in Fig. 4.11a.

Typical error bars are also shown.

Each point in this figure represents the average peak value that can be achieved

when f1 is fixed and f2 is allowed to vary over 27.5 < f2 < 150 kHz. The figure

is therefore an indication of the overall tuning capability of the network for almost

all combinations of frequencies. There is one significant exception to this gener-

alization: in our iteration procedure, all of our frequencies were chosen such that

|f2 � f1| > 10 kHz. This is a restriction specific to BWX II, as in this experiment
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we investigate waves whose frequencies di↵er by values larger than the cyclotron

frequency. When f1 ! f2, however, the ability of the network to isolate peaks is

drastically reduced. This would skew the results in Fig. 4.11a to values lower than

would be achieved for our application. With this in mind, we see from this plot that

provided |f2 � f1| > 10 kHz, we generally can tune the network such that the mag-

netic flux density generated at each desired frequency is greater than 50% of ideal.

By comparison, we also show in Fig. 4.11a the dotted line that corresponds to the

maximum normalized magnetic field that can be generated in the antenna without a

tuning network or transformer. It is evident from this plot that the VDWL produces

significantly improved results over the unmatched case.

In order to quantify the ability of the network to isolate dual, variable frequencies

while attenuating the rest of the spectrum, we followed the same averaging procedure

outlined above to determine w (f1) for the optimized values of �. This is shown in

Fig. 4.11b where we see the average FWHM of each peak (< 2 kHz) corresponds to

|w| /fci < 10% for the BWX II experimental parameters. This excellent attenuation

suits the careful tuning of frequencies required for the BWX II two-wave investigation.

Moreover, this performance o↵ers a vast improvement over the unmatched case where

all frequencies are passed (w1, w1 are unbounded).

As an additional evaluation of this network, we consider the necessary capacitances

to achieve the desired matched frequencies. Using the values of C1, C2 that optimized

�⇤ (f1, f2), we have plotted as markers in Fig. 4.12 the average values of C1 that

produced �1 at f1 and the average values of C2 that yielded �2 at f2. We also

have included as dotted lines the ideal relations as given by Eq. 4.5. There is good

agreement at the extremes of the frequency region where the larger inductor and

capacitor series (L1, C1) follows the asymptotically derived equation for the low end of

the spectrum and the smaller inductor-capacitor series (L2, C2) is successfully modeled

for high frequencies. Eq. 4.5 thus serves as a reliable, first indicator of the range
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Figure 4.11: a) Each point is the average of the maximum, normalized magnetic flux
density achieved simultaneously by the network at fixed frequency f1 and frequency
f2 where the average is performed over 27.5 < f2 < 150 kHz. The dotted line cor-
responds to the maximum flux density for the antenna without a matching network.
b) Values are the average of the FWHM of the optimized dual peaks that occur at
the fixed frequency f1 and frequency f2 where the averaging is the same as in (a). In
both cases, the averaging is performed such that |f2 � f1| > 10 kHz.
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Figure 4.12: a) The average capacitance of C1 (r) that yields the optimized magnetic
flux density at fixed f1 and f2 where an average is taken over all values of f2 in the
spectrum. b) The average capacitance of C2 (�) that yields the optimized magnetic
flux density at fixed f1 and f2 where the average is performed over all values of f1 in
the spectrum. In both cases, the averaging is performed such that |f2 � f1| > 10 kHz.
The dotted line in each figure corresponds to the ideal tuning conditions represented
by Eq. 4.5.
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of capacitance to which we must tune in order to achieve the highest �, and any

deviations can be accounted for by using the data plots shown in Fig. 4.12. More

importantly, we see that the matching conditions do not call for capacitances outside

of our variable tuning range.

4.5 Diagnostics

4.5.1 Double Langmuir probe array

While the BWX II Pyrex vessel provides full optical access to the plasma and permits

inductive coupling to BEW modes from an externally-mounted antenna, this setup

precludes the insertion of probes through the walls. In order to determine the radial

dependence of the density and electron temperatures in BWX II then, we employ the

azimuthally swept double probe array shown schematically in Figs. 4.13 and 4.14.

This configuration consists of a series of alumina tubes arrayed around a central

support. Each tube holds two tungsten tips that are 0.254 mm in diameter and

extend 1.5 mm in length from the end of the alumina support.

We choose to use double probes for this configuration since they provide a compact

means for compensating for RF induced noise produced by the plasma source. Indeed,

high frequency fluctuations from the RF source can induce significant perturbations

in the plasma potential [84] which appear as oscillations in the I-V trace of a typical

single Langmuir probe. Averaging over several probe sweeps can in part eliminate

this noise; however, this technique is only reliable for estimating the steady-state ion

saturation current (and therefore the density). For electron temperature measure-

ments, the non-linear nature of the I-V probe trace where this parameter is measured

leads to significant error in the estimates for this quantity even after linear averag-

ing. RF compensated single probes can overcome this limitation [85] by forcing the

probe tip to follow the RF fluctuations such that only the steady state potential is
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Figure 4.13: Schematic drawing of the probe array mounted on an arm in the plasma.
The arm is capable of translating in the axial direction and rotating azimuthally.

observed. However, the implementation of this technique requires a careful use of RF

chokes as well as an auxiliary electrode exposed to the plasma. The necessary space

as well as the steady-state perturbation to the plasma induced by this setup are both

problematic for implementation of a single probe array in BWX II.

It is for this reason that we turn to the use of double probes. Indeed, double probes

are inherently floating and depend only on the relative potential between the probe

tips such that they inherently follow the RF fluctuations in the plasma. Furthermore,

since the measurements of the double probe system are di↵erential, by twisting the

leads from the two ends, any RF pick-up in the electrical circuit is eliminated through

common mode rejection. The small space required for this system—e↵ectively two

wires insulated by alumina—further lends itself to implementation in the compact

array configuration shown in Fig. 4.14.

Circuit

The successful implementation of a double probe requires that the probe tips float in

the plasma. We accomplished this end with the circuit shown in Fig. 4.15. A voltage
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Figure 4.14: Array of double Langmuir probes with a side view (top) and a face on
view of the probe tips (bottom).
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bias is provided in this configuration by two floating amplifiers, and it is applied to

the desired set of probe tips through a system of a switches. A parallel capacitor

inserted between the leads serves to short-circuit any high-frequency biases between

the leads. In order to exploit the benefits of common mode rejection, we measure the

double probe current as a function of voltage bias between the tips by subtracting

the voltage drops across two matched resistors, Rs1 and Rs2, placed near the probe

tips.
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Figure 4.15: The circuit employed for the double probe array. The inverted triangles
denote a floating common.

The one significant limitation for employing a double probe system in an RF

coupled plasma is that the MHz fluctuations in the plasma can find paths to ground

through small stray capacitances in the double probe circuit. This has the potential

to destroy the ability of the probe tips to follow the plasma potential [86]. Castro et

al. [87], however, compared the results from single probe analysis to double and RF

compensated probe techniques in a dense RF discharge and found the double probe

to be a precise measurement tool. The key to their success stemmed from their ability

to e↵ectively isolate the probe circuit from ground. We therefore attempted to follow

this technique by taking the extra measures we outlined above to ensure our probe
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circuit was floating.

Analysis

A typical I-V trace from a probe in the double probe array is shown in Fig. 4.16 where

we plot the measured current I as a function of the applied voltage V = V2 � V1

between the probe tips. This plot was taken by one double probe from the array

swept at 30 Hz and averaged over 200 cycles.

The symmetry with respect to the voltage axis (I = 0) reflects the equal area of

the probe tips while the weak dependence of the ion saturation current on the biasing

voltage results from the e↵ective sheath expansion that occurs at large biases. There

are several models for this weak dependence [84] that are applicable in di↵erent ranges

of ionization, probe geometry, and plasma density. Instead of modeling this expansion

in our investigation, however, we follow Owens [88] in his treatment of double double

traces by assuming approximate linearity for this trend. This enables us to employ a

standardized numerical analysis for double probe traces— the procedure for which is

as follows.

First, we fit linear trends to the ion saturation regions that occur for |V | � 0 and

to the current trace at V = 0, i.e. where the entire system is at the floating potential.

We denote the value of the voltage where the best fit lines intersect as VS2 and �VS1,

and we denote the current at these points as iS2 and �iS1. The values where the ion

saturation lines intercept the current axis (V = 0) are similarly labeled as iS2 � �i2

and -iS1 + �i1. From the symmetry of the traces, we see that VS1 ⇡ VS2 = VS,

iS1 ⇡ iS2 = iS, and �i1 ⇡ �i2 = �i such that following the analysis of Owens, we

have the following relationships between these quantities and the plasma parameters:

Te

q
=

1

2
VS ne = .61

2

Ap

iS
iS � �i

2iS � �i

⇣

q
p

Te/mi

⌘�1

(4.7)

where Te is expressed in units of energy, Ap denotes the exposed area of each tip, q is

the charge value (assuming singly ionized species), and mi is the ion mass.
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Figure 4.16: Typical IV trace for a double probe in BWX II.

Procedure

For our experimental investigation, each probe measurement consisted of the average

of 200 sweeps performed at a rate of 30 Hz. This averaging served to eliminate any

errant RF noise coupled into the leads. In order to estimate errors in our plasma

parameters, we first included a 15% instrumental error characteristic of all Langmuir

probe systems where erosion and sheath expansion leads to uncertainty in measure-

ments [84]. We then estimated experimental error by repeating the 200 sweep cycle

ten times and determining the 93% confidence interval from a t-distribution [89].

This uncertainty was added in quadrature with the instrumental error to yield the

total error estimates. The measurements for density and electron temperature we

presented in Fig. 4.4 in order to characterize the BWX II plasma source were made

by following this procedure.
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4.5.2 Laser induced fluorescence

The primary ion diagnostic for BWX II is a Laser Induced Fluorescence (LIF) system

that is tuned to a metastable state of the Ar II ion. This tool probes the local velocity

distribution of ions in the system and as such can provide information both on the ion

temperature as well as the ion kinetic response to propagating plasma modes. Since

the LIF technique also is inherently non-invasive, this diagnostic o↵ers a significant

advantage over probe measurements of ion temperature and wave properties where

elements exposed to the plasma might perturb the BEW e↵ect. The principle of

operation for LIF as well as the setup for the BWX II system is presented below. The

two modes of operation for temperature measurements and wave measurements are

also discussed.

Principle of operation

For BWX II, the LIF system is based on two disparate atomic transitions in the

Ar II ion shown schematically in Fig. 4.17. The first is an induced transition of a

metastable state from 3d4F7/2 � 4p4D0
5/2, which occurs in the rest frame of the ion

at �0 = 668.6138 nm [90]. The second transition is the resulting decay of the excited

state to a lower energy level 4s4P3/2 that produces light at 442.72 nm. The fluoresced

light is the measured signal, which is more easily detected since it is distinct from the

exciting mode wavelength.

In the BWX II argon plasma, a narrow band, collimated laser beam (Fig. 4.18)

with frequency ⌫ is injected into the plasma in an attempt to initiate this three level

process. However, since ions in the plasma are characterized by a range of velocities

with components vx in the direction of the laser beam propagation, the frequency

of the light ⌫L encountered by the ion in its rest frame is Doppler shifted from the
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Figure 4.17: Partial Grotrian diagram for Ar II that includes the transition targeted
in BWX II. Figure taken from Ref. [90].

laboratory frame frequency:

⌫L = ⌫
⇣

1 +
vx
c

⌘

, (4.8)

where c is the speed of light. For ions moving toward the laser source with vx, the

frequency of the beam as seen by the ion is shifted to higher values while the opposite

e↵ect occurs for the ions moving away from the beam. In order to excite the targeted

transition for a moving ion, it therefore is necessary to tune the laser wavelength such

that ⌫L = ⌫0 = c/�0. This yields in the non-relativistic limit (|vx| /c ⌧ 1)

vx =
c

⌫0
(⌫0 � ⌫) . (4.9)

Provided we have a tunable laser, this relationship is a means to selectively excite

a subset of the velocity population in the plasma. The intensity of the resulting
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fluoresced light at 442 nm similarly provides a relative measurement of the number

of particles with the selected velocity. We can localize this velocity measurement to

a small volume in the plasma by only observing the fluoresced light from a small

segment the beam. This is accomplished by employing a set of collection optics with

a converging field of view that intersects the beam.

Laser 

Collection Optics!

Antenna!
Beam!

Laser!

x̂

Figure 4.18: Conceptual view of the LIF system from the perspective along the axis
of BWX II. The empty triangles indicate the field of view of the collection optics.

Broadening mechanisms

While Eq. 4.9 is valid assuming that the induced transition is constant at ⌫0 and

distinct, there are a number of mechanisms in a magnetized plasma—most notably

Zeeman splitting—that can broaden the transition into a spectra of closely spaced

wavelengths. Such e↵ects introduce error in using Eq. 4.9 to calculate velocity. In

Appendix G, we catalog these broadening processes and show that in the BWX II

plasma the majority of them can be neglected when inferring the plasma temperature.

On the other hand, when using LIF for wave measurements, we must incorporate

these broadening e↵ects into a systematic uncertainty �⌫0 in our estimates for the
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rest frame frequency of the transition. We then proceed in our analysis under the

assumption that Eq. 4.9 is approximately valid with error that stems from �⌫0.

Temperature measurements

For an ion population in local thermal equilibrium, the steady-state density distribu-

tion in a single direction is given by

f0 (vx) = n0

✓

mi

2⇡Ti

◆1/2

e�m
i

(v
x

�v
di

)2/2T
i , (4.10)

where n0 is the background spatial density, Ti denotes the temperature expressed in

units of energy and vdi is the drift velocity in the x direction. Using the Doppler

relation from Eq. 4.9, we thus see that the LIF system tuned to frequency ⌫ will

produce fluoresced light at 442 nm with steady-state intensity given by

IM (⌫) = I0e
�(⌫�⌫)/(2�2), (4.11)

where we have defined the quantities

⌫ = ⌫0
⇣

1 +
vdi
c

⌘

; �2 = ⌫20Ti

c2m
i

; I0 = ↵c

✓

mi

2⇡Ti

◆1/2

. (4.12)

Here we have assumed that the ion population has a linear correspondence with the

metastable state targeted by the laser light and that ↵c is a quantity that depends

on the beam intensity, volume of intersection between the beam and collection optics

field of view, and attenuation of the light through the collection optics. From Eq. 4.11,

we thus see that by measuring the steady-state signal produced by the beam, we can

infer both the local drift velocity vdi and temperature of the ion population.

Wave measurements

The LIF system also can yield information on coherent modes propagating in the

plasma by measuring the time-dependent perturbation f1 to the density distribution.

We model this velocity dependent perturbation through an analysis of the Vlasov
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equation for ion motion:

f + v · @f
@x

+
q

mi

(E + v ⇥ B) · @f
@v

= 0, (4.13)

where E denotes the electric field, B is the magnetic field vector, and the plasma is

assumed to be locally uniform such that
R

fd3v = n where n is the total ion density.

We note that this general formulation for the evolution of the velocity density dis-

tribution space explicitly neglects collisions; however, the e↵ect of weak collisionality

on waves can be recovered through a judicious choice of wave frequency [91].

The strap antenna of our system is designed to couple primarily to electrostatic

modes such that the form of the electric field is given by E = �ik� exp [i (k · x � !t)],

where k denotes the wave vector, ! is the wave frequency, and � is the potential

amplitude of the mode. Similarly, since we assume the magnetic field is uniform

in the axial direction and the time dependent contribution of the magnetic field for

electrostatic modes is negligible, the magnetic field term in Eq. 4.13 is given by

B = B0ẑ.

In order to determine the kinetic response of the plasma to the electrostatic mode,

we expand f = f0 + f1 and write the first order equation:

df1
dt

= i
q

mi

� exp [i (k · x � !t)]k · @f0
@v

, (4.14)

where we assume that the magnetized ions have the three-dimensional steady-state

Maxwellian distribution:

f0 (v) = n0

✓

mi

2⇡T||i

◆1/2

e�m
i

(v
z

�V )2/2T||i

✓

mi

2⇡T?i

◆

e�m(v2
x

+v2
y

)
2
/2T?i . (4.15)

Here T||i denotes the ion temperature parallel to the magnetic field, T?i is the tem-

perature perpendicular to the field, and we have implicitly assumed that the bulk

velocity in the plane orthogonal to the magnetic field is small. Substituting this ex-

pression into Eq. 4.14 and employing the method of characteristics, it is possible to

integrate this equation with respect to time (c.f Ref. [10], Chapter 10) to solve for
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f1 (vx, vy, vz), i.e. the perturbed density distribution as a function of all three velocity

components.

The LIF system can only scan in one direction (x̂), however, so we integrate

over the other two velocities, f1 (vx) =
R

f1 (vx, vy, vz) dvydvz. This was done in

Refs. [78, 91, 92] to yield f1 = f 1 (vx) exp i (k · x � !t) where

f 1 (vx) =

✓

q�

⇡miv2
ti?

◆

f0 (vx)
X

n,m

✓

1 + Z (⇣n+m)
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1 �
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T?

◆
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�◆

⇥ Jm (k?vy/⌦i) e�im⇡/2ei(m+n)⇡eikyvx/⌦ie�a2/8e�c2/4

⇥
X

k

I(n+k)/2
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◆

Ik
⇣ac

2

⌘

eik⇡/2.

(4.16)

Here Z denotes the plasma function; f0 (vx) is given by Eq. 4.10 with Ti ! Ti? and

vdi ! 0; ⇣n = (! � n⌦i � kzvdi) /vti||kz; a =
p
2k?vti?/⌦i; k? =

p

k2
x + k2

y; and

c =
p
2kxvti?/⌦i. Here we have tan�1 (kx/ky) such that ✓ is the angle the wavevector

makes with respect to the ŷ axis in the transverse plane.

With this kinetic description, we thus see that there is a time-dependent model

for the kinetic response of the ions to electrostatic waves in the plasma. This suggests

that on top of the steady-state distribution, the observed intensity of the fluoresced

light from the plasma will have two components that oscillate at wave frequency !.

The first signal is in phase with the wave with magnitude given by

IIP (⌫) = ↵cRe



f 1

✓

c

⌫0
(⌫0 � ⌫)

◆�

, (4.17)

where ↵c is the same scaling constant discussed previously. The second component is

90� out of phase with magnitude

IQ (⌫) = ↵cIm



f 1

✓

c

⌫0
(⌫0 � ⌫)

◆�

, (4.18)

where IQ denotes the quadrature component. By locking in on the wave frequency,

we can scan over the laser frequency range to produce the perturbed velocity profile.

Fitting the above model to the profile then yields information on the three dimen-
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sional wavevector and amplitude of the propagating mode. This is contrasted with

traditional, invasive probe techniques where it is necessary to employ a three-axis

probe that examines the phase di↵erence between the spatially separated signals in

order to estimate the wave number.

LIF setup and implementation

The LIF system employed in BWX II is shown from a top-down perspective in

Fig. 4.19. A Littrow configuration tunable diode laser from Sacher Laser provides

a 2 mm diameter, linearly polarized beam at 7 mW. This beam can be scanned in a

mode-hop free range of 668.6020� 668.6240 nm around the vacuum transition wave-

length �0 = 668.6138. From the laser head, the beam passes through a 90/10 beam

splitter with the weaker component directed through a Burleigh 1500 wavemeter that

is accurate to 0.2 ppm. The remaining portion of the beam passes through a series

of mirrors to either traverse the plasma in the direction perpendicular to the uniform

magnetic field or to enter the plasma in the axial direction. In each case, the beam

is parallel to the ground and in the same plane as the exciting strap antenna. For

perpendicular measurements, the beam’s linear polarization is oriented parallel to the

uniform magnetic field so as to selectively excite the ⇡ transition induced by Zeeman

splitting (Fig. G.1 in Appendix G) while for parallel wave measurements, the linearly

polarized beam is passed through a 1/4 wave plate. The resulting circularly polarized

light selectively excites only one of the � bands induced by Zeeman splitting. In

order to collect the fluoresced light from the induced transition in the Ar II ions, we

employ a set of optics comprised of two convex lenses separated by a light-ba✏ing

collimating tube (Fig. 4.18). The focal point of the lens facing the plasma intersects

the laser beam such that the collected light from this region passes through the col-

limating tube. The width of the collection optics field of view at the focal length is

⇠ 2 mm, which accordingly limits the resolution of the system. The light passing

124



1!

2!
4!

5!

6!

7!

9!
10
!

O
!
I!

1.
 

D
io

de
 L

as
er
!

2.
 

10
/9

0 
B

ea
m

 S
pl

itt
er
!

3.
 

C
ho

pp
er
!

4.
 

M
irr

or
!

5.
 

W
av

em
et

er
!

6.
 

C
ol

le
ct

io
n 

op
tic

s!
7.
 

Fi
be

r o
pt

ic
 c

ab
le
!

8.
 

Ph
ot

om
ul

tip
lie

r T
ub

e!
9.
 

Lo
ck

-in
 A

m
pl

ifi
er
!

10
. 

D
A

Q
 C

on
tro

lle
r!

11
. 

Py
re

x 
w

in
do

w
!

12
. 

Fu
nc

tio
n 

ge
ne

ra
to

r!
13

. 
St

ra
p 

an
te

nn
a!

14
. 

Sw
itc

h!

3!

4!
4!

4!
4!

4!

8!

11
!

12
!

13
!

F
ig
u
re

4.
19
:
S
ch
em

at
ic

fo
r
th
e
L
IF

sy
st
em

.
T
h
e
th
ic
k
d
ot
te
d
li
n
es

in
d
ic
at
e
th
e
tw

o
p
os
si
b
le

b
ea
m

p
at
h
s.

125



through the collimating tube is refocused onto the tip of a fiber optic cable where it

is then directed through a narrow band 442 nm filter and into a Hamamatsu HC124-

06MOD photomultiplier tube (PMT). The entire collection optics assembly is capable

of translating across the plasma (perpendicular to the magnetic field). However, the

measurements reported for this dissertation were performed at r = 3 cm where the

plasma was observed to be uniform. This experimental uniformity is necessary both

to align our measurements with the analytical predictions from Chapters 2 and 3 as

well as to employ the theoretical model for the ion’s kinetic response to the wave we

discussed in the previous section.

During our experimental trials, we found that at our chosen position, in spite of

the narrow filter on the PMT, the fluoresced signal from the metastable transition

was overwhelmed by ambient radiation emitted from the plasma. For measurements

of the steady-state distribution then, we chopped the laser beam at 3 kHz before it

passed into the plasma and used this chopping frequency as a reference in a Stanford

830 lock-in amplifier (LIA). The fluoresced signal from the PMT, now pulsed at 3

kHz, was then fed into the LIA that subsequently isolated and increased the signal

to noise ratio. While the Stanford 830 was capable of retaining both the magnitude

of the detected signal as well as its phase with respect to the reference signal, for

temperature measurements we only monitored the magnitude of the signal.

With this LIF setup, we measured the steady-state intensity profile by scanning

the frequency of the laser over the specified range and simultaneously recording the

wavelength of the beam and the amplitude of the fluoresced signal as indicated by

the PMT. The laser power, monitored by a photodiode internal to the laser head,

remained approximately constant over the frequency range. Each full wavelength

scan consisted of 50 data points sampled over a 10 second interval, and we repeated

this measurement five times to yield a total of 250 points. The wavelengths were then

converted to frequency, and we performed a fit of the data to the model provided
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by Eq. 4.11. Since the signal to noise was high (S/N > 20) for these measurements,

we weighted each data point equally. The fit was evaluated through a Mathematica

algorithm that employed the LevenbergMarquardt fitting scheme. The error of the

best fit parameters were estimated through an evaluation of the diagonal terms of the

covariant matrix at the best fit point [89] scaled by the average of the measurement

errors. Following this procedure, we show in Fig. 4.20 a sample Ti plot for a scan

performed in the perpendicular direction at r = 3 cm along with the best fit line from

Eq. 4.11.

Figure 4.20: Characteristic profile at r = 3 cm for the steady-state perpendicular
velocity distribution in the BWX II plasma. The best fit Maxwellian is also indicated.
vdi = 0 and Ti = 0.25 eV.

For wave measurements, it was necessary to isolate the time dependent variations

in the velocity distribution profile. We accomplished this by removing the beam

chopper from the system and toggling the switch in Fig. 4.19 to use the targeted

wave frequency from the signal generator as the reference in the LIA [91, 93, 78]. The
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LIA subsequently produced in phase and quadrature measurements, Im
IP and Im

Q , of

the wave’s velocity distribution function shifted by the di↵erence in phase ' between

the reference signal from the source and the wave at the locally measured point in

the plasma:

Im
IP (⌫) = ↵cRe



ei'f1

✓

c

⌫0
(⌫0 � ⌫)

◆�

Im
Q (⌫) = ↵cIm



ei'f1

✓

c

⌫0
(⌫0 � ⌫)

◆�

.

(4.19)

In order to apply the theoretically indicated fits to these profiles, it was necessary

to eliminate the phase dependence ' in the data. To this end, we followed Ref. [91] in

noting that for electrostatic waves, the Poisson equation indicates that the perturbed

plasma density, n1 =
R

f1 (vx) dvx, is in phase with the wave potential. Since we have

f1 (vx) = ei(k·x�!t) [f1R (vx) + if1I (vx)] (4.20)

� (t) / ei(k·x�!t), (4.21)

the in-phase requirement demands that
Z

f1I (vx) dvx = 0. (4.22)

For the measured intensity profiles, we have
Z

Im
IPd⌫ = ↵c

⌫0
c



cos'

Z
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Z

f1I (vx) dvx

�

Z

Im
Q d⌫ = ↵c

⌫0
c
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.

(4.23)

The condition stipulated by Eq. 4.22 thus requires

' = � tan�1

✓

R

Im
Q d⌫

R

Im
IPd⌫

◆

. (4.24)

This permits us with our measured profile to correct the data in such a way that we

can employ Eq. 4.16.

Before we apply this model to the phase-corrected, however, we note that in

order to overprescribing the fit, it is necessary to reduce the number of free param-

eters, k?, kz, ✓,� [91, 78]. To this end, we eliminate � by identifying the value ⌫max
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where the corrected phase data is maximized and normalizing the two data sets by

Im
IP (⌫max). The model to fit then becomes

f̂1 (vx) = f1 (vx) /f1 (vmax) , (4.25)

where vmax is related to ⌫max through Eq. 4.9. Next, we employ the electrostatic

dispersion relation Eq. 3.85 to determine kz as a function of the perpendicular wave

parameter k?. This leaves only two free parameters, k? and ✓, to fit our experimen-

tally measured data.

With this in mind, we show as solid lines in Fig. 4.21 theoretical fits to the

measured in-phase and quadrature components of the ion kinetic response to a wave

with frequency 40 kHz that we excited in BWX II’s locally isotropic ( Ti? = Ti||)

plasma with ion temperature, Ti = 0.25 eV, electron temperature, Te = 3.5 eV, and

parallel drift velocity, vdi = 100 m/s. The data in these plots is comprised of sixty

points from a thirty second scan performed with the LIF system. The best fit lines

were found through a �2 analysis of Eq. 4.16 applied to the data [89] in which we

numerically calculate �2 and plot the inverse quantity 1/�2 as a function of the free

parameters, ✓ and k? (Fig. 4.22). The best fit parameters correspond to the maximum

value while we gauge the uncertainty as the full width half max (FWHM) of this fit

[91].

Employing this method, we were able to determine non-invasively the wave vector

and angle of propagation of the waves. The wave amplitudes in turn were calculated

[91, 78] by considering the linearized Boltzmann relation for low frequency electro-

static waves

n1

n0
=

q�

Te

. (4.26)

Since intensity measurements exhibit the same scaling constant ↵c, we calculated the

ratio of densities by dividing the integral of the intensity profile we measured from
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Figure 4.21: In phase (top) and quadrature (bottom) measurements for the ion kinetic
response to an electrostatic wave at 40 kHz. The solid lines are theoretical fits from
Eq. 4.16. Ti = 0.25 eV; Te = 3.5 eV; vdi = 100 m/s.
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� k?( cm�1)

1/�2

Figure 4.22: Inverse �2 plot for Eq. 4.16 as applied to the data in Fig. 4.21.

the waves to the integral of the intensity profile of the steady state distribution:

n1

n0
=

q

⇥R

IIP (⌫) d⌫
⇤2

+
⇥R

IQ (⌫) d⌫
⇤2

�

�

R

IM (⌫) d⌫
�

�

. (4.27)

Substituting this relation into Eq. 4.26, we thus were able to infer the wave potential

amplitude.

We note here that while the formalism is present in our analysis to allow for weak

collisionality by introducing a third free parameter ⌫c such that ! ! !+i⌫c, the error

in our fits was su�ciently small that we chose to neglect these e↵ects. Also, while

we assumed only a single wave was present in the plasma for the fitting procedure

outlined above, the same relations still can be employed when two waves are present

by setting the reference frequency, f1 or f2, of the LIA to the mode of interest.
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4.6 Conclusion

We have outlined the experimental setup in this chapter for our systematic investi-

gation of the BEW e↵ect. We have described the framework of the system, identified

the typical plasma parameters, and determined the local point where the assumptions

for our analytical models are valid. In addition, we have presented the two major

diagnostics of BWX II—a double Langmuir probe array and a laser induced fluores-

cence system. In the next chapter, we describe how we applied these diagnostics along

with the procedures outlined above in an e↵ort to examine the analytically predicted

trends we identified in Chapters 2 and 3.
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Chapter 5

Experimental results and analysis

The goal of this chapter is to investigate experimentally SEWH and BEWH in the

BWX II plasma. To this end, we examine the two processes over the entire range

of available input energy densities for our system and interpret the results in the

context of our analytical predictions for power absorption and the onset of heating.

In the first section, we establish the baseline for the investigation by reporting the

measured dispersion relation of the electrostatic modes launched in the plasma and

the measured SEW heating as a function of frequency. In the second section, we

explore the onset of heating for SEWH and BEWH as a function of wave amplitude

and energy density. In the third and final section, we examine the regime of higher

energy density where heating has onset by comparing the increase in ion temperature

produced by SEWH and BEWH.

5.1 SEW results

5.1.1 Dispersion relation

Using the prescription in Sec. 4.5.2 for employing LIF to perform wave measurements,

we generated the dispersion relation shown in Fig. 5.1 for the electrostatic modes in
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the plasma. These measurements were made at r = 3 cm where the plasma properties

were observed to be approximately uniform and isotropic with ion temperature Ti =

0.25 eV, electron temperature Te = 3.5 eV, and parallel ion drift velocity, vdi =

100 m/s. The input power to the antenna was 100 W for the reported values.

The near acoustic relationship in Fig. 5.1 with a cuto↵ at the cyclotron frequency

suggests that the propagating mode is the electrostatic ion cyclotron wave (EICW).

Indeed, while two modes exist in this low frequency regime [13]—the forward-propagating

EICW and the backward-propagating neutralized ion Bernstein wave (NIBW)—the

EICW is less susceptible to the charge-exchange collisions characteristic of the low

temperature BWX II plasma [24]. It thus is not surprising the EICW is the observed

mode. From our LIF wave measurements, we also have plotted in Fig. 5.2 the an-

gle ✓ the perpendicular component of the vector makes with respect to the direction

perpendicular to the laser beam and magnetic field, i.e. ŷ in the formalism of Chap-

ters 2 and 3. This plot suggests that for f � 2fci, the transverse component of the

wave vector is oriented normal to the antenna loop. Coupled with the observation

that the antenna cross-section presented to the plasma is large, we use this angle of

propagation to assert that the modes are approximately planar at the local point of

observation. This facilitates a comparison of theory with the analytical model.

5.1.2 Frequency dependence of heating

In order to inform our decision as to what frequency set f1, f2 to employ for our

comparison of the SEWH and BEWH processes, we first performed a parametric

analysis of the frequency dependence of ion heating with a single electrostatic mode.

To this end, we input 300 W into the VDWL system at each frequency and recorded

the increase in perpendicular ion temperature over background at r = 3 cm. The

resulting plot is shown in Fig. 5.3. As we can see, there is a clear dependence of the

ion temperature on the frequency with an optimum at the second harmonic ! = 2⌦i.
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Figure 5.1: Experimentally determined dispersion relation for the perpendicular (top)
and parallel (bottom) components of the wavevector. A representative error bar is
also shown.
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Figure 5.2: Plot of the angle of propagation as a function of wave frequency. The
dotted line corresponds to ✓ = ⇡/2 where the direction of propagating is normal to
the antenna.

This optimum lends support to the notion that the SEWH heating primarily results

from ion cyclotron harmonic damping since this process exhibits maximal heating at

a cyclotron harmonic. We note that there is no peak at the fundamental frequency

as the dispersion relation experiences a cuto↵ at this value.

In light of the results from Fig. 5.3, we chose to employ the frequency combination

f1 = 2fci and f2 = 3fci for our parametric comparison of BEWH and SEWH. The

reasoning for this is two fold. First, the larger magnitude of heating allows us to more

easily distinguish increases in ion temperature over background. This is particularly

important in the next section where we identify the threshold value for the onset of

heating. Second, since one of the goals of this chapter is to establish experimentally

if BEWH can improve upon SEWH, we set the standard as high as possible by using

the best heating results from SEWH as the baseline for comparison.
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Figure 5.3: The maximum change in perpendicular ion temperature achieved at each
frequency for the SEW case. A representative error bar is shown as well.

5.2 BEW heating onset

In order to identify experimentally the onset of heating, it is necessary to develop a

metric for when the increase in ion temperature first occurs above background. With

this in mind, for our parametric investigation of BEW and SEW we coupled two

waves into the plasma at frequencies f1 = 2fci, f2 = 3fci and monitored the increase

in temperature Ti as a function of the current, I1, I2, delivered to the antenna at each

frequency. Three representative data sets are shown in Fig. 5.4 where each trend cor-

responds to a di↵erent fixed value of I2. It is evident from these plots, similar to those

reported in Refs. [49, 48], that there is a threshold value where a jump in temperature

above background occurs. This is followed by a rapid temperature increase with an-

tenna current that ultimately gives way to saturation for su�ciently large values—a

result that likely stems from self-consistent e↵ects in the plasma preventing further

energy exchange of the mode with the ions. As is intuitively expected from Chapter
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2’s discussion, we can see from Fig 5.4 that the threshold value I1 decreases with

larger values of I2.

Figure 5.4: Change in ion temperature as a function of antenna current I1 to the lower
frequency mode. Each data set corresponds to a case where the antenna current at
the second frequency I2 is constant. The dotted lines are best fits from Eq. 5.1, a
phenomenological model for the heating.

In order to quantify the value where the onset of heating occurs, we numerically

applied the following phenomenological trend to the increase in temperature over

background:

�Ti = Ti � Ti0 = �Ts (tanh [AI1 + I0] + 1) , (5.1)

where �Ts, A, and I0 are free parameters. We subsequently identified the threshold

for heating as the current value where according to Eq. 5.1 the temperature is 10% of

the saturated value, i.e. where (Ti � Ti0) /�Ts = 0.1. This is an appropriate metric
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as it accounts for the fact that the magnitude of temperature increase—once heating

has onset—is also heavily dependent on the antenna current. In order to relate this

measured current to wave potential amplitude, we generated the calibration curves

shown in Fig. 5.5. These relationships are linear, and we observed the same linear

relationship even for the case where the other mode was also present in the plasma.

Using the 10% metric as the criterion for heating onset, we show in Fig. 5.6 the

threshold value as a function of the potential amplitudes �1,�2 where the error in

these plots reflects the uncertainty in relating the current to the measured wave am-

plitudes. As we have assumed that the threshold for heating is correlated with the

appearance of stochasticity in ion orbits, the linearity of this data confirms two char-

acteristics for the onset of stochasticity we found in Chapter 2. First, the requisite

amplitudes for producing stochasticity is lower than that for SEW heating with indi-

vidual waves, i.e. where �1 ! 0 or �2 ! 0. Second, the linearity suggests that the

onset of heating can be achieved for a lower total energy density than in the SEW

case. We can confirm this second observation explicitly by estimating the total en-

ergy density in the system and comparing it to the onset condition for SEW. To this

end, we take the formula for the energy density for the acoustic-like mode observed

in BWX II to be [10]

Wj = ✏0
!j

4
�2

j

@

@!j

D (!j,kj) . (5.2)

Employing the dispersion relation for the electrostatic modes given by Eq. 3.85 and

our observed amplitudes in Fig. 5.6, we use this expression to show in Fig. 5.7 the total

energy density required for heating onset in the BEW case, W1+W2 = WBEW , where

the error bars stem from uncertainty both in the wave amplitudes and wave vectors.

In this plot, the energy densities have been normalized by the required energy density

W1(SEW ) for onset with a SEW at f1 (the same parameter as W ⇤
T from Sec. 3.6). For

the independent variable, we use ⌘ = W1/WBEW , i.e. the fraction of the total BEW

power in the first mode.
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(a) f = 40 kHz, k? = 60 m�1, and k|| = 43 m�1

(b) f = 60 kHz, k? = 85 m�1, and k|| = 56 m�1.

Figure 5.5: Linear relationship between potential amplitude and antenna current for
each of the BEW. The dashed line is a best fit regression.
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Figure 5.6: Potential amplitudes of the two waves where the threshold for ion heating
is observed to occur. The dotted line is a best fit linear trend.

From Fig 5.7, it is evident that there exists a range of wave parameters ⌘ 2 (0.25, 1)

where the threshold for the onset of heating is lower than that exhibited by either

SEW case (⌘ = 0, 1). This result confirms our earlier statement and theoretical

prediction that BEWH is a more e�cient process than SEWH for low energy density.

The results from Figs. 5.6 and 5.7 thus lend support to our conclusions from

Chapter 2, and we now are in a position to explicitly compare these results with the

analytical predictions. To this end, we restate from Eq. 2.32 that the threshold for

BEW stochastic acceleration for an ion with initial velocity v?, vz is given in physical

coordinates by

↵ =
!1 � kzvz
⌦iB0v?

k1x

⇣

�1|H(1)0

µ1
(z1) | + �2|H(1)0

µ2
(z2) |

⌘

, (5.3)

where H(1)
µ
j

is the Hankel function of the first kind, B0 denotes the background mag-
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Figure 5.7: Calculated total energy density where the threshold for ion heating is
observed to occur as a function of the fraction of energy density in the first mode
⌘ = W1/WBEW . The energy density is normalized by the total energy density required
for stochastic heating by a single mode at the lower frequency, f1. The dotted line
represents a best fit according to model Eq. 5.6

netic field magnitude, µj = (!j � kzvz) /⌦i, and zj = kjxv?/⌦i. This relationship was

shown to be valid under the assumption that the perpendicular components of the

two modes k1x, k2x are collinear and that the parallel components satisfy k1z ⇡ k2z.

Both of these assumptions, as can be seen from the dispersion relation in Fig. 5.1

and the angles in Fig. 5.2 are approximately valid for the two modes at !1 = 2⌦i and

!2 = 3⌦i. Similarly, since !1/k1z/vz > 4 where vz = (2Ti/mi)
1/2 for our experimental

configuration, we further make the simplifying assumption µj ⇡ !j/⌦i. Coupled with

the fact that !1/k1x ⇡ !2/k2x for our two modes, this approximation allows us to use
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Eq. 2.22, the reduced form of Eq. 2.20 in estimating the onset of stochasticity:

↵ =
k2
1x

!1B0

"

�1

✓

!1

⌦i

◆1/3

+ �2

✓

!2

⌦i

◆1/3
#

. (5.4)

In order to compare this to the results from Fig. 5.6, we solve for �1 as a function of

�2 to find

�1 = ��2



!2

!1

�1/3

+
↵B0!1

k2
1x

✓

⌦i

!1

◆1/3

. (5.5)

Substituting in for the wavenumbers k1x, k2x as well as the average value ↵ = 0.17±0.1

from Chapter 2, we find the coe�cients for the linear trend in Eq. 5.5. These results

are listed in Table 5.1 with uncertainties that stem from the errors in the wavenumbers

and ↵. For comparison, we include the coe�cients for the best fit linear trend to the

experimental data shown in Fig. 5.6.

�1 = a�2 + b
a b

Analytical �1.1 1. ± 0.4
Experimental �0.7 0.8

Table 5.1: Analytical (from Eq. 5.5) and experimental coe�cients for the linear trend
shown in Fig. 5.6.

In spite of the assumptions we have made to place Eq. 5.5 in its simplified form,

we can see that the observed values correspond closely to the predicted coe�cients.

The relative agreement of the analytically predicted trends thus lends experimental

weight to our theoretical analysis from Chapter 2 and supports the notion that the

beat e↵ect is an important contributing factor to the onset of stochasticity in this

case.

The experimental agreement theory extends to our energy density analysis as well.

We can see this by inverting the first equation in Eq. 2.26 to find

WBEW

W1(SEW )
=
hp

⌘ + �
p

1 � ⌘
i�2

, (5.6)
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where under the same the same assumptions we employed to derive Eq. 5.5, � is given

by

� =

✓

!2

!1

◆1/3✓�1
�2

◆1/2

(5.7)

with �j = Wj/�2
j . From our experimental values, we use this relation to find the

theoretical value � = 0.91 ± 0.3. We then fit Eq. 5.6 to the data in Fig. 5.7 to yield

the dotted line shown and the coe�cient � = 0.64. Once again, we find the model and

experimental data agree to within error bars, which lends support to the theoretical

predictions from Chapter 2.

In sum, we have showed experimentally in the low energy density regime that

the threshold for the onset of stochasticity is linear with respect to the perturbation

amplitudes for the case of two obliquely-propagating electrostatic modes that satisfy

the beat criterion. The BEW waves further were shown to exhibit a lower requisite

total energy density to produce stochasticity than SEW propagating modes at the

same frequencies. We compared our experimental results to analytically predicted

trends and found a reasonable agreement. This correspondence suggests that the

BEW e↵ect is indeed a contributor to the observed dependence of the stochastic

threshold on wave amplitude.

5.3 BEW power absorption after onset

In order to investigate the power absorption of BEWH and SEWH, we assume that the

temperature values we report represent an equilibrium between losses in the plasma

and the power absorption. Higher power absorption rates therefore correspond to

higher equilibrium temperatures. In addition, we assume that the dominant con-

tributor to ion heating is direct power absorption from the wave. It is possible, for

example, that electrons absorb the wave energy and then in turn deliver this energy

to the ions. However, during our heating measurements, increases to the electron
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temperature as monitored in near real time by the double probe array were small.

Similarly, the analytically predicted ion cyclotron absorption from electrons due to

the waves is a factor of 15 less than the predicted absorption for ions. We arrived

at this ratio by comparing the electron absorption term (derived from the ion terms

in Chapter 3 with the appropriate transformation to physical coordinates) to the ion

absorption term.

Assuming then that the ions absorb the wave energy, we used the calibration

curves from Fig. 5.5 in conjunction with a parametric set of current traces such as

those reported in Fig. 5.4 to determine the ion temperature as a function of potential

amplitudes �1,�2 in each mode. We then employed the canonical definition of energy

density in Eq. 5.2 with the dispersion relation in Fig. 5.1 to convert these wave poten-

tials to energy density. Following this technique, we show in Fig. 5.8 the percentage

increase in ion temperature over background as a function of the fraction ⌘ of the

total wave energy density in the first mode. Each curve corresponds to a di↵erent

value of total energy density that has been normalized by the analytically predicted

value where BEWH superiority is anticipated, W T (see Eq. 3.93). We similarly ensure

that for each curve heating has onset for all values of ⌘ such that we are above the

energy density regime discussed in the previous section. The top curve represents the

maximum available energy density we could impart into the plasma with our current

configuration. The cases where ⌘ = 0, 1 correspond to SEW heating.

From these results, we identify two classes of behavior. First, for intermediate

values of total wave energy density, 0 < WT/W T < 0.1, the relationship of heating

e�ciency with fraction of energy is approximately linear—increasing from ⌘ = 0 to

a maximum at ⌘ = 1. This trend reflects the fact that greater absorption occurs

for the lower frequency wave !1. Second, for higher values of wave energy density

WT/W T > 0.1, the plotted profile changes until it is almost uniform for all fractional

combinations of wave energy densities.
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Figure 5.8: Fractional increase in ion temperature as a function of the fraction of
total energy density in the first mode at !1. Each curve represents a case where the
total wave energy density WT is constant.

The first trend is consistent with our analytical understanding of the BEWH

process in the case where the condition for BEWH superiority has not been achieved,

WT < W T . In this event, the SEW terms dominate in Eq. 3.91 such that we anticipate

a linear relationship between power absorption (heating e�ciency) and the fraction

of energy density. Indeed, we can see that this equation also predicts the increase in

slope of this linear relationship with total wave energy density.

There are two possible explanations for the second observed trend with increasing

input energy density. The first is that the input energy approaches the limit WT =

W T , in which case this plateau is a precursor to the emergence of an optimal frequency

⌘ 2 (0, 1) such that BEW is the superior process. However, our maximum available

energy density is well below the analytically predicted threshold for the superiority of

BEWH, and even if this threshold value is overestimated, pursuant to Eq. 3.92 with

our experimental values for �j and ↵j, we would anticipate that the BEW optimum

first appear with increasing input energy density near ⌘ = 1. This is not consistent
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with the asymptotic approach to the plateau exhibited in Fig. 5.8.

On the other hand, this observed plateau could be the result of saturation e↵ects.

This is a strong possibility since we already have noted from Fig. 5.4 that saturation

does occur for each combination of input current. Moreover, if we still fall in the

regime where SEW is dominant (WT < W T ), we can understand the profile shown

in Fig. 5.8 exclusively in terms of the independent single wave absorption of the

propagating modes (the ↵j terms in Eq. 3.91). To see how this is the case, we note

that if the power delivered to the plasma is the result of two, independent SEW

interactions, we would anticipate from our parametric analysis that the temperature

should asymptote first at the SEW conditions, i.e. ⌘ = 0, 1. As the total power

increases, however, each wave mode can contribute its saturated value to the total

power absorption at intermediate values of ⌘ 2 (0, 1). For su�ciently large total

energy density, this e↵ect will lead to the same saturated power being delivered to the

plasma for all BEW combinations. With the same input power and the same plasma

losses, we correspondingly would anticipate a uniform plateau in temperature increase

with sharp drops at ⌘ = 0, 1. Such a precipitous drop does appear to begin to form

near ⌘ = 0 in Fig. 5.8. There is no equivalent drop at ⌘ = 1, though this could result

from our inability to achieve an energy density su�ciently large for the saturation

e↵ects from !2 to contribute significantly to heating at larger values of ⌘. The nascent

plateau therefore still could be consistent with a saturation e↵ect on the individual

waves. Thus while we can conclude that for WT/W T ⌧ 1, our results are consistent

with the energy density regime we identified in Chapter 3 (W ⇤
T < WT < W T ) where

we anticipate SEWH to be dominant, due to limitations in available energy density as

well as unanticipated saturation e↵ects, we cannot draw any experimental conclusions

about the regime WT > W T .

We should note that our results contradict previously reported investigations of

BEWH versus SEWH heating in a plasma similar to the configuration reported here
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[24, 94]. In these studies, there was an e↵ort made to control for the same total power

to the antenna in both the SEWH and BEWH cases; however, the energy density of

the modes propagating in the plasma was not directly measured. The coupling to the

plasma from the individual waves thus was not taken into the account—rendering

the assumption of equal wave energy density invalid. For example, in the case of

BEWH, it is possible that the second introduced mode couples to the plasma more

e�ciently by virtue of its higher frequency and longer parallel wavenumber. In this

event, the total energy introduced into the plasma would be greater than the SEWH

case–even though the input power from the wave amplifier to the antenna is the same.

It also should be pointed out that these previous investigations examined only a small

range of input power values and did not parametrically explore the e↵ect of fractional

content of each mode. Our results presented here are more general.

5.4 Chapter summary

In this chapter, we have compared SEWH to BEWH over the range of available input

energy densities from the VDWL system in BWX II. By using the optimal SEWH

case to inform our choice of BEW frequencies, we have been able to explore two of

the predicted regimes from Table 1 in Chapter 3. This has yielded the following

conclusions:

• For W0 < WT < W ⇤
T where W ⇤

T denotes the lower SEW threshold for the onset of

heating, we have confirmed experimentally that BEWH is the superior process.

The close fit of our experimental results with the model lends support to our

interpretation that the ability of BEW to facilitate the onset of stochasticity in

this regime leads to the onset of heating at lower energy density values.

• For W ⇤
T < WT < W T , we have examined the lower energy density part of this

regime and confirmed that SEWH is the superior process. The qualitative agree-
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ment of ion temperature with our model for power absorption lends credibility

to our analysis.

• At higher values of WT , saturation e↵ects in concert with a limited availability

in the VDWL system have prevented a thorough investigation of the threshold

value W T . The saturation e↵ects are particularly important as they occur for

values of WT/W T ⌧ 1. This suggests that saturation may prevent us from

observing the transition to the regime of BEWH superiority—even if we could

access higher energy levels with our system.
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Chapter 6

Conclusions

In this dissertation, we have presented an investigation into plasma heating with beat-

ing electrostatic waves—a nonlinear process that by virtue of its ability to energize

low energy ions has potential applications in a number of di↵erent plasma processes.

While a number of investigations have focussed on characterizing the BEW process

and contrasting its unique properties to the energization produced by a traditional,

single electrostatic wave [14, 15, 19, 16, 20, 17, 21, 22, 23, 24, 25], there is still a need

to compare the two processes systematically when applied to heating an ion ensem-

ble. In this dissertation, we have addressed this shortcoming through an analytical,

numerical, and experimental investigation with the specific goals in mind of

• Deriving the condition for the onset of heating for both SEWH and BEWH as

a function of wave amplitude and input energy density.

• Comparing the power absorbed by ions subject to both processes SEWH and

BEWH once the onset of heating has occurred.

• Analytically deriving criteria for when one process is preferred over another.

• Performing an experimental investigation to explore our analytical conclusions.
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6.1 Summary of major findings

6.1.1 Analytical findings

In our analytical treatment of the BEWH and SEWH problem, we have identified

three regimes of input energy density where the relative performance of SEWH and

BEWH di↵er. For low input wave energy densities, the BEWH process leads to the

onset of ion heating at lower input values than the SEWH process. This is because the

formation of stochasticity in particle orbits depends on the development of resonances

between the ion orbits and the propagating wave frequencies. For the case of SEW,

the formation of these resonances requires significant finite-amplitude perturbations

to the precession frequency of the ion, while for BEW where !2 � !1 = ⌦i, there

is already a natural resonance between the beat frequency of the waves and the ion

motion. Resonances therefore occur at significantly lower values of wave amplitude,

which in turn translates to a lower input energy density necessary for the BEW to

achieve stochastic onset.

Once phase space has become stochastic, however, we have showed that there is an

intermediate regime of input energy density where the SEWH leads to higher power

absorption than the case of BEWH. This is because the amplitude of the virtual beat

mode at �! and �k driven by the two BEW is itself second-order—suggesting that

the di↵usion resulting from this mode is fourth order. The SEWH process, on the

other hand, as per traditional ion cyclotron damping is second order in amplitude.

We thus find that at intermediate energy densities, the SEWH process is dominant.

Finally, for su�ciently high energy densities, we have showed that the BEWH

process once again becomes superior to SEWH. The threshold value for when this

occurs depends both on the plasma parameters and the wave parameters of the BEW.
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6.1.2 Experimental findings

With the BWX II and the associated diagnostics, we have performed a systematic

comparison between SEWH and BEWH. In contrast to the previous experimental

investigation into BEWH [24], we were able both to identify the optimal frequency

combination for comparing the two processes as well as perform a full parametric

analysis as a function of the fraction of input energy density into each mode.

Employing electrostatic ion cyclotron waves in a collisional plasma, we have found

direct confirmation for our collisionless, analytical prediction that the onset of BEWH

does occur at lower energy density levels than SEWH. Our analytical work also accu-

rately predicted the trends exhibited by the experimental data, which lends further

support to the notion that the onset of heating is linked to the onset of stochastic

particle orbits.

At an intermediate energy density range where heating has onset for both BEWH

and SEWH processes, we have found trends that are consistent with an input energy

density that is below the threshold for the superiority of BEWH. Most notably, we

confirmed experimentally that SEWH was the superior process. The onset of satura-

tion e↵ects–likely due to loss processes as well as trapping e↵ects—in concert with an

upper bound on the available energy density in our experiment, however, prevented

us from exploring the high energy density regime where BEWH is predicted to be the

superior process.

6.2 Recommendations for future work

Our systematic treatment of the problem has provided new insight into this BEW

plasma heating process, yet there are a number of questions that remain. From

the analytical perspective, one of the most significant questions concerns the role

of collisions as a loss process in the plasma. Indeed, while collisions can be folded
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into our assumptions of a randomizing element to justify the phase-averaged power

absorption description we have employed in this work, they also are an important

loss mechanism for the power introduced by the waves. This loss in conjunction with

other processes in the plasma must be modeled in order to accurately estimate changes

in ion temperature. A full kinetic, numerical simulation [95, 50] could achieve this

end by providing insight into how collisions impact energy transport. Such a model

also could shed light on the saturation processes that were beyond the scope of our

power absorption model. In that same vein, the framework is in place from our above

discussion in conjunction with previous nonlinear models [15, 19] to develop a kinetic

wave equation for the spatial damping of the BEW in the plasma. Combined with

a numerical model, this description for wave damping would be useful for optimizing

BEW coupling to the plasma.

Experimentally, in order to explore the last regime of high energy density we

identified, it is necessary to introduce more power to the plasma while minimizing

saturation e↵ects. A di↵erent antenna geometry may facilitate this. Indeed, while we

employed in our setup a simple strap antenna located outside the vacuum vessel, with

the optimized VDWL system it may be possible to employ a capacitive antenna inside

the plasma (as was done by Spektor [24]) su�ciently separated from the heating zone

that the antenna is non perturbative in the region of temperature measurements.

Through its direct contact with the plasma, this configuration might couple more

strongly to electrostatic modes. Additionally, with higher wave energy, higher heating

levels are possible such that it would be possible to explore frequency combinations

that we neglected in this investigation due to the low observed heating levels.

Finally, with our improved understanding of the BEW mechanism, we can start

to turn our attention to real applications of this two-wave process. In particular,

we have outlined in previous reports [5, 6, 96] two plasma propulsion concepts that

depend on the e�cient power absorption facilitated by BEW. These thruster ideas
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merit further attention—both from a modeling and experimental perspective— in

light of the results we have presented in this work.
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Appendix A

Derivation of the Hamiltonian

Here we derive the Hamiltonians employed in Chapters 2 and 3. This treatment

follows the action-angle formulation first outlined by Karney [12] and expanded upon

in detail by Spektor [24].

A.1 Single particle Hamiltonian

The equation of motion for an ion subject to two, perpendicularly-propagating elec-

trostatic waves in a uniform magnetic field is given by [22]

mi
d2x

dt2
= q

2
X

j=1

�jkjx sin(kjxx � !jt + ↵j) + qv ⇥ B, (A.1)

where mi denotes the ion mass, q is the charge, �j is the potential amplitude, kjx

is the wave vector where we have denoted the direction of propagation as x̂, !j is

the wave frequency, B0 = B0ẑ denotes the background magnetic field, and ↵j is the

phase of the wave.

We denote the kinetic energy and potential energy for this system as

T =
mi

2

�

ẋ2 + ẏ2
�

U = q (� � v · A) ,

(A.2)

where we have defined � =
P

j �j cos(kjxx � !jt + 'j) and the magnetic vector
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potential B = r ⇥ A. Letting A = xB0ŷ and recognizing that the Lagrangian

is given by L = T � U , we can express the dynamical system in a Hamiltonian

formulation [46]:

h =
1

2

�

[py � qxB0]
2 + p2x

�

+ q
X

j=1,2

�j cos(kjxx � !jt + ↵j), (A.3)

where py = miẋ + qxB0 and px = miẋ. We normalize this expression such that

H =
1

2mi

�

[PY � X]2 + P 2
X

�

+
X

j=1,2

"j cos(jX � ⌫j⌧ + ↵j), (A.4)

where we have defined

⌧ = ⌦it ⌫j = !j/⌦i j = kjx/k1x X = k1xx

PX = k1x
m

i

⌦
i

px PX = k1x
m

i

⌦
i

px "j = (qk2
1x�j/mi⌦2

i ) H = k21x
⌦2

i

m
i

h.
(A.5)

Now, in order to transform this to an action-angle formulation, we employ a generating

function of the first kind [46] with F1(X, Y, ✓1, ✓2) = 1/2 (X � ✓2)
2 cot ✓1 + Y ✓2. This

yields the Hamiltonian:

H = I1 +
X

j=1,2

"j cos(j
p

2I1 sin ✓1 + j✓2 � ⌫j⌧ + ↵j), (A.6)

with the transformations given by

X =
p
2I1 sin ✓1 + ✓2 Y =

p
2I1 sin ✓1 � I2

VX =
p
2I1 cos ✓1 VY = �

p
2I1 sin ✓1.

(A.7)

Physically, we see that I1 = (V 2
X + V 2

Y ) /2 is the normalized kinetic energy of an ion,

✓1 is the angle of Larmor precesion, ✓2 is the position of the guiding center in the x̂

direction, and �I2 is the position of the guiding center in the ŷ direction.

It is evident from this formulation that the guiding center in the x̂ direction is

a constant of motion. While this is significant when considering a distribution of

particles, for our single particle analysis we fold this constant into the wave phase 'j.

Letting I1 ! I and ✓1 ! ✓, the resulting Hamiltonian is given by

H = I +
X

j=1,2

"j cos(j⇢ sin ✓ � ⌫j⌧ + 'j), (A.8)
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where we have defined ⇢ =
p
2I and 'j = ↵j + j✓2.

A.2 Ensemble Hamiltonian

For our formulation of the ensemble Hamiltonian in Chapter 3, we include the parallel

direction and normalize variables with respect to average thermal quantities. With

this in mind, the governing equations of motion are given by

d2x

dt2
=

q

mi

"

2
X

i=1

kj�j sin (kj · x � !jt + ↵j) +�k�nl sin (�k · x � �!t +�↵) + v ⇥ B

#

,

(A.9)

where �k = k2 � k1, �! = !2 � !1, �↵ = ↵2 � ↵1, and �nl is the amplitude of the

dielectric response to the driven mode. For the Hamiltonian formulation in this case

we use the modified forms

T =
mi

2

�

ẋ2 + ẏ2 + ż2
�

U = q (� � v · A) ,

(A.10)

where the magnetic vector potential remains the same as in Sec. A.1 and we now

have defined � =
P2

i=1 �j cos (kj · x � !jt + ↵j)+�nl cos (�k · x � �!t +�↵). The

Hamiltonian thus is given by

h =
1

2mi

�

[py � qxB0]
2 + p2x + p2z

�

+ q

"

2
X

i=1

�j cos (kj · x � !jt + ↵j) (A.11)

+�nl cos (�k · x � �!t +�↵) ] . (A.12)
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We normalize this Hamiltonian in terms of the thermal quantities of the distribution

such that

H̃ =
1

2

⇥

P 2
X + (PY � X)2

⇤

+
1

2
P 2
Z +

2
X

j=1

"j cos (jX + jzjZ � ⌫j⌧ + ↵j)

+"nl cos (�X +�zZ � �⌫⌧ +�↵) .

(A.13)

The normalization terms in this scheme are given by

X = x/rL VX,Y = vx,y/vti ⌫j = !j/⌦i

⌧ = ⌦it "j = (q�j)/(mir2L⌦
2
i ) j = kjrL.

(A.14)

where vti =
p

Ti/mi and rL = vti/⌦i. Employing the same generating function of

the first kind as in the previous section, we thus find the transformed action-angle

formulation:

H = I +
1

2
P 2
z +

2
X

i=1

"j cos
�

j⇢ sin ✓ + jzZ � ⌫j⌧ + 'j

�

+ "nl cos (�⇢ sin ✓ +�zZ � �⌫⌧ +�') ,

(A.15)

where we have let I1 ! I, ✓1 ! ✓, ⇢ =
p
2I, and defined 'j = ↵j + j✓2. This

is the Hamiltonian we employ in Sec. 3.2. In the perpendicular limit and with the

substitution "j ! ⇠j/j, however, we recover Eq. 3.6 from Sec. 3.1. Similarly, by

eliminating the "nl term and employing the normalization scheme from A.1, we arrive

at the Hamiltonian for Sec. 2.6.
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Appendix B

Lie transform analysis

B.1 General theory

Since the nonlinearity of the action-angle Hamiltonians we have outlined in Eqs. 2.2,

3.6, and 3.26 preclude any integrable solution, we seek a canonical transformation to

a new coordinate system where the transformed Hamiltonian is more tractable. We

first establish the general formalism to achieve this end and then discuss the special

cases in Chapters 2 and 3.

For the initial coordinates and momenta (q,p) with Hamiltonian H, let us rep-

resent the canonical transformation with the operator T such that the transformed

coordinates (Q,P) with Hamiltonian K are given by

Q = T [q] (B.1)

P = T [p] . (B.2)

Finding a closed form for T that accurately portrays the dynamics of a nonlinear sys-

tem while allowing for a simplified analysis is extremely di�cult and often impossible.

Therefore, for a system such as ours where the integrable motion H = I is modified

by a small nonlinear term ", we use a perturbation analysis in order to approximate

a transformation.
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There are a number of perturbation methods available to achieve this end [38];

however, one of the most formulaic is the method Lie transforms. This technique

consists of expanding the transformation operator in a series [63, 64]. A concise and

enlightening review of this analysis is provided in Ref. [65], and we use this reference

to guide the discussion here. In particular, we assume T can be expressed in Poisson

bracket notation such that

T = e�L, (B.3)

where L = {w, ..} is the Poisson operator and w is a generating function that is

related to the transformed Hamiltonian through the equation

@w

@⌧
=
@K

@"
� LK � T�1@H

@"
. (B.4)

Here T�1 = eL denotes the inverse operator, and we note that both T and T�1 are

canonical and commute with functions [65].

We solve Eq. B.4 through perturbation analysis by expanding K, H, T , and w as

series with respect to the small parameter:

H =
1
X

n=0

Hn

K =
1
X

n=0

Kn

T =
1
X

n=0

Tn

w =
1
X

n=0

wn+1.

(B.5)

Expanding the exponentials in T and T�1 and then substituting in these series rela-
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tions yields the first and second order components of the transformation

T0 = I

T1 = �L1

T2 = �1

2
L2 +

1

2
L2
1

T�1
0 = I

T�1
1 = L1

T�1
2 = �1

2
L2 +

1

2
L2
1,

(B.6)

where Ln = {wn, ..}. Similarly, we find from Eq. B.4 to second order that

K0 = H0

@w1

@⌧
+ {w1, H0} = K1 � H1

@w2

@⌧
+ {w2, H0} = 2 (K2 � H2) � L1 (K1 + H1) .

(B.7)

Ideally we would be able to find a transformation where K1, ..., Kn = 0 since then

the equations of motion under the Hamiltonian are extremely tractable. However,

we can see from these relations that if the right hand side has any terms that are

independent of time, the solution wn will have secular components that are divergent

with time. The typical goal for the transformation then is to keep K as simple as

possible while at the same time defining its components in such a way to prevent the

appearance of secular terms in the generating functions.

With this in mind, we now discuss the specific Hamiltonians outlined in the text.

B.2 Hamiltonian in Eq. 2.2

Here we have the Hamiltonian in action-angle coordinates given by

H = I +
X

j=1,2

"j cos(j
p
2I sin ✓ � ⌫j⌧ + 'j). (B.8)
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The higher order components thus are H2, ..., Hn = 0 while we have for the zeroth

and first order terms

H0 = I

H1 =
X

j=1,2

"j cos(j
p
2I sin ✓ � ⌫j⌧ + 'j).

(B.9)

We rewrite H1 as a series expansion in terms of the Bessel function of the first kind

to find [11]:

H1 =
1

2

X

j=1,2

"j
X

m

Jm

⇣

j
p
2I
⌘

⇥

ei(m✓�⌫
j

⌧+'
j

) + e�i(m✓�⌫
j

⌧+'
j

)
⇤

. (B.10)

Substituting this into the second line of Eq. B.7, we immediately see that if ⌫j 6= k⌫jk,

there are no secular terms such that we can let K1 = 0. Employing the method of

characteristics to solve for w1, we thus find

w1 =
i

2

2
X

j=1

X

m

"jJm

⇣

j
p
2I
⌘

⇥

ei(m✓�⌫
j

⌧+'
j

) � e�i(m✓�⌫
j

⌧+'
j

)
⇤

m � ⌫j
. (B.11)

We note here that we have eliminated the dependence of w1 on the initial condition

⌧0 following the precedent for single particle analysis set by Spektor [24], Chia [20],

and Benisti [17]. With this in mind, we can generate the second-order transformed

Hamiltonian, K2, by substituting Eq. B.11 into the third line of Eq. B.7 and eliminat-

ing the secular terms. Examining the cross-terms that arise from L1H1 = {w1, H1}

reveals secular terms that arise when m = n, ⌫2�⌫1 = n, ⌫2+⌫1 = n, and 2⌫j = m+n

where n is an integer. However, following Ref. [22], since we are interested primarily

in the dynamical e↵ects of the beat resonance at ⌫2 � ⌫1 = 1, we assume that the

other resonant conditions are not satisfied by the frequencies, i.e. we do not explicitly

include half harmonics in our analysis. We thus can recover Eq. 2.3.

B.3 Analysis in Sec. 3.1

For the formulation of the average kinetic energy in Sec. 3.1, we follow the Lie trans-

form analysis of Latham et al. [57]. The idea here is to solve for the average kinetic
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energy as a function of time and initial action I0 but averaged over the initial posi-

tion hI (I0, ✓0, ⌧)i✓0 . To this end, we seek a transformation T (✓, I) [I] = Ĩ where in

the new coordinate system with Hamiltonian K the equations of motion are simpler.

Then, in order to find I (⌧), we transform the initial condition I0 to Ĩ0, solve the

equations of motion in the new coordinate system until time ⌧ , and then invert the

transformation I (⌧) = T�1
⇣

✓̃, Ĩ
⌘ h

Ĩ (⌧)
i

.

If we denote the time-propagating operator in the tilde reference frame as SK (⌧, ⌧0),

we can use this indirect technique to relate the action at time ⌧ to the initial conditions

I0 without ever calculating the transformed coordinates (Sec. II of Ref. [57]):

I (⌧) = T (✓, I)SK (⌧, ⌧0)T�1 (✓, I) I0. (B.12)

Using the prescription from Sec. B.1, to second order this expression yields

I (⌧) =



SK + SKL1 � L1SK +
1

2
(SKL2 � L2SK) +

1

2

�

L2
1SK � 2L1SKL1 + SKL2

1

�

�

I0.

(B.13)

Since the Hamiltonian in Sec. 3.1 has the same form as that discussed in Sec. B.2, we

employ the same assumptions to assert that K1 = 0, and thus we can approximate

approximate SK (I0) = I0 and SK (✓0) = ✓0 + ⌧ . The second order approximation for

I (⌧) then becomes

I (⌧)2 = I0 + {�w1, I0} +
1

2
{�w2, I0} +

1

2
{�w1, {�w1, I0}} (B.14)

+
1

2
{w1 (✓0 + ⌧, I0, ⌧) , w1 (✓0, I0, ⌧0)}, I0}, (B.15)

where we have defined �wj = wj (✓0 + ⌧, I0, ⌧) � wj (✓0, I0, ⌧0) and

w1 (✓, I, ⌧) =
i

2

2
X

j=1

X

m

⇠j
j

Jm

⇣

j
p
2I
⌘

⇥

ei(m✓�⌫
j

⌧+'
j

) � e�i(m✓�⌫
j

⌧+'
j

)
⇤

m � ⌫j
. (B.16)

Now, we can see that w1 is periodic with respect to ✓ and since we design our trans-

formation to eliminate secular terms, we can assume the same is true for w2. Thus
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we can simplify Eq. B.14 by averaging with respect to the initial angles to yield

I (⌧)2 = I0 +
1

2
h{�w1, {�w1, I0}}i✓0 , (B.17)

where the other terms have been eliminated due to their periodicity. Finally, expand-

ing out the Poisson brackets, and integrating with respect to ✓0 we recover Eq. 3.11.

B.4 Analysis in Sec. 3.2

For this section, instead of concentrating on the time dependence of the action I as

a function of initial conditions, we follow Cary [66] in considering the local density

distribution function f (✓, I). Since we seek a canonical transformation, we know that

the density distribution function for the oscillation center is related to the distribution

in physical coordinates by

f (✓, I) = F
⇣

✓̃ (✓, I) , Ĩ (✓, I)
⌘

, (B.18)

where ✓̃ = T [✓] , Ĩ = T [I]. Employing the fact that T commutes with functions, we

thus see

f (✓, I) = T [F (✓, I)] . (B.19)

Expanding T in series to fourth order yields

f (✓, I) = F + T1 + T2F + T3F + T4F, (B.20)

where T1, T2 are given by Eq. B.6 and the higher order terms are

T3 = �1

3
L3 +

1

6
L2L1 +

1

3
L1L2 � 1

6
L3
1 (B.21)

T4 = �1

4
L4 +

1

12
L3L1 +

1

8
L2
2 +

1

4
L1L3 � 1

24
L2L

2
1 � 1

12
L1L2L1 � 1

8
L2
1L2 +

1

24
L4
1.

(B.22)
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While there are several terms in this expansion, we only retain the one that has the

same form as the non-periodic, second-order contribution to T , i.e. we approximate

T3 ⇡ 0

T4 ⇡ 1

8
L2
2.

(B.23)

We justify this approximation by noting that many of terms in Eq. B.21 are ultimately

eliminated through the phase averaging we perform to arrive at the power absorption

term. However, the T4 term remains and provides fourth-order stochastic damping

in directly analogy to the second-order stochastic term that arises from L2
1F . The

fourth-order transformation between f and F that we employ is thus given by

f = F � {w1, F} +
1

2
{w1, {w1, F}} � 1

2
{w2, F} +

1

8
{w2, {w2, F0}} . (B.24)
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Appendix C

Simplification of terms from

Chapter 2

C.1 Simplification of F

For these considerations, we employ the asymptotic approximation for the Bessel

function in the x � m +
�

1
2m
�1/3

[11] limit:

Jm (x) =

✓

2

⇡

◆1/2 cos
h

(x2 � m2)1/2 � m cos�1
�

m
x

�

� ⇡
4

i

(x2 � m2)1/4
. (C.1)

With this expression, we see that the cross-term in F becomes to leading order

1

⇢

@S6 (⇢)

@⇢
=

1

2⇡⇢4
�

SA
6 (⇢) + SB

6 (⇢)
�

, (C.2)

where we have defined

SA
6 (⇢) = �

X

m

 

(2⇢)
2 � (m + 1)2

(1⇢)
2 � m2

!1/4
m

⌫1 � m
⇥

h⇣

⇥

(2⇢)
2 � (m + 1)2

⇤1/2
+
⇥

(1⇢)
2 � (m)2

⇤1/2
⌘

cosC1+
⇣

⇥

(2⇢)
2 � (m + 1)2

⇤1/2 �
⇥

(1⇢)
2 � (m)2

⇤1/2
⌘

cosC2

i

(C.3)
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SB
6 (⇢) = �

X

m

 

(1⇢)
2 � (m � 1)2

(2⇢)
2 � m2

!1/4
m

⌫2 � m
⇥

h⇣

⇥

(1⇢)
2 � (m � 1)2

⇤1/2
+
⇥

(2⇢)
2 � (m)2

⇤1/2
⌘

cosD1+
⇣

⇥

(1⇢)
2 � (m � 1)2

⇤1/2 �
⇥

(2⇢)
2 � (m)2

⇤1/2
⌘

cosD2

i

(C.4)

and condensed the arguments of the cosine functions to

C1 =
�

(2⇢)
2 � (m + 1)2

�1/2
+
�

(1⇢)
2 � (m)2

�1/2

�m cos�1

✓

m

1⇢

◆

� (m + 1) cos�1

✓

m + 1

2⇢

◆

� ⇡

2

C2 =
�

(1⇢)
2 � (m)2

�1/2 �
�

(2⇢)
2 � (m + 1)2

�1/2

�m cos�1

✓

m

1⇢

◆

+ (m + 1) cos�1

✓

m + 1

2⇢

◆

(C.5)

D1 =
�

(2⇢)
2 � (m � 1)2

�1/2
+
�

(1⇢)
2 � (m)2

�1/2

� (m � 1) cos�1

✓

m � 1

1⇢

◆

� m cos�1

✓

m

2⇢

◆

� ⇡

2

D2 =
�

(1⇢)
2 � (m � 1)2

�1/2 �
�

(2⇢)
2 � (m)2

�1/2

� (m � 1) cos�1

✓

m � 1

1⇢

◆

+ m cos�1

✓

m

2⇢

◆

.

(C.6)

In order to evaluate the expressions in C.3 and C.4, we follow Ref. [12] in expand-

ing the coe�cients of the rapidly varying, sinusoidal terms about m = ⌫1 in SA
6 and

m = ⌫2 in SB
6 :

SA
6 = �⌫1

�2

�1

"

�

�2
2 + �2

1

�

X

m

cosC1

⌫1 � m
+
�

�2
2 � �2

1

�

X

m

cosC2

⌫1 � m

#

SB
6 = �⌫2

�1

�2

"

�

�2
2 + �2

1

�

X

m

cosD1

⌫2 � m
+
�

�2
1 � �2

2

�

X

m

cosD2

⌫2 � m

#

,

(C.7)
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where we have defined

�2
i =

⇥

(i⇢)
2 � ⌫2i

⇤1/2
. (C.8)

We similarly expand the arguments of the cosine functions. For example,

X

m

cosC1

⌫1 � m
= Re

"

exp
h

i
⇣

�2
1 + �2

2 � ⌫1b1 � ⌫2b2 � ⇡

2

⌘i

X

m

exp [i (b1 + b2) (⌫1 � m)]

⌫1 � m

#

(C.9)

where we have defined b1 = cos�1
⇣

⌫1
1⇢

⌘

and b2 = cos�1
⇣

⌫2
2⇢

⌘

. We can evaluate this

summation for the case of 1⇢ � ⌫1 [12, 11]
X

m

cosC1

⌫1 � m
= ⇡

sin [�2
1 + �2

2 � ⌫1b1 � ⌫2b2 + ⇡�]

sin (⇡�)
. (C.10)

We follow a similar treatment for the additional terms in C.7
X

m

cosC2

⌫1 � m
= ⇡

cos [�2
1 � �2

2 � ⌫1b1 + ⌫2b2 + ⇡�]

sin (⇡�)

X

m

cosD1

⌫2 � m
= ⇡

sin [�2
1 + �2

2 � ⌫1b1 � ⌫2b2 + ⇡�]

sin (⇡�)

X

m

cosD2

⌫2 � m
= ⇡

cos [�2
1 � �2

2 � ⌫1b1 + ⌫2b2 + ⇡�]

sin (⇡�)
.

(C.11)

We can express these as functions of the variable ↵i defined in Eq. 2.14:
X

m

cosC1

⌫1 � m
= ⇡

cos [↵1 + ↵2]

sin (⇡�)
.

X

m

cosC2

⌫1 � m
= ⇡

cos [↵2 � ↵1 + ⇡�]

sin (⇡�)

X

m

cosD1

⌫2 � m
= ⇡

cos [↵1 + ↵2]

sin (⇡�)

X

m

cosD2

⌫2 � m
= ⇡

cos [↵2 � ↵1 + ⇡�]

sin (⇡�)
.

(C.12)

Under the assumption that ⌫1, ⌫2 � 1 such that ⌫1 ⇠ ⌫2, we use these expressions

along with C.7 to write C.2 as

1

⇢

@S6 (⇢)

@⇢
= � ⌫1 (�1�2)

�1

2 sin (⇡�) ⇢4

h

�

�2
1 + �2

2

�2
cos (↵1 + ↵2) +

�

�2
2 � �2

1

�2
cos (↵2 � ↵1 + ⇡�)

i

.

(C.13)
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We now make the simplifying assumption, valid for small �, that cos (↵2 � ↵1) ⇡

cos (↵2 � ↵1 + ⇡�). Through the addition and sum trigonometric identities, this as-

sumption permits us to write

1

⇢

@S6 (⇢)

@⇢
= �⌫1 (�1�2)

�1

sin (⇡�) ⇢4
⇥�

�4
1 + �4

2

�

cos↵1 cos↵2 � 2�2
1�

2
2 sin↵1 sin↵2

⇤

. (C.14)

We can follow the same expansion procedure outlined above to find the single wave

contributions to Eq. 2.11:

1

⇢

@S⌫
i

1 (⇢)

@⇢
= � ⌫1

sin (�⇡) ⇢4
�2
i

�

cos2 ↵i � sin2 ↵i

�

. (C.15)

This expression along with that in C.13 allows us to write Eq. 2.11 in the factored

form

F (", ⌫1, ⌫2) =
⌫21

sin (⇡�) ⇢4
⇥

("1�1 sin↵1 + "2�2 sin↵2)
2

� ("1�1 cos↵1)
2 � ("2�2 cos↵2)

2 � "1"2
(�4

1 + �4
2)

�1�2
cos↵1 cos↵2

�

.

(C.16)

Finally, in order to avoid the singularity at i⇢ = ⌫i, facilitate comparison to previous

SEW results [12], and lay the ground work for examining the ⇢ < ⌫i/i limit, we

make the substitution that is valid for i⇢ > ⌫i +
�

1
2⌫i
�1/3

that

✓

2

⇡

◆1/2
⇥

(i⇢)
2 � ⌫2i

⇤1/4

⇢
! |H10

⌫
i

(i⇢) |, (C.17)

where the derivative of the Hankel function is with respect to ⇢. Substituting this

result into the expression for F , we recover Eq. 2.13.

C.2 Completing the square

In order to simplify the second term of Eq. 2.13, the goal is to factor the remaining

cross-term:

"1"2
(A4

1 (⇢) + A4
2 (⇢))

A1 (⇢)A2 (⇢)
cos↵1 cos↵2. (C.18)
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We re-write this as

"1"2A1A2

 

✓

A1

A2

◆2

+

✓

A2

A1

◆2
!

cos↵1 cos↵2. (C.19)

Using the forms of A1, A2 from Appendix A, we can write the ratio

A1

A2
=

 

(1⇢)
2 � ⌫21

(2⇢)
2 � ⌫22

!1/2

. (C.20)

For the large ⇢i � ⌫i case, we see that this term approaches

A1

A2
⇡ 1
2

. (C.21)

Therefore, in the event that the ratio of the wave numbers is on the order of unity

1/2 ⇠ 1, we can express the cross-term from C.18 as

2"1"2A1A2 cos↵1 cos↵2. (C.22)

This allows us to factor the terms in Eq. 2.13 to yield the simplified form Eq. 2.17.
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Appendix D

Estimating the maximum

Lyapunov exponent

We present here a brief formulation for determining the Maximum Lyapunov Expo-

nent (MLE). We reserve mathematical rigor for the more detailed treatments of the

subject [97] and instead focus on providing a concise description for the algorithm we

employ. The analysis presented here is largely guided by the summary from Sandri

[98], who wrote the integrator we adopted for our calculations.

With that in mind, for a continuous dynamical system, let us assume that the

equations of motion are given by

ẋ = F (x) , (D.1)

where F is a function of the state vector x, and ẋ denotes the derivative with respect

to time. We write the solution of these equations of motion for some initial condition

x0 as x (t) = f t (x0) where f t is a vector. Now, let us consider the separation in

phase space, denoted ut between two trajectories whose initial conditions are only

separated by a small initial displacement u0:

ut = f t (x0 + u0) � f t (x0) . (D.2)
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Since the displacement is in fact small, we can Taylor expand this quantity to find

ut = D
x0f

t (x0) · u0, (D.3)

where D
x0 denotes the spatial derivative. Ultimately, we want to characterize how

this separation evolves in time, and the key to determining this is to assume that

over a su�ciently long time interval t ! 1, the separation can be described as

exponential:

lim
t!1

kutk = ku0ke�t, (D.4)

where k..k denotes the magnitude of the vector and � is the maximum Lyapunov

exponent (MLE). We note here that the modifier “maximum” stems from the fact

that there are actually multiple exponents that characterize the separation in phase

space—one for each degree of freedom. It is logical to assume though that with

increasing time the largest of these exponents and the corresponding expansion in

that direction of phase space will be the dominant factor, and indeed, a more rigorous

treatment reveals that the separation between trajectories is dictated by the MLE

[99].

This exponent thus captures the three possible behaviors for a dynamical system.

For � > 0, the separation continually grows, and the orbits become stochastic. For

� < 0, the orbits converge to a single trajectory. And for � = 0, the separation

remains constant—indicating a possibly oscillatory system.

In order to find an estimate for the MLE, we begin by solving Eq. D.4 for � such

that

� = lim
t!1

1

t
ln

kutk
ku0k

= lim
t!1

1

t
ln kutk.

(D.5)

Evaluating � now can be accomplished by determining ut. To this end, let us denote
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the tensor element � = D
x0f

t (x0). Rewriting Eq. D.3, we find

ut = � · u0. (D.6)

If we can evaluate � as a function of time, then we should be able to determine ut.

From Eq. D.1, we have that

ḟ t (x0) = F
�

f t (x0)
�

. (D.7)

Di↵erentiating with respect to x0 yields

D
x0 ḟ

t (x0) = D
x

F
�

f t (x0)
�

D
x0f

t (x0) , (D.8)

where we have employed the chain rule. Using our definition for �, this result can

be written as

�̇ = D
x

F
�

f t (x0)
�

�. (D.9)

With Eqs. D.7 and D.9, we thus have a series of equations that we can solve nu-

merically to determine � as a function of time. The last step then is to let tensor

� operate on an initial displacement vector u0. The evaluation of the MLE thus

becomes

� = lim
t!1

1

t
ln k� · u0k. (D.10)

There is some ambiguity as to what initial displacement vector we should choose;

however, Oseledec [99] showed that the MLE will converge to the same value for

almost any choice of small initial displacement. This theory is valid provided that

the trajectories dictated by the equations of motion are bounded in phase space and

that the initial displacement falls within this bounded region. Thus, any randomly

generated initial displacement within this region will lead to the same value of MLE.

In order to evaluate the MLE for the Hamiltonian H in Eq. 2.2 with the above

relations, we define x = (✓, I, ⌧) in canonical coordinates where time ⌧ is also treated

as a degree of freedom. The function F correspondingly is given by
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F =

0

B

B

B

B

@

@H
@I

�@H
@✓

1

1

C

C

C

C

A

. (D.11)

Similarly, we have

D
x

F
�

f t (x0)
�

=

0

B

B

B

B

@

@2H
@2I

@2H
@I@✓

@2H
@I@⌧

@2H
@✓@I

@2H
@2✓

@2H
@✓@⌧

@2H
@⌧@I

@2H
@⌧@✓

@2H
@2⌧

1

C

C

C

C

A

. (D.12)

With � as a 3 ⇥ 3 matrix of free variables and our state vector x, we were able

to employ Eqs. D.7 and D.9 in conjunction with the above relations to find a set of

twelve di↵erential equations for twelve variables. To evaluate these for our analysis,

we implemented a numerical integrator from Sandri [98] written in Mathematica. We

then determined the MLE for a given initial condition by multiplying by a randomly

generated initial displacement and substituting this along with our time dependent re-

sult for � into Eq. D.10. Since we used the MLE as a metric for the local stochasticity

of phase space–which implicitly assumes the degree of stochasticity is largely localized

to that region–we were careful to limit our initial displacements to be smaller than

the spacing between sampled initial conditions (✓0, ⇢0). Following this procedure, we

found in Chapter 2 that the values of � were convergent for times ⌧ < 150.

174



Appendix E

Electrostatic dispersion relation

We evaluate here the electrostatic dispersion relation through the Lie transform for-

malism. To this end, we consider the first-order component of the Poisson equation:

�k2�1 =
1

✏0

X

s

qs

Z

d3vf1(s), (E.1)

where s denotes the sum over species and we have defined

�1 =
1

2
�0e

i(k·x�!t+↵) + c.c.. (E.2)

We see that in normalized coordinates we have

f1 = F1 � {w1, F0}, (E.3)

where we employ the first-order generating function from Eq. 3.36 in the long-time

limit with only one amplitude term such that

f1 =
"0
2

X

n

Jn (z)

⌫ � n � zPZ

✓

z
@F0

@PZ

+ n
@F0

@I

◆

ei(n✓+
z

Z�⌫⌧+') + c.c., (E.4)

where z = ⇢. Recalling from Appendix A that we have

' = ↵ + ✓2

= ↵ + X � z sin ✓,
(E.5)
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we can substitute into Eq. E.4 and integrate over the normalized variables to find
Z

f1dIdPZd✓ =
"0
2

ei(X+
z

Z�⌫⌧+↵) (E.6)

⇥
Z

dIdPZd✓
X

n,p

Jn (z) Jp (z)

⌫ � n � zPZ

✓

z
@F0

@PZ

+ n
@F0

@I

◆

ei(n�p)✓ + c.c..

(E.7)

We thus see after integrating with respect to the angle that
Z

f1dIdPZd✓ =
"0
2

ei(X+
z

Z�⌫⌧+↵) (E.8)

⇥ 2⇡

Z

dIdPZ

X

n

J2
n (z)

⌫ � n � zPZ

✓

z
@F0

@PZ

+ n
@F0

@I

◆

+ c.c.. (E.9)

We now convert to physical coordinates to recover the species dependence:
Z

f1(s)d
3v =

qn0�0

2ms

ei(k·x�!t+↵) (E.10)

⇥ 2⇡

Z

v?dv?dvz
X

n

J2
n

�

z(s)
�

! � n⌦s � kzvz

✓

kz

@f0(s)
@vz

+
n⌦s

v?

@f0(s)
@v?

◆

+ c.c.,

(E.11)

where z(s) = v?kx/⌦s, and f0(s) denotes the three-dimensional velocity distribution of

the species. Substituting into Eq. E.2 we eliminate �0 to find the dispersion relation

k2✏ (!,k) = 0, (E.12)

where we have

✏ (!,k) = 1 +
X

s

!2
ps

k2

X

s

2⇡

Z

v?dv?dvz
X

n

J2
n

�

z(s)
�

! � n⌦s � kzvz

✓

kz

@f0(s)
@vz

+
n⌦s

v?

@f0(s)
@v?

◆

,

(E.13)

with the species plasma frequency given by !2
ps = q2sn0/ms✏0.
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Appendix F

Fourth-order beating contribution

F.1 Unshielded term

In order to find the amplitude term "(p)b from Eq. 3.37, we derive explicitly here the

full form for K2 from the third line of Eq. B.7. To this end, we first evaluate L1H1

with the arguments given in the long term time limit by

H1 =
1

2

2
X

j=1

X

n

"jJn (zj) ei(j

⇢ sin ✓+
jz

Z�⌫
j

⌧+'
j

) + c.c.

w1 = � i

2

2
X

j=1

X

n

"j [1 � D (⌫j � n � jzPZ)] Jn (zj)
ei(j

⇢ sin ✓+
jz

Z�⌫
j

⌧+'
j

)

⌫j � n � jzPZ

+ c.c..

(F.1)

We have

L1H1 =
@w1

@✓

@H1

@I
� @w1

@I

@H1

@✓
+
@w1

@Z

@H1

@PZ

� @w1

@PZ

@H1

@Z
, (F.2)
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such that we find

L1H1 =
X

j=1,2
k=1,2

X

n,m

1

2
"j"kmJm (zj) J

0

n (zk)

⇥
⇥

cos
⇥

(m � n) ✓ + (jz � kz)X � (⌫j � ⌫k) ⌧ + 'j � 'k
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1 � Dm
j

⌫j � m � PZjz
+

1 � Dn
k

⌫k � n � PZkz

◆

+ cos
⇥

(m + n) ✓ + (jz + kz)X � (⌫j + ⌫k) ⌧ + 'j + 'k

⇤

⇥
✓

1 � Dm
j

⌫j � m � PZjz
� 1 � Dn

k

⌫k � n � PZkz

◆�

+
1

2
"j"kkzjz

Jm (zj) Jn (zk)

(m + PZjz � ⌫j)
2

⇥

1 � Dm
j

⇤

⇥
�

cos
⇥

(m � n) ✓ + (jz � kz)X � (⌫j � ⌫k) ⌧ + 'j � 'k

⇤

� cos
⇥

(m + n) ✓ + (jz + kz)X � (⌫j + ⌫k) ⌧ + 'j + 'k

⇤

) ,

(F.3)

where we have condensed

Dn
j = D (⌫j � n � jzPZ) . (F.4)

From this collection of terms and H2, we retain the potential BEW contributions to

our expression for K2 from Eq. B.7:

K2 = �
X

j=1,2
i=1,2

X

n,m

1

4
"j"k cos

⇥

(m � n) ✓ + (jz � kz)X � (⌫j � ⌫k) ⌧ + 'j � 'k

⇤

⇥


mJm (zj) J
0

n (zk)

✓

1 � Dm
j

⌫j � m � PZjz
+

1 � Dn
k

⌫k � n + PZkz

◆
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Jm (zj) Jn (zk)
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2

⇥

1 � Dm
j

⇤

#

+
X

p

"(p)nl cos (p✓ +�zZ � �⌫t +�') .

(F.5)

Now, through our power absorption analysis, we want to isolate and examine the

impact of the BEW driven mode with frequency at �⌫ = ⌫2 � ⌫1. This justifies our

use of the long-term limit approximation and further permits us to retain only the

178



BEW terms ( ⌫2 � ⌫1 = p) in our approximation for the transformed Hamiltonian:

K2 =
1

4

X

m,p

"1"2



m

✓

Jm (z1) J
0

p+m (z2)



1 � Dm
1
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✓
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1
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2
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2

◆
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#
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(F.6)

We thus find the unshielded contribution from the driven mode:

"(p)b =
"1"2
4

X

m



m
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Jm (z1) J
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1 � Dm+p
2
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2
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(F.7)

F.2 Shielded term

In order to evaluate the self-consistent contribution, "(p)nl , we employ the Poisson

equation

r2� =
1

✏0

X

s

qs

Z

fsd
3v, (F.8)

where s denotes the species. We consider that the second-order contribution to this

equation stems from the dielectric response of the plasma to the driven mode such

that we have

�2 =
�nl

2
ei(�k

z

z+�k
x

x��!t+�↵) + c.c., (F.9)

which we have expressed in physical coordinates. To second order then, we have

� (�k)2 �2 =
1

✏0

X

s

qs

Z

f2sd
3v, (F.10)
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where f2 has the same sinusoidal time dependence as �2. To evaluate the integral on

the RHS, we consider in normalized coordinates that

f2 = F2 � {w2, F0} +
1

2
{w1, {w1, F0}}, (F.11)

where in F2 and w2 we only retain the long-term time contributions

F2 =
1

2

X
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"(p)nl + "(p)b

⌘

Dp
�

✓

�z
@F0
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+ c.c..

(F.12)

Here "(p)b is given by Eq. F.7, and we can relate the components of the self-consistent

contribution to "nl by considering

"nle
i(�

z

Z+�X��⌫t+�↵) + c.c. = "nlJp (�z) ei(p✓+�
z

Z��⌫⌧+�') + c.c. (F.13)

such that

"(p)nl = "nlJp (�z) . (F.14)

Now, since the sum F2 � {w2, F0} eliminates the filter functions, we find

F2�{w2, F0} = (F.15)
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2
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In order to relate our normalized formulation to the physical coordinates, we

integrate with respect to action and phase to yield the result
Z

f2dPZdId✓ =

Z

dPZdId✓
X

p

ei(p✓+�
z
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+ c.c.,

(F.17)

where D(p) contains the polarization correction from 1
2{w1, {w1, F0}}. To evaluate

this term, we can use the periodicity with respect to ✓ as well as integration by parts
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with respect to PZ to write
Z

1

2
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Only retaining the beat terms at ⌫2 � ⌫1 = p yields the result
Z
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where we denote
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With this result in mind, we now recall from Appendix A that

'j = ↵j + j✓2

= ↵j + jX � zj sin ✓.
(F.21)

Substituting into Eq. F.17, we thus find
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Finally, we convert back to physical coordinates in order to recover the species de-

pendence of the density distribution function:
Z
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Here we have
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where n0 is the background density of the species, f0(s) is the three-dimensional

Maxwellian expressed in physical coordinates, and�z(s) = z2(s)�z1(s) = v? (k2x � k1x) /⌦s.

Similarly, we have for the beating contribution:
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(F.25)

where the derivatives are now with respect to v?.

In our formulation, we assume that �(p)
b(e) = D(p)

e = 0 since the driven mode at

the ion cyclotron frequency does not form a resonance with the electron cyclotron

frequency. This permits us to substitute a simplified form of Eq. F.23 back into

Eq. F.10 and solve for the nonlinear amplitude to find

�nl = � [✏ (�!,�k)]�1
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X
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2⇡

Z
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⇥
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#

,

(F.26)

where we have denoted the ion plasma frequency !2
pi = (q2n0) (✏0mi) and ✏ (�!,�k)

is the dielectric tensor derived in Appendix E. We see this result corresponds to Eq.

32 in Ref. [19]; however, unlike in this reference, we have explicitly evaluated through
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our formalism the polarization response, D(p)
i . Physically, �nl represents the dielectric

response to the beat wave, and it is well-defined since the beat wave is not a natural

mode of the plasma (✏ (�!,�k) 6= 0).
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Appendix G

LIF broadening e↵ects for BWX II

In order to arrive at Eq. 4.9, we have assumed that ⌫0, the frequency for excitation, is

fixed for an ion in the reference frame. However, there are a number of plasma-

based processes that can broaden this frequency. These fall into five categories:

natural broadening, Stark/pressure broadening, saturation broadening, instrument

broadening, and Zeeman broadening [100, 101, 102, 103, 104, 105, 106]. In each of

these cases, plasma or quantum mechanical e↵ects lead to a range of ⌫0 in the reference

frame that can excite the transition. For the most precise treatment, it therefore is

necessary to convolve the broadening mechanisms with the theoretical model for the

velocity response in order to arrive at the true LIF intensity profile.

When the spread in frequency anticipated from the theoretical model for velocity

response is large compared to the variation in ⌫0 generated by one of the afore-

mentioned broadening mechanisms, however, it is standard to simply neglect that

broadening process. For example, for an inductive plasma configuration similar to

ours and for the same metastable transition, Boivin et al. [107] demonstrated that

Stark broadening and natural broadening of ⌫0 are negligible when compared to the

spread in frequency produced by thermal e↵ects. Similarly, they observed that the

power saturation e↵ects, which arise from large power density in the laser beam, were
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small for their 10 mW diode laser. As our configuration employs a 7 mW laser with

a comparable beam width, we can conclude that power saturation e↵ects similarly

can be neglected for our experiment. The instrument broadening, which arises in

our situation from the spread in the laser frequency is also small for our narrowband

Littrow configuration diode laser. We thus are justified in following the precedent of

Refs. [107], [78], and [24] in ignoring most broadening e↵ects when performing LIF

measurements of the temperature broadened profile.

The case of Zeeman splitting, however, requires special consideration for moderate

magnetic field intensity. Zeeman splitting occurs in the presence of a magnetic field

when the interaction of the magnetic moment of the atom with the ambient field

breaks the degeneracy of the transition. This e↵ect was examined in significant detail

in Refs. [108, 109] where it was noted that for our J1 = 5/2 to J2 = 7/2 transition,

where J denotes the total angular momentum, the allowable Zeeman transitions fall

into two categories: ⇡ and � transitions. The former of these, ⇡, occur where the

magnetic quantum number M is conserved while the latter are characterized by a

change of unity: M2�M1 = ±1. The magnetic quantum number for the two quantum

states can assume the quantities M = �J, �J +1...J �1, J . As a consequence of this

constraint, we can see in contrast to the case with no magnetic field, Zeeman splitting

yields 18 allowable transitions between the metastable and excited states of Ar II.

The frequencies of the photons emitted by each of these transitions are given by

small deviations from ⌫0 [108, 109]:

�⌫ = �Bh�1 (g1M1 � g2M2) , (G.1)

where � is the Bohr magneton and gj is the Landé factor. It is important to note

that this e↵ect is linearly dependent on the magnetic field, B. On the other hand,

some transitions have greater probabilities than others, and the relative weight of

each transition w is independent of magnetic field. These weights were reported in

Ref. [107] along with the wavelength shifts produced by the Zeeman e↵ect at 1000
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kG. Since we know that �⌫ = ����2c and that the Zeeman e↵ect is linearly related

to magnetic field strength, we can scale down these the results of Ref. [107] to our

case of B = 525 G. The resulting changes in frequency and weights for the transitions

are shown graphically Fig. G.1 .

Figure G.1: This figure illustrates the Zeeman splitting around the rest frame fre-
quency of the targeted transition for B0 = 525 G. The two groups correspond to the
�M = 0 (⇡) and �M = ±1 (�) clusters.

The most distinguishing aspect of this plot is that while both categories of tran-

sitions are symmetric with respect to ⌫0, the � transitions have a wider o↵set and

are locally asymmetric. We also note that both types of transitions are polarized.

The ⇡ transitions are polarized in the direction parallel to the magnetic field while

the � transitions are circularly polarized. By a judicious use of a linearized laser

beam oriented along the magnetic field then, we are able to selectively target the ⇡

transitions. On the other hand, by injecting this polarized light through a quarter

wavelength, we can produce circularly polarized light that will target only one of the

� groups.

Once we have targeted a certain transition, we can determine the impact Zeeman

broadening has on temperature measurements. Given that the ions have some char-

acteristic thermal velocity distribution f0 (vx), the actual observed intensity profile is
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a convolution of the Zeeman lines:

I (⌫) = ↵c

n
X

i=1

wi (⌫0 +�⌫i) f0



c

⌫0
(⌫0 +�⌫ � ⌫)

�

, (G.2)

where ↵c is constant dependent on geometry and collection volume, I denotes the

intensity of light emitted, wi is the weight of each transition in the targeted group (⇡

or �), and the summation is over the number of lines in each group, n = 6. Implicit

in this expression is that (�⌫j + ⌫0) /⌫0 ⇡ 1.

While we can produce the most accurate estimate for the velocity distributions by

using Eq. G.2 to deconvolve an intensity profile, we can forgo this computationally

expensive step if the average Zeeman splitting is small compared to the characteristic

spread in frequency produced by the velocity distribution [109]. For a thermalized

ion distribution without Zeeman splitting, the standard deviation in frequency of the

intensity profile is given by

�⌫T
i

=

✓

2Ti⌫20
mic2

◆1/2

. (G.3)

By comparison, we can approximate the e↵ective Zeeman splitting of a given tran-

sition as normally distributed in frequency space with a standard deviation given

by

�⌫s =

 

Pn
i=1 wi

�

�⌫s � �⌫i
�2

Pn
i=1 wi

!1/2

, (G.4)

where s = �, ⇡ and

�⌫s =

Pn
i=1 wi�⌫i
Pn

i=1 wi

, (G.5)

denotes the average displacement due to the Zeeman e↵ect.

For our typical background temperatures of Ti = 0.25 eV with magnetic field

strength of B0 = 525 G we see that �⌫⇡/�⌫T i = 0.1, �⌫�/�⌫T i = 0.09. Since

the di↵erence in standard deviation for the two processes is �⌫s/�⌫T i < 0.1, we can

approximate the Zeeman e↵ect for our temperature measurements in a simplified way

[106]. In particular, we assume that the measured standard deviation of the intensity
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profile is given approximately by [109]:

�⌫obs ⇡ �⌫s +�⌫T
i

, (G.6)

such that the temperature is

Ti =
mic2

2⌫20
(�⌫obs � �⌫s)

2 . (G.7)

Calculating the temperature with the uncorrected form �⌫s ! 0 leads to errors in

the temperature < 10%. For our analysis then, we assume the measured intensity

profile yields the correct temperature and add the 10% Zeeman error in quadrature

with the statistically determined error from the fitting algorithm.

We can align the linear polarization of the laser beam to be parallel to the magnetic

in such a way to target the ⇡ cluster when we take measurements perpendicular to

the magnetic field. This is not possible for measuring the parallel ion temperature

since the beam polarization is transverse to the magnetic field. Left unchecked, this

linearly polarized light would excite both � transitions. We thus employ a quarter

wave plate to target only one of the clusters. The resulting impact of the Zeeman

splitting on the spread of the intensity profile is approximately the same as for the

perpendicular case. Since the � cluster is o↵-center, however, the measured intensity

profile is o↵set by the constant velocity

voff = c
�⌫�
⌫0

= 526 m/s. (G.8)

For our parallel temperature measurements, we correct the velocity values according

to this o↵set.

Finally, we note that all of the measurements of the dielectric response of the

plasma to the wave, f1 (vx), are performed in the direction perpendicular to the mag-

netic field such that only the ⇡ cluster is excited. Furthermore, since the velocity

response profiles have a similar spread to the thermal distribution (indeed, the two

are directly related), we assume that the error introduced by the broadening processes
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outlined above are small with Zeeman spreading as the dominant e↵ect. We then in-

corporate the Zeeman splitting as an intrinsic error �⌫⇡ in our measurements of fre-

quency ⌫. For discretized measurements ⌫1, ⌫2, ⌫3, ... with associated values I1, I2, I3...,

this error translates to uncertainty in the intensity measurements:

�Ip ⇡ �⌫⇡

�

�

�

�

Ip+1 � Ip
⌫p+1 � ⌫p

�

�

�

�

. (G.9)

This estimate allows us to weight points when performing fits of our model for the

dielectric response to data and provides a means to estimate the average variance of

the data. However, given that we found that fluctuations in the profile produced by

the ambient noise were much greater than this estimate, we typically assumed that

the points in the intensity distribution were equally weighted and used the average

variance in our �2 analysis to estimate uncertainty in the best-fit parameters.
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