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An analytical expression for the divergence angle of an energetic plasma exhaust plume
emerging from a solenoidal magnetic nozzle is derived in the context of the ideal magneto-
hydrodynamics detachment scenario. This detachment scenario assumes that the plasma
flow effectively stretches the magnetic field lines to infinity as the kinetic energy density
of the plasma exceeds the energy density stored within the magnetic field. A coordinate
transformation of the ideal magnetohydrodynamics equations for a cold plasma reveals an
expression for the divergence angle with respect to both the ratio of the incoming flow
energy density to the magnetic field energy density at the nozzle throat (β0) and the ratio
of the incoming plasma radius to the radius of the nozzle (r̄p0). The divergence angle is

found to significantly decrease for increasing values of β0 until the point where β0 ' 0.12r̄
1/2
p0 .

After this point, only marginal divergence angle increases are possible. A comparison of the
cold-plasma divergence angle expression with experimental evidence reveals that thermal
expansion effects are not negligible.

Nomenclature

β = ratio of plasma flow energy density to magnetic field energy density
β0 = β at nozzle entrance
B = magnetic field vector
B̄ = normalized magnetic field vector
κ̄0 = normalized magnetic field line curvature at the nozzle throat
dt = time step
dτ = dimensionless time step
µ0 = permeability of free space
η = nozzle efficiency
Φ = flux surface label
Φp = flux surface label corresponding to the plasma edge
R̄0 = radius of curvature of the magnetic field line at the nozzle throat
rc = radius of nozzle coils
rp0 = radius of plasma at nozzle entrance
ρ = plasma mass density
ρ0 = plasma mass density at nozzle entrance
ρ̄ = dimensionless plasma mass density
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θ = angle between solenoid axis and magnetic field vector
θp = θ along the plasma edge
θ∗p = initial θ along the plasma edge
θdiv = divergence angle of plume
τ = dimensionless time
u0 = plasma velocity at the nozzle throat
u = plasma velocity vector
ū = normalized plasma velocity vector
u⊥ = plasma velocity perpendicular to magnetic field line
ū⊥ = normalized plasma velocity perpendicular to magnetic field line
z̄ = dimensionless axial distance
r̄ = dimensionless radial distance
r̄p0 = radius of the plasma normalized by the coil radius

I. Introduction

Magnetic nozzles typically use a converging-diverging magnetic field to convert the thermal energy
of a plasma into directed kinetic energy while simultaneously preventing the energetic plasma from

impacting the physical walls. Recent advances in efficient plasma heating using radio frequency waves have
renewed interest in magnetic nozzles for plasma propulsion applications in space.1,2 Magnetic nozzles are a
desirable acceleration mechanism for thermal plasmas because they do not require the use of electrodes, which
frequently limit the performance and usable lifetime of electric thrusters. The feasibility of using solenoidal
magnetic fields as a mechanism to produce thrust has been questioned, however, due to the tendency of
plasma to remain tied to necessarily closed magnetic field lines.3 A physical mechanism is thus required to
detach the plasma from the spacecraft’s magnetic field with minimal plume divergence if thrust is to be
achieved in an efficient manner.

As a consequence of their unknown capacity for thrust generation, the focal point of recent magnetic nozzle
research has been the issue of plasma detachment.4−7 Initially, it was widely believed that resistive diffusion
of particles across magnetic field lines would be the predominant mechanism for detachment.4 However,
detachment through resistive diffusion provided a bleak outlook for magnetic nozzles for plasma propulsion
applications as the plume region is typically characterized by low resistivity. Alternatively, Hooper showed
that cross-field transport and detachment occur for a two-fluid plasma flowing through a static dipole field due
to ambipolar drift motion.5 Hooper’s analysis ultimately concluded that plasma detachment from magnetic
nozzles would be a very inefficient process as only a small fraction of the exhaust would be converted into
directed flow along the thrust axis. Building upon Hooper’s model, Schmit and Fisch demonstrated that the
detachment efficiency of a magnetic nozzle can be significantly increased if unique angular velocity profiles
can be induced within each species near the nozzle entrance.6 Recently, Arefiev and Breizman proposed
that, in the context of ideal MHD theory, plasma detachment may occur as the kinetic energy density of the
propulsive plasma exceeds the energy density stored within the magnetic field of the nozzle.7 They suggest
that beyond this point, the plasma stretches the magnetic field lines along with the flow in a process similar
to the solar wind (see figure 1).

Although a rigorous analytical proof of the “frozen-in” detachment scenario of Arefiev and Breizman has
yet to be formulated, computer simulations8−10 and experimental measurements11−12 have been employed
to verify the theory. In an extension of the original analytic model, Breizman et al. used a Lagrangian code
to show that the steady-state motion of the plasma plume is not tied to the vacuum magnetic field lines of
the nozzle.8 Furthermore, Winglee et al. managed to show the time-evolved stretching of the magnetic field
within the exhaust plume along the thrust axis using three-dimensional multifluid simulations.9 A similar
effect is also shown using both MHD and particle-in-cell (PIC) simulations by Ilin et al.10 Experimentally,
Deline et al. measured a noticeable deviation from vacuum-field-aligned flow at the point when the flow
energy density becomes comparable to the magnetic field energy density.11 However, measurements of the
field evolution in the same experiment could not coincide this result with magnetic field stretching.12

Assuming “frozen-in” detachment does occur, the question of the efficiency of the process arises. In that
context, the angle at which the plasma detaches from the spacecraft’s magnetic field heavily influences the

2
The 31st International Electric Propulsion Conference, University of Michigan, USA

September 20-24, 2009



efficiency of the thruster because flow divergence decreases the momentum exchange along the thrust axis.
Previous studies have focused on the ability of a plasma to detach from a magnetic nozzle and have not
addressed the dependence of the flow’s divergence angle on the initial flow conditions.7,8 Furthermore, these
studies employed a “paraxial approximation,” which assumes the radial component of the magnetic field
is much less than the axial component, thus limiting their accuracy within the exhaust plume where the
magnetic field components become comparable.

In this study we investigate the divergence of a non-paraxial propulsive plasma flow from a solenoidal
magnetic nozzle assuming the magnetic field evolution within the plume acts according to the“frozen-in”
detachment scenario (fig. 1). In particular, we seek an expression that gives the flow’s divergence angle as
a function of the initial flow conditions at the nozzle’s throat.

For that goal, we start with a coordinate transformation that recasts the magnetic induction equation in
terms of the magnetic field strength and orientation with respect to the nozzle axis. Using scaling relations
based on the ideal MHD equations, we solve a differential equation describing the time-evolution of the
field orientation in the far-field exhaust plume. The limit of this solution as time goes to infinity yields the
divergence angle of the plume as a function of the initial plasma radius and the ratio of the plasma kinetic
energy to magnetic field energy density at the nozzle throat. Finally, we discuss the physical implications of
the divergence angle expression and compare its results to previous computational and experimental findings.

Solenoid

Vacuum Field Lines

Plasma

θ
div

Thrust Direction

Nozzle Throat Plasma Field Lines

Plasma

Plasma Source

Figure 1. Illustration describing the “frozen-in” detachment scenario in which an energetic plasma effectively
drags the magnetic field lines of a magnetic nozzle to infinity. The vacuum field lines are shown as dotted
lines and those in the presence of the plasma flow are shown as solid lines. The half-angle at which the plume
detaches, is denoted as θdiv.

II. Problem Description

The evolution of both the velocity and magnetic field within a magnetic nozzle plume is highly complex
due to many factors. Induced currents affect the magnetic field structure of the plasma, which in turn affects
the dynamics of the plasma and the current distribution itself. Resistivity of the plasma leads to diffusion
of the magnetic field across the vacuum-plasma interface, thus further complicating the already rich set of
time-evolving boundary conditions. Furthermore, a competition exists between the adiabatic expansion of
the plasma and the expansion due to the magnetic field. In order to simplify the problem and isolate the
physics of magnetic field evolution, we start off by assuming the plume may be described as an infinitely
conducting, cold plasma. Thus, the problem may be cast in the context of ideal MHD theory.
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A. Ideal Magnetohydrodynamics

The time-dependent ideal MHD equations for a cold plasma may be written as:13

ρ
∂u

∂t
+ ρ (u ·∇) ~u = − 1

µ0
B × (∇×B) , (1)

∂ρ

∂t
+ ∇ · (ρu) = 0, (2)

∂B

∂t
= ∇× (u×B) , (3)

∇ ·B = 0. (4)

Here, ρ is the mass density and u is the bulk velocity of the plasma. B is the magnetic field due to both
external currents and induced currents within the plasma. Under this set of equations, the “frozen-in”
condition is strictly maintained.

It should be noted that the above equations are mainly valid for plasmas of high enough collisionality to
maintain Maxwellian velocity distributions but low enough to approximate an infinitely conductive medium.
Typically, the collision time-scale within the plume is longer than that needed to produce Maxwellian particle
distributions. Therefore, although a fairly accurate portrayal of the field evolution may be obtained from
Eqs. (1-4), the flow parameters may depart significantly from reality.

B. Non-Dimensionalization

Physical insight may be gained by non-dimensionalizing Eqs. (1-4) with respect to conditions present at
the throat of the nozzle. Letting the subscript zero denote conditions at the throat, we define the following
non-dimensional parameters: ρ̄ = ρ/ρ0, ū = u/u0, B̄ = B/B0, ∇̄ = L∇, τ = t/L/u0. Here, L is the scale
length of the plasma. Eq. (1) thus becomes

ρ̄
∂ū

∂τ
+ ρ̄

(
ū · ∇̄

)
ū = − 1

β0
B̄ ×

(
∇̄× B̄

)
, (5)

where

β0 =
ρ0u

2
0

B2
0/µ0

(6)

is the ratio of the kinetic energy density of the plasma flow to the energy density of the magnetic field at
the nozzle throat.

It is evident from Eq. (5) that as β0 increases, the plasma flow is less influenced by the presence of the
magnetic field. Rather, the magnetic field is more influenced by the energetic plasma flow. Furthermore,
plasma entering the throat further from the nozzle axis will experience large field gradients, therefore it may
be expected that the divergence angle of the plume will depend on β0 and the ratio of the plasma radius to
the magnetic coil radius at the throat, which we will refer to as r̄p0.

C. Coordinate and Variable Transformations

We begin by describing the magnetic field in terms of its strength, B, and orientation, θ, with respect to the
nozzle axis. Furthermore, because the magnetic field is axisymmetric, it is more convenient to describe it in
terms of a flux function Φ(r, z, t).7 Transforming each component yields

Br = B sin θ = −1
r

(
∂Φ
∂z

)
r

, (7)

Bz = B cos θ =
1
r

(
∂Φ
∂r

)
z

. (8)

Here, the subscript indicates which variable is held constant.
As a result, partial derivatives with respect to cylindrical coordinates must also be transformed. For a

given parameter α, these transformations take the following form:
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(
∂α

∂r

)
z

=
(
∂α

∂Φ

)
z

(
∂Φ
∂r

)
z

= rB cos θ
(
∂α

∂Φ

)
z

(9)

(
∂α

∂z

)
r

=
(
∂α

∂z

)
Φ

+
(
∂α

∂Φ

)
z

(
∂Φ
∂z

)
r

=
(
∂α

∂z

)
Φ

− rB sin θ
(
∂α

∂Φ

)
z

. (10)

If the velocity is expressed in terms of its component along the magnetic field line (u‖) and that perpendicular
to the magnetic field line (u⊥), we may rewrite Eq.(3) in the following form:

B
∂θ

∂t
= − cos θ

(
∂u⊥B

∂z

)
Φ

− u⊥B sin θ
r

, (11)

∂B

∂t
= − sin θ

(
∂u⊥B

∂z

)
Φ

+ rB

(
∂u⊥B

∂Φ

)
z

+
u⊥B

r
cos θ. (12)

Eqs. (11) and (12) represent the time evolution of the magnetic field orientation and strength within the
plasma due to flow perpendicular to the magnetic field lines. In other words, the “frozen-in” condition of
ideal MHD dictates that elements of the plasma remain tied to lines of constant magnetic flux. If a plasma
element has a velocity component perpendicular to this line, the line gets dragged along with the flow;
impeding the motion of the plasma in return.

III. Divergence Angle Scaling

The angle at which the exhaust plume emerges from a magnetic nozzle will largely determine the efficiency
of the nozzle for propulsion applications. Defining the nozzle efficiency, η, as the ratio of the axial momentum
flux emerging from the nozzle to that at the throat, it may be shown that this efficiency scales for small
divergence angles as7

η ∼ 1− θ2
div/4, (13)

where θdiv is the half angle at which the plume escapes the nozzle.
The divergence angle may be found by solving Eqs.(1-2) and (11-12) self-consistently, however, the

complexity of these equations along with their time-dependent boundary conditions does not easily lend
itself to a solution. Furthermore, any attempt at solving the steady-state form of these equations requires
an assumption as to the boundary conditions, and thus the divergence angle itself. Rather, we assume that
when steady state is reached, the plume would have reached far enough distance from the throat that the
thruster can be considered a point source of plasma, and therefore the form of the plume would ultimately
approximate that of a field-aligned, conical plasma flow with a half-angle given by θdiv. We then use a scaling
relation for u⊥ obtained from Eq.(1) to solve Eq.(11) for the parameters β0 and r̄p0 necessary to arrive at
θdiv in the limit as t→∞ and z →∞. The divergence angle is given by

θdiv = lim
t,z→∞

θ(z,Φp, t), (14)

with Φp describing the flux line corresponding to the radius of the plasma at the nozzle throat.

A. Non-Dimensional Induction Equation

First, we cast Eq.(11) in non-dimensional form by normalizing each parameter according to section IIB. We
will assume the nozzle’s vacuum field can be approximated by the magnetic field of a single current loop,
and use the radius of the loop, rc, as the scale length. Eq.(11) may then be written as

∂θ

∂τ
= − cos θ

(
∂ū

∂z̄

)
Φ

− ū cos θ
(
∂ ln B̄
∂z̄

)
Φ

− ū

r̄
sin θ. (15)

Here, z̄ = z/rc and r̄ = r/rc are the normalized axial and radial coordinates, respectively.
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B. Perpendicular Velocity Scaling

A scaling relation for the velocity component perpendicular to the magnetic field lines may be obtained from
the momentum equation. Using Eq.(1), we see that the perpendicular velocity scales as

ρ
du⊥
dt
∼ − 1

µ0

BδB

l
. (16)

where δB is the change in magnetic field over the characteristic length l due to the plasma flow. This change
scales according to Eq.(3), or

δB

t
∼ u⊥B

l
. (17)

Substitution of Eq.(17) into Eq.(16) and integration yields the following scaling relation for u⊥

u⊥ ∼ exp
(
−B2/µ0

2ρ
t2

l2

)
. (18)

Using these relations and the requirement that u⊥ vanish on axis (θ = 0), we assume the following form for
the non-dimensional perpendicular velocity in terms of normalized variables

ū⊥ = sin θ exp
(
−u

2τ2

2βl̄2

)
H(τ − z̄), (19)

with l̄ = l/rc and β = ρu2/(B2/µ0). The Heaviside step function, H(τ − z̄), appears because the plasma
propagates at a finite speed. We assume the plasma front is at the nozzle throat at τ = 0 and the prorogation
speed is nearly constant (uz ∼ u0, or ū ∼ 1). This assumption seems to be justified by Mach probe
measurements presented in Ref.[11].

C. Quasi-One-Dimensional Formulation

The evolution of the magnetic field orientation at each point in the flow is described by Eq.(15). Because
we are interested in the ultimate divergence angle of the outermost flux surface, we are able to express the
right hand side of this equation in a quasi-one-dimensional form dependent only on τ and z̄ for a given Φp.

First, we realize that the scale length over which the magnetic field changes for a plasma element within
the plume will mostly depend on the radial position of the element at the throat. For the plasma edge, we may
write this scale length as l̄ = 1/κ̄0(r̄p0), where κ̄p0 is the dimensionless flux line curvature at the normalized
radius of the plasma . In other words, plasma injected into the nozzle throat at a larger percentage of the
coil radius will see a flux line of larger curvature than plasma injected closer to the axis. As a result, the
magnetic field will vary over a smaller scale length for plasma elements further from the nozzle centerline.

Additionally, β will vary within the plume due to gradients in the plasma density and magnetic field
strength. Modeling the plume as a conical plasma with a half-angle given by θdiv,7 it is possible to show that
the axial variation of β along Φp far from the nozzle throat can be approximated by the following expression:

β(z̄) = β0
z̄2

r̄2
p0

tan2 θdiv sec4 θdiv. (20)

Assuming the magnitude of the plasma velocity does not change significantly in the plume (υ ∼ 1), Eq.(19)
may be rewritten as

ū⊥ = sin θ exp
(
−Γ2τ2

z̄2

)
H(τ − z̄), (21)

where

Γ =
κ̄p0r̄p0 cos2 θdiv√

2β0 tan θdiv
(22)

is a function only of β0, r̄p0, and θdiv.
With the first term on the right hand side of Eq.(15) known, we now turn our attention to the second and

third terms. Apparently, the derivative of the natural logarithm of the magnetic field strength will always
be inversely proportional to axial distance. The constant of proportionality will depend on the flux surface
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on which this derivative is taken and the form of the magnetic field. For example, on the nozzle axis, this
term scales as −3/z̄ and −2/z̄ for a dipole field and conical field, respectively. Off axis, the constant of
proportionality will decrease. We may then assume the following(

∂ ln B̄
∂z̄

)
Φ

∼ a1(τ,Φp)
z̄

, (23)

Here, a1 is a number that will typically lie within the range {−3,−2} because the magnetic field is assumed
to transition from that of a single current loop to a conical structure.

Similarly, the third term on the right hand side of Eq.(15) is approximately inversely proportional to
axial distance. Taking advantage of the conical plasma assumption, the radial distance along the outermost
flux surface far from the nozzle goes as r̄ ∼ z̄ tan θdiv. This term may then be expressed as

ū⊥
r̄

sin θ ∼ ū⊥
z̄

sin θ
tan θdiv

∼ ū⊥
z̄

cos θ
tan θ

tan θdiv
∼ a2(τ,Φp, z̄)

ū⊥
z̄

cos θ, (24)

where the solution eventually shows that a2 most commonly falls within the range {1, 4} for θdiv ≤ 90o.

D. Curvature Expression

It is not possible to find an explicit expression for the flux function describing the magnetic field of a single
current loop because the field components are non-integrable. However, the geometry of the field near the
nozzle throat allows the normalized radius of curvature to be estimated from

R̄0 = lim
z̄→0

z̄
[
1 + (Br/Bz)−2

]1/2

. (25)

Substitution ofBr andBz for a single current loop yields the following expression for the normalized curvature
(κ̄p0 = 1/R̄0) of the flux line corresponding to the plasma radius at the nozzle throat:

κ̄p0 =
r̄p0

1− r̄p0
. (26)

As expected, the curvature is zero along the nozzle axis (r̄ = 0) and infinite towards the nozzle radius (r̄ = 1).

E. θ-Evolution

Substitution of Eqs.(21), (23), and (24) into Eq.(15) yields the following expression for the evolution of the
magnetic field orientation along the plasma edge (θp = θ(z,Φp, t)):

∂θp

∂τ
= −

(
2Γ2τ2

z̄3
+
a3

z̄

)
ū⊥ cos θp, (27)

where a3 = a1 +a2. In essence, Eq.(27) describes how the vacuum magnetic field far from a magnetic nozzle
changes from its initial orientation due to the arrival of a propagating plasma front of conical shape.

Direct integration of Eq.(27) is possible if we treat a3 as a constant equivalent to its average over time
(ā3 ≈

∫∞
0
a3dτ). Using this simplification, the orientation of the magnetic field of the outer flux line with

respect to time may be approximated by

tan θp

tan θ∗p
= exp

{
−e−Γ2

+
τ

z̄
e−

Γ2τ2

z̄2 − (1 + ā3)
√
π

2Γ

[
erf
(

Γτ2

z̄2

)
− erf (Γ)

]}
, (28)

where θ∗p is a constant resulting from the integration and represents the orientation of the magnetic field as
the plasma arrives at z̄. Finally, taking the limit of Eq.(26) as τ →∞ yields

tan θdiv

tan θ∗p
= exp

{
−e−Γ2

− (1 + ā3)
√
π

2Γ
[1− erf (Γ)]

}
. (29)

The above expression is a transcendental equation for θdiv and depends on the dimensionless variables β0

and r̄p0. Thus, if reasonable estimates for θ∗p and ā3 are known, the divergence angle may be found for a
given β0 and r̄p0.
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F. Geometric Argument: θ∗p Estimation

Expressions for θ∗p and ā3 are not immediately obvious from the formulation of the problem. θ∗p will depend
on the initial vacuum magnetic field, however, its value will also be influenced by currents within the plasma
before the plasma front arrives. A careful study of the boundary conditions at the plasma front may yield a
reasonable expression for θ∗p, however, we instead use a geometric argument to estimate its value based on
the initial plasma radius.

Φ(rpo , 0) 

lim Φ(rpo , t)
t � ∞

R(rpo )
θp

*

rpo

θdiv

Current Loop

z=0

u

Figure 2. Diagram describing the definition of the initial magnetic field orientation at the plume edge, θ∗p.
Also shown is the geometry of the estimated flux line used to express θ∗p in terms of r̄p0.

To simplify the problem, we treat the initial magnetic field orientation (θ∗p) at the plume edge as a
parameter dependent only upon the initial plasma radius and the initial magnetic field. This angle can be
estimated as the angle made between the nozzle axis and a line connecting the origin to the tangent of the
flux line corresponding to the plasma edge at τ = 0 (fig. 2). Because an expression does not exist for the
flux line of a single current loop magnetic field, we instead assume the flux line approximates a circle with
radius given by the radius of curvature found in Section IIID. Solving for θ∗p yields

tan θ∗p =
r̄p0

1− r̄p0

√
r̄2
p0 − 2r̄p0 + 2. (30)

Therefore, as the plasma radius at the throat increases, the amount of work needed to arrive at a given angle
of divergence also increases.

G. Divergence Angle Scaling

For the sake of simplicity, we also assume that the physical phenomena described by the last two terms in
Eq.(15) cancel out on average (ā3 = 0). As it turns out, the solution of Eq.(30) does not depend strongly
on the value of ā3, and only deviates by about 20% within the range {−1, 6}. However, for ā3 < −1, the
solution does not converge to a physically meaningful result. Further investigation is required to determine
the significance of the two regimes.

We now have all of the information needed to solve Eq.(30) numerically for θdiv. Plots of this solution
for different values of β0 and r̄p0 may be seen in figure 3. It is clear from figure 3 that the divergence angle
decreases both as β0 increases and as r̄p0 decreases. Therefore, as expected, compact and energetic plasmas
are most desirable for propulsion applications. Furthermore, it is evident that the divergence angle will
depend more heavily upon r̄p0 than β0. This is because r̄p0 determines the field gradients experienced by
the plasma, the way β evolves within the plume, and the amount of work needed to bring the magnetic field
orientation to its final value.
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Also shown in figure 3 is a dashed line corresponding to an approximate shift from a region where the
divergence angle varies strongly with β0 to a region where it varies weakly with β0. This line was qualitatively
fitted to the graph and is characterized by the value

β∗0 ' 0.12r̄1/2
p0 (31)

Figure 3 then suggests that large improvements in the nozzle efficiency can be seen as β0 increases towards
β∗0 . For β0 > β∗0 , only minimal improvements are realized.

rp0 = 0.9

0.7

0.6

0.8

0.6

0.5

0.4

0.3

0.2
0.1

Figure 3. Divergence angle as a function of β0 for different values of r̄p0 as obtained from Eq.(30). The dashed
line qualitatively indicates a transition region between large divergence angle improvements and marginal
improvements for increasing β0.

IV. Discussion

A. Numerical Comparison: Divergence Angle

Numerical simulations presented by Breizman et al.8 may be used to examine the validity of Eq.(30). In
these simulations, the authors numerically solved for the steady-state solution of a cold uniform plasma
expanding through the fringe field of a semi-infinite solenoid. Results for two different inlet conditions were
presented: (r̄p0 = 0.60, β0 = 0.56) and (r̄p0 = 0.40, β0 = 0.56). The first case resulted in a divergence angle
of approximately 45o with Eq.(30) predicting a divergence angle of 35o, while the second case gave approxi-
mately 30o with Eq.(30) predicting 17o. This quantitative discrepancy is most likely due to a combination
of the simplifying assumptions related to ā3 and θ∗p.

Additionally, the paraxial magnetic field approximation used by the authors in Ref.[8] breaks down in the
plume where Br ≈ Bz for θ ≈ 45o. This inconsistency could also explain the error between their numerical
results and our analytical results, which do not employ the paraxial approximation. Further investigation is
required to determine the exact source of this error.
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B. Experimental Comparison: Divergence Angle

Unfortunately, experimental validation of the above scaling relation for the divergence angle is limited due to
a lack of applicable data presented in the literature thus far. However, data acquired from the Detachment
Demonstration Experiment (DDEX)13 in 2007 at NASA Marshall allows a comparison between Eq.(30) and
experimentation.

The plasma flow presented in ref.[13] is characterized by the following non-dimensional parameters at
the nozzle throat: r̄p0 ≈ 0.04, β0 ≈ 0.07. Measurements of the radial density profile along the nozzle axis
indicate a divergence angle of θdiv ≈ 15o. However, the divergence angle predicted by Eq.(3) for this flow is
approximately 1o: a value significantly lower than that measured in the experiment.

The discrepancy between the measured and predicted divergence angle can most likely be explained by
the thermal expansion of the plasma, which is not taken into account when deriving Eq.(30). The data
in ref.[13] indicates the thermal energy density is nearly one-third the kinetic energy density at the nozzle
throat. It may then be expected that adiabatic expansion of the plasma increases the divergence angle
beyond predicted values. Additionally, the assumption that ā3 = 0 decreases the expected divergence angle
for a given β0 and r̄p0. However, it was found that changing the value of ā3 does not significantly alter the
predicted divergence angle. More experimental comparisons are required to determine the specific cause of
the discrepancy between experimental and predicted divergence angles.

V. Conclusion

An expression is found for the divergence angle of a propulsive plasma flow emerging from a magnetic
nozzle. As expected, the divergence angle decreases as the injected plasma becomes more compact and
energetic with respect to the magnetic field of the nozzle. The results suggest a transition region exists
where increasing the kinetic energy density at the nozzle throat only marginally improves the nozzle effi-
ciency. However, further studies are required to validate the divergence angle expression with numerical and
experimental results.
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