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An analytical model is derived to study the two-dimensional character of axisymmetric,
collisionless plasma flow along a guiding magnetic field. This is accomplished using a trans-
formation from cylindrical to magnetic coordinates, which enables the separate treatment
of the flow-averaged plasma parameters from their spatial non-uniformities. The result
gives analytical solutions for the spatial variation of the potential, plasma density, and ion
Mach number. Application of the model to the problem of supersonic plasma expansion
from a magnetic nozzle shows good agreement with both numerical simulations and exper-
imental measurements. Notably, the development of a downstream radial electric field to
preserve quasi-neutrality is the main factor that drives non-uniformities within the plasma.
This result is used to explain experimentally observed focusing of the plasma exhaust with
respect to the applied magnetic field. Finally, the competition in the expansion process,
between the conversion of thermal energy into kinetic energy and the loss to plume di-
vergence of the kinetic energy useful for propulsion yields an expression for the maximum
thrust coefficient of a magnetic nozzle in terms of the parameters of the plasma source.

I. Introduction

The application of simplified analytical models to describe plasma flowing through a cylindrically symmet-
ric magnetic nozzle has been used to develop an understanding of ion acceleration and momentum transfer
in such flows. The inclusion of two-dimensional effects to study spatial non-uniformities in the flow, how-
ever, has not been rigorously attempted. This is despite numerical and experimental evidence indicating the
importance of spatial non-uniformities on phenomena such as exhaust focusing, plasma current generation,
and quasi-neutrality. In addition to its fundamental value, a two-dimensional analytical model could aid
plasma detachment investigations and improve fully analytical thrust and efficiency models.

In its idealized limit, plasma flow through a magnetic nozzle exhibits many similarities to gas flow through
a conventional de Laval nozzle. The dominant physical process is the conversion of thermal energy into kinetic
energy. The exhaust velocity of the plasma ions scales as the square of the ratio of the plasma temperature to
the ion mass. A sonic conditions exists at the nozzle “throat,” or point of minimal cross-sectional flow area,
where the ion velocity is equal to the local ion-acoustic velocity. Furthermore, the force balance between the
thermally expanding plasma and applied magnetic field induces azimuthal currents that transfer momentum
to the source of the applied field: a phenomenon which parallels the transfer of momentum by the pressure
distribution to the solid walls of a de Laval nozzle.

Given these similarities, it is no surprise that the quasi one-dimensional compressible flow equations,
classic to conventional rocket nozzle design,1 have been oftentimes found appropriate to describe the general
behavior of plasma flow in magnetic nozzles. The ability of this simple analytical framework to describe
the sub-to-super sonic transition was first shown experimentally in the pioneering work by Andersen.2 Soon
after, Kuriki and Okada demonstrated, based on experimental data, that both ion and electron thermal
energy convert preferentially into ion kinetic energy, with the latter conversion due to the development of
ambipolar electric fields.3

Additional success has been found with self-similar models. These models solve the fluid equations with
the assumption that the shape of the radial density profile remains constant throughout the flow. As such,
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they retain two-dimensional effects in an approximate, contrived way. Recently, Takahasi et al. found good
agreement between the experimentally measured thrust of an RF generated plasma expanding through a
magnetic nozzle and the thrust predicted from a self-similar model.4 Their model was later simplified by
Fruchtman et al. using the paraxial approximation,5 which assumes a small magnetic field divergence.

Although quasi one-dimensional and self-similar analytical models have been useful in explaining some
of the global expansion properties of magnetic nozzle plasmas, they are limited by their inability to self-
consistently capture two-dimensional effects. The nature of magnetic nozzle plasma expansion has been
observed both experimentally and with numerical models to exhibit significant spatial non-uniformities.
Kuriki and Okada found the plasma potential profile to vary greatly over two-dimensions.3 Independent
experiments by Winglee et al,6 Deline et al,7 and Takahashi et al,8 all observed radial focusing of the
plasma density profile with respect to the diverging magnetic field. Numerically solving the two-fluid plasma
equations, Ahedo and Merino show a similar focusing resulting from the development of a radial electric field
within the downstream plume.9 Furthermore, they find a strong spatial dependence in the azimuthal current
density, electron gyro radius, and Debye length; all important parameters in regards to plasma detachment
from the applied magnetic field.10–12

I.A. Motivation and Scope

The two-dimensional character of plasma expansion through the divergent portion of a magnetic nozzle was
studied in great depth by Ahedo and Merino using numerical simulations.9 As such, the purpose of this
paper is not to repeat their analysis, but to develop from it a novel analytical framework capable of yielding
closed-form solutions to describe the spatial dependence of the plasma flow. We will apply this framework
to elucidate two phenomena relevant to the application of magnetic nozzle plasmas for space propulsion: (1)
radial focusing of the plasma relative to the applied magnetic field and (2) generation of thrust.

Throughout the course of the paper we hope to answer a few fundamental questions, the first of which is
concerned with the ability to formulate a tractable analytical solution for both the radial and axial variation
of the relevant plasma parameters. Specifically, is it possible to separate the quasi one-dimensional “mean”
behavior of the plasma from its more spatially-dependent “radial” behavior? To this end, we derive from the
collisionless two-fluid plasma equations a two-dimensional separable model capable of yielding closed form
analytical solutions for the spatially-dependent plasma density, potential, and ion Mach number.

The idea behind this separable model stemmed from the realization by Ahedo and Merino that the
numerical solution to their two-dimensional fluid model, on average, approximated that of the simplified
quasi one-dimensional model.9 As such, we use the results from their numerical model to validate and
extend our analytical model.

The application of our model to describe experimentally-observed focusing of the plasma emerging from
a magnetic nozzle will also be presented. We aim to answer the following question: are experimental plasma
density measurements consistent with the focusing effect predicted to result from the development of a strong
downstream radial electric field?

Flow reversal of plasma attached to the divergence-less applied magnetic field is a purely two-dimensional
effect with strong implications for propulsion performance. Our analytical model allows describing the flow of
plasma back towards the plasma source. The natural questions thus arise: to what extent do two-dimensional
effects alter the predicted thrust as compared to quasi one-dimensional models? and, assuming one has a priori
knowledge of plasma detachment, does an optimal detachment location exist at which thrust is maximized?

After presenting and describing the model in the following section, and demonstrating in Section III how
it can be used to obtain closed-form analytical expressions for the spatial variation of the potential, density,
and Mach number in the downstream region of a magnetic nozzle plasma, we provide in, Section IV, answers
to the questions stated above and conclude with a brief review of the main points of the paper and discuss
future applications of the theory, including magnetic nozzle design and plasma detachment analysis.

II. Two-Dimensional Separable Fluid Model

In this section we derive a two-dimensional analytical model for the plasma density, ion Mach number,
and electric potential of a collisionless, magnetized plasma flow. The model is focused on describing plasma
flow in a magnetic nozzle, but could be extended to any plasma flow along a guide magnetic field that
possesses cylindrical symmetry.
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II.A. Assumptions and Limitations

We start with a brief discussion of the assumptions and limitations of the model. As stated previously,
one goal of this paper is to provide a concise, analytical description of the two-dimensional properties of
supersonic, magnetized plasma flow through a magnetic nozzle. To that end, we are compelled to sacrifice
physical complexity in lieu of analytical tractability. In the following discussion and throughout the text,
however, we will highlight the discarded phenomena and justify its dereliction.

We begin by restricting our analysis to a fully ionized plasma consisting of isothermal electrons and cold
ions. This naturally limits the explicit application of the model to highly-ionized plasmas for which the
electron temperature is much greater than the ion temperature such as Helicon13 and ECR plasmas.14 As
such, propulsions concepts that rely on the energization of ions15,16 are beyond the scope of this model.

Additionally, we make the assumption that the plasma remains collisionless throughout the flow. The
influence of collisions on the dynamics of the plasma can be neglected if the characteristic length scale for
cross-field diffusion due to Coulomb collisions is much greater than the length scale of the plasma. We
showed in a previous paper17 that this requirement is met in all but the most dense, weakly magnetized
magnetic nozzle plasmas.

We should also note that the theory presented here concerns what we regard as the “ideal” flow of
plasma along an applied magnetic field. This definition applies to cases where the plasma dynamics can
be well-approximated by the conventional compressible flow equations with a single, isothermal electron
temperature population. Deviations from this idealization are common and can occur in the form of double
layers or quasi-neutral steepening regions.18,19 The origin of these structures in laboratory plasmas is still
under debate, but it seems that their appearance is marked by decreased propulsion performance.4,19

The model also employs the common assumptions of quasi neutrality and negligible induced magnetic
fields. Quasi neutrality holds as long as the Debye length is much less than the characteristic dimension of
the plasma. The induced magnetic field may be safely ignored if the energy density of the magnetic field
remains lower than the thermal energy density of the plasma (i.e β < 1). Both of these requirements are
met in a typical laboratory plasma source. In the far downstream region, on the other hand, it is possible
that both non-neutral and induced field effects may become dominant, and have been hypothesized to play
a pivotal role in plasma detachment.11,12,20

The inclusion of plasma detachment in self-consistent theoretical models has proven to be a formidable
task. As such, separation of the plasma from the applied magnetic field is beyond the scope of this paper.
We will consider this limitation in more detail in Section IV.

II.B. Governing Equations

In light of the above assumptions, the problem is uniquely described by the momentum and continuity
equations for the ion and electrons. These eight equations may be cast in the following dimensionless form:

∇
(

1

2
u2i + φ

)
= ui ×

(
B

ρi
+∇× ui

)
, (1)

∇
(
me

2mi
u2e − φ+ lnn

)
= ue ×

(
B

ρe
+∇× meue

mi

)
, (2)

∇ · (nui) = 0, (3)

∇ · (nue) = 0. (4)

Here, we have normalized the ion and electron velocities by the ion acoustic velocity, cs = (kbTe/mi)
1/2

,
which is constant throughout the plume for the case of isothermal electrons. The electric potential, Φ,
is normalized by the electron temperature, Te, such that φ = eΦ/kTe. Furthermore, ρj = mjcs/eB0L,
represents an effective normalized Larmor radius of species j, B0 the maximum magnetic field, and L the
characteristic length scale of the plasma.
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II.C. Simplifying Approximations

Using some approximations, we will now reduce Eqs. (1)-(4) to a system of three equations for three un-
knowns: the ion Mach number, M = |ui − ui · eθ|; the plasma density, n; and the plasma potential, φ.

First, we assume the electron mass to be negligible and consider the component of Eq. (2) along the
magnetic field unit vector, b, from which we recover the Boltzmann distribution for the electric potential in
terms of the plasma density

b · ∇ (φ− lnn) = 0. (5)

It has been shown under the assumptions outlined in Section II.A that the terms on the right hand side
of Eq. (1) do not greatly influence the ion dynamics, even for very small values of ρi.

9 Thus, we are free to
consider the limit of unmagnetized ions, ρi >> 1, from which Eq. (1) ultimately yields,

s · ∇
(
M2 + 2φ

)
= 0. (6)

Here, s is the unit vector of the projection of the ion velocity in the r−z plane, ui−ui ·eθ. This relationship
emphasizes the reliance of the ion motion on the ambipolar electric field as opposed to the magnetic field,
which is a valid approximation even for plasmas with magnetized ions. We will eventually expand upon this
simplification and include a correction for the magnetic force on the ions.

The final equation comes from integrating Eq. (3) over a control volume, V , bounded by a control surface,
S, and applying the divergence theorem, ∫

S

nM (s · dA) = 0. (7)

Eqs. (5)-(7) represent an underdetermined system of three equations for four unknowns: M , n, φ, s.
The only physics eliminated from the governing equations, Eqs. (1)-(4), are electron inertial forces and the
magnetic force on ions. We find that it is not necessary to explicitly include the electron force balance
perpendicular to the magnetic field as it would introduce the electron azimuthal velocity, uθe, as another
unknown. However, this does not imply we are ignoring the magnetic force on electrons. Rather, this force
balance may ultimately be used to determine uθe and the azimuthal electron current density, jθe.

Numerical results from Ahedo and Merino indicate that, even for plasmas where the ion streamlines
deviate significantly from their initial magnetic field line, the angle between the two unit vectors remains
less than five degrees even far downstream into the plume.9 Thus, we may close the system of equations by
making the additional assumption that the projection of the ion velocity unit vector in the r − z plane, s,
is approximately parallel to the magnetic field unit vector, b. We refer to this assumption as approximately
field-aligned flow.

A subtle yet important distinction must be made at this point between approximately, s ≈ b, and strictly,
s = b, field-aligned plasma flow. In the approximate case, the motion of a given electron is confined to a
single magnetic flux surface because of the small electron mass. Ions, however, are able to drift across
magnetic flux surfaces as long as quasi neutrality is maintained. Strictly field-aligned plasma flow, on the
other hand, is representative of flow in which both ions and electrons are tied to their initial magnetic flux
surface. In other words, neither the ions nor electrons are capable of drifting across the magnetic field.

Strictly field-aligned flow inherently assumes highly magnetized ions whose radial expansion is governed
primarily by the magnetic force as opposed to ambipolar electric fields. As such, large spatial non-uniformities
should not be expected. In fact, the problem becomes drastically simplified because we may rewrite Eq. (7)
as b · ∇ (nM/B) = 0, from which the appropriate boundary conditions yield algebraic equations for n, M ,
and φ. Self-similar models,4,5, 7 or those for which the radial density profile is said to scale with the magnetic
field, rely on this assumption.

II.D. Coordinate Transformation

With the aim of further simplifying Eqs. (5)-(7), we will now employ a transformation from cylindrical to
magnetic coordinates.

The zero divergence property of the magnetic field, ∇·B = 0, allows us to define a scalar flux function, ψ,
which is constant along any magnetic flux surface. Furthermore, neglecting induced currents yields∇×B = 0
and permits the description of B in terms of a second scaler quantity, ζ, which is constant along any surface
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Figure 1. Transformation from cylindrical (r,z) to magnetic (ψ,ζ) coordinates. ~B represents the magnetic field vector
aligned along surfaces of constant ψ. The plasma is bounded by ψp.

that is everywhere normal to the magnetic field vector. The relationship between the magnetic field and
these scalar quantities is given by

B = −1

r
(eθ ×∇ψ) = −∇ζ, (8)

where eθ is the unit vector in the azimuthal direction. Note that ∇ψ · ∇ζ = 0. We will refer to surfaces
of constant ψ and ζ as ψ-surfaces and ζ-surfaces, respectively. Figure 1 illustrates the conversion from
cylindrical coordinates to magnetic coordinates for a plasma flow contained within the flux surface ψp.

Transformation from a cylindrical to magnetic coordinate system, (r, z) → (ψ, ζ), allows the simplifica-
tion, b · dA = dA. Here dA is the differential area along a ζ-surface. The integral of a function, X(ψ, ζ),
along a ζ-surface from ψ ∈ [0, ψp] simplifies to∫

ζ

X(ψ, ζ)dA = 2π

∫ ψp

0

X(ψ, ζ)

B(ψ, ζ)
dψ. (9)

Furthermore, the ψ-average of this function is given by

X̄(ζ) = [A(ζ)]
−1
∫
ζ

X(ψ, ζ)dA, (10)

where

A(ζ) = 2π

∫ ψp

0

1

B(ψ, ζ)
dψ, (11)

is the total area of the ζ-surface.

II.E. Separable Approximation

The coordinate transformation presented in Section II.D enables the separate treatment of the plasma
parameters averaged over the beam cross-section and their variation along the beam cross-section. We
refer to this approach as the separable approximation.

Specifically, we express the Mach number, plasma potential, and density in the following form:

M (ψ, ζ) = M̄ (ζ) +M (ψ, ζ) , (12)

φ (ψ, ζ) = φ̄ (ζ) + ϕ (ψ, ζ) , (13)
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n (ψ, ζ) = n̄ (ζ) +N (ψ, ζ) , (14)

with the additional requirements ∫
ζ

M (ψ, ζ) dA = 0, (15)

∫
ζ

ϕ (ψ, ζ) dA = 0, (16)

∫
ζ

N (ψ, ζ) dA = 0. (17)

Thus, along each ζ-surface the plasma parameters are separated into their ψ-averaged component (M̄ , n̄, φ̄)
and a two-dimensional, ψ-dependent correction (M, N , ϕ), whose average over the entire beam cross-section
along the ζ-surface is zero.

II.F. ψ-Averaged Solution

We now assume that there exists a flow plane, defined by ζ = ζ0, at which we know the beam-wise variation
of the density, n0(ψ), ion Mach number, M0(ψ), and potential, φ0(ψ). Furthermore, in anticipation of the
application of this model to magnetic nozzle plasma flow, we define M0(ψ) = 1 and φ0(ψ) = 0. However,
extension of the model to other boundary conditions is straightforward.

The ζ-evolution of the ψ-averaged plasma parameters may be obtained by averaging Eqs. (5)-(7) over a
ζ-surface. This yields,

M̄2 − 1 + 2φ̄ = −M2, (18)

n̄− n̄0 exp φ̄ = 0, (19)

n̄M̄ − n̄0M̄0
A0

A
= −NM, (20)

where the quantities on the right-hand side of each equation represent the error due to the separable approxi-
mation. In the limit where these errors go to zero, Eqs. (18)-(19) reduce to the known quasi-one-dimensional
equations for isothermal, ideal plasma expansion.2

II.G. Two-Dimensional Correction

We now turn our attention to the ψ-dependent corrections in Eqs. (12)-(14). The potential correction will
be found by considering the force balance on ions in a direction perpendicular to the magnetic field.

As we mentioned earlier, electric fields are the dominant contribution to the ion dynamics. As such, the
ion centrifugal force at a given location must be approximately balanced by the electric field. Projecting this
force balance onto a ζ-surface gives,

rB
dϕ

dψ
= −M

2

Rc
. (21)

We have introduced here the local radius of curvature of the ion streamline, Rc = |n · (s · ∇s)|−1 where n
and s, are the unit vectors perpendicular and parallel to ion streamline, respectively. Note that we do not
use the partial derivative in the equation above because we are considering the gradient of ϕ along a surface
of constant ζ. Ultimately, this will allow us to solve for the ψ-dependence of ϕ along any ζ-surface.

Once again assuming the flow is approximately field-aligned, we express the radius of curvature in terms
of the unit vectors perpendicular and parallel to the applied magnetic field, h and b, respectively: Rc ≈
|h · (b · ∇b)|−1. This allows Rc to be determined from the applied magnetic field topology.

Substitution of Eq. (6) into Eq. (21) allows the description of the two-dimensional plasma potential
correction, ϕ, in terms of a nonlinear ordinary differential equation in ψ,

dϕ

dψ
+

1− 2φ̄− 2ϕ

rBRc
= 0. (22)
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We will show later that this equation is fundamental to the two-dimensional nature of the solution, which
indicates the importance of the perpendicular force balance between the electric field and ion dynamic
pressure on the global properties of the flow.

We now combine Eqs. (5)-(6) and Eqs. (13)-(14) to find expressions for the ψ-dependent corrections to
the ion Mach number and plasma density.

M = −M̄ +
[
M̄2 − 2ϕ

]1/2
(23)

N = n0 expφ− n̄ (24)

Therefore, we arrive at three equations that may be used to solve for the variation from the mean quantity
of each plasma parameter along a ζ-surface.

II.H. Solution Procedure

Our problem is now uniquely defined in terms of six equations for six unknowns. For a given entrance flow
and applied magnetic field, Eqs. (18)-(20) may be solved for the mean plasma parameters (M̄ , n̄, φ̄) as a
function of ζ.

Eq. (22), subject to the constraint of Eq. (16), provides a two-dimensional expression for ϕ, which leads,
through Eq. (23) and Eq. (24), to expressions for M and N , respectively.

This represents a fully analytical procedure for finding the two-dimensional Mach number, potential, and
density distributions of a collisionless, magnetized plasma flow. We will show in Section III that reasonable
approximations allow for closed form solutions for (M, N , ϕ) in terms of (M̄ , n̄, φ̄). As is well known from
compressible flow theory,1 however, the mathematical nature of Eqs. (18)-(20) yield implicit expressions for
(M̄ , n̄, φ̄).

II.I. Inclusion of Ion Magnetization

Although the effective ion Larmor radius, ρi, does not significantly change the properties of the flow, it is
possible to include a heuristic correction for finite ion magnetization effects in Eq. (21)

dϕ

dψ
+

M2

rBRc

(
1 + aρ−bi

1 + aρ−bi M2

)
= 0. (25)

Here, a and b are free parameters. A physical explanation of the form of this equation is provided along
with an example in appendix A.

III. Example: Magnetic Nozzle Flow

We will now demonstrate how the two-dimensional separable fluid model for collisionless, magnetized
plasma flow can be used to obtain closed-form analytical expressions for the spatial variation of the potential,
density, and Mach number in the downstream region of a magnetic nozzle plasma.

III.A. Magnetic Field Model

We begin by defining the coordinate transformation from cylindrical to magnetic coordinates (Figure 2).
We assume the applied magnetic field of our nozzle is generated by a single loop of current, from which the
ψ-surfaces and ζ-surfaces may be approximated as

ψ (r, z) =
r2/2

(1 + r2 + z2)
3/2

, (26)

ζ (r, z) =
z/2

(r2 + z2)
3/2

. (27)

All lengths above are normalized by the radius of the current loop, rc. We should note that the equation
for ζ given in Eq. (27) is not the exact expression as determined from Eqs. (8) and (26) because it does not
exist in closed form. However, we found Eq. (27) to be a valid approximation for values of z > 1.
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Figure 2. Transformation from cylindrical (r,z) to magnetic (ψ,ζ) coordinates using Eqs. (26)-(27). Distances in (a)
are normalized by the radius of the magnetic coil, rc. Note the flow direction in (a) is for increasing z and in (b) is for
decreasing ζ.

III.B. Entrance Conditions

Acceleration of plasma through a magnetic nozzle is similar in many ways to the flow of gas through a
conventional de Laval nozzle.2 As such, a sonic condition forms at the throat of the nozzle, from which we
already took M0 = 1. The location of the throat for the above magnetic field occurs at z = 0.

An analytical expression for the radial density distribution of plasma confined within a cylindrical vessel
was derived by Ahedo.21 This distribution was used in numerical models by Ahedo and Merino to characterize
the two-dimensional expansion of a non-uniform magnetic nozzle plasma.9 To allow direct comparison with
their numerical results, we adopt their expression and transform it to magnetic coordinates as

n0 (ψ) = J0

σa0
√√√√ 1− (1− 12ψ)

1/2

1− (1− 12ψp)
1/2

 . (28)

In this equation, J0 is the zeroth Bessel function, a0 is the first zero of J0, and the factor σ = 0.99 is used
to avoid a singularity at the plasma edge. The expression within the square root is an approximation of the
ratio r/rp0 at z = 0, where rp0 is initial the radius of the plasma. This approximation is accurate to within
three percent for rp0 < 0.35. Furthermore, we denote ψp = ψ(rp0, 0).

The final entrance condition that we require is the potential distribution at the nozzle throat, φ0. Again,
to aid comparison, we follow Ahedo and Merino and set φ0 = 0.

III.C. Analytical Solution

Armed with a magnetic field model and entrance conditions, our task is now to solve Eqs. (18)-(20) and
Eqs.(22)-(24) for (M̄ , n̄, φ̄) and (M, N , ϕ), respectively.

We assume that the errors due to the separable approximation in Eqs. (18)-(20) are negligible. This is
generally satisfied up until the turning point of the applied magnetic field, after which errors in the continuity
equation become significant. Substitution of Eq. (26) into Eq. (8) yields an expression for the magnetic field.
This expression may then be inserted into Eq. (11) for the cross-sectional area of a given ζ-surface, A(ζ).
This, along with the entrance conditions, permits one to solve Eqs. (18)-(20) for implicit expressions for the
ψ-averaged parameters, (M̄ , n̄, φ̄). Considerable simplification of this procedure with minimal error may
be achieved with the approximation A(0)/A(z) ≈ B(0, z)/B(0, 0). This is equivalent to the statement that
B(r, z) is constant along a ζ-surface, which is valid for paraxial magnetic fields (Br � Bz).

8 of 16

American Institute of Aeronautics and Astronautics



-2-4 -6

-10

-12

-14

-16

-8

Φ

0 5 10 15 20
0

5

10

15

20

z

r

-2

-8

-7

-6

-5

-4

-3

log10 n

0 5 10 15 20
0

5

10

15

20

z

r

3

5.5

5

4.5

4
3.5

M

0 5 10 15 20
0

5

10

15

20

z

r

Figure 3. Contour plots of the analytical solution for the potential, φ, density, n, and ion Mach number,M, for plasma
expansion through a magnetic nozzle. All lengths are normalized by the radius of the magnetic coil, rc. Solutions are
found using Eqs. (23),(24) and (32) for an initial plasma radius rp0 = 0.185.

Ψ=Ψp

Ψ=0

0 2 4 6 8 10 12
-12

-10

-8

-6

-4

-2

0

z

Φ

Ψ=Ψp

Ψ=0

0 2 4 6 8 10 12
-8

-6

-4

-2

0

z

lo
g 1

0n

Ψ=Ψp

Ψ=0

0 2 4 6 8 10 12
0

1

2

3

4

5

z
M

Figure 4. Comparison of the analytical solution (solid line) for the potential, φ, density, n, and ion Mach number,M
to the numerical results (shaded points) shown in Fig. 4 of Ref. [9]. Note that the x-axis of the numerical data was
adjusted to be consistent with our normalization.

We now turn our attention to Eq. (22) to find an expression for ϕ. An analytical solution to this equation
in its present form is not possible due to the complexity of the denominator of the second term, rBRc. To
make the equation more tractable, we define K ≡ (rBRc)

−1, and take the Taylor series of K about ψ = 0.
The result gives

K (ψ, ζ) ≈ f1 (ζ) + ψf2 (ζ) , (29)

where the functions

f1 (ζ) =
3
√

2

8

[
1 + 4ζ√
ζ (1 + 2ζ)

]
≈ 3

4
√

2
ζ−1/2, (30)

f2 (ζ) =
3

16

[
3 + 16ζ + 56ζ2

ζ (1 + 2ζ)

]
≈ 9

16
ζ−1, (31)

are found by averaging the zeroth and first-order Taylor series expansions. The approximations on the right
hand side of Eqs. (30) and (31) are valid in the limit ζ < 1 (equivalent to z > 1). Furthermore, by analyzing
the error due to the approximation for different values of ζ and ψ, we found that Eq. (29) yields reasonable
accuracy in the range: ζ ∈ [10−4, 1] and rp0 ∈ [0, 0.35].

Substitution of Eq. (29) into the first-order differential equation for ϕ, Eq. (22), yields an analytical
expression for ϕ. The integration constant may be found from Eq. (16). The result, combined with Eq. (13),
yields

φ (ψ, ζ) =
1

2
− fφ (ζ)√

π
exp

[
1

16ζ

(
2
√

2ζ + 3ψ
)2]

, (32)
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with

fφ (ζ) =
3ψp

4
√
ζ

[
φ̄ (ζ)− 1

Erfi
(
1/
√

2
)
− Erfi

(
1/
√

2 + 3ψp/4
√
ζ
)] . (33)

Eqs. (32) and (33) represent a closed form analytical solution for the plasma potential in terms of the two-
dimensional magnetic coordinate system. Conversion back to cylindrical coordinates may be achieved using
Eqs. (26) and (27).

Finally, closed formed solutions for the ion Mach number and plasma density may be obtained from
substitution of Eq. (32) into Eqs.(23) and (24). We omit here the explicit form of these equations for the
sake of brevity.

Contour plots demonstrating the clear two-dimensional behavior of the plasma potential, density, and
ion Mach number are presented in Figure 3. The initial plasma radius is taken to be rp0 = 0.185. A number
of observations may be made about the nature of this flow:

• A large potential well develops along the plasma edge in the far field of the plume. This is due to
the increased magnetic field curvature in this region, which causes ion inertia and the tendency of the
plasma to remain quasi-neutral to lead to a large potential gradient in the direction perpendicular to
the magnetic field.

• The increased potential gradient near the edge of the plume leads to a rarefaction of the plasma edge
as fewer electrons are capable of entering the potential well. Depending on the initial plasma density,
plasma quasi-neutrality may ultimately be violated in this region.

• Rarefaction at the plasma edge leads to the relative focusing of the beam profile with respect to the
expanding magnetic field.

• Ion acceleration occurs near the nozzle axis in the initial expansion region but is impeded in the far field
region. This is in contrast to the edge of the plasma, whereby ion acceleration continues throughout
the far-field.

These observations are in qualitative agreement with the analysis of Ahedo and Merino based on their
numerical solution to the same problem.9 Furthermore, they allow an extension of their results to the region
beyond the turning point of the plasma boundary (z ≈ 11 in Figure 3).

III.D. Comparison to Numerical Results

We now proceed to a more quantitative comparison of the two-dimensional separable solution to the numerical
results of Ahedo and Merino.9 Specifically, we take sample points from Figure 4 in Ref.[9] to compare the
analytical and numerical solutions for the axial dependence of the potential, density, and Mach number along
both the nozzle axis, ψ = 0, and plasma edge, ψ = ψp. This comparison is shown in Figure 4.

A quick note on the origin of Figure 4: of the three curves with varying ρi shown in Figure 4 of Ref.[9],
we choose sample points from the curve for ρi = 10. As such, the analytical expressions in Fig. 4. do not
include the ion magnetization correction described in Section II.I.

A strikingly good agreement is found between the analytical solution to the two-dimensional separable
equations and the numerical solution to the full two-fluid equations. Specifically, the analytical solution
accurately tracks the non-uniformity in the plasma potential and Mach number that develops in the down-
stream region. Furthermore, the increased rarefaction of the plasma along its boundary as predicted by the
analytical solution matches that of the numerical solution. Deviations of the predicted potential from the
numerical solution occur in the far field of the plume, but are limited to just a few percent. This discrepancy
is likely due to the magnetic field approximation.

IV. Applications

We present in this section two applications of the two-dimensional analytical model for magnetic nozzle
plasma expansion: (1) an explanation of experimentally observed plasma focusing, and (2) a preliminary
analysis of the implications of two-dimensional effects on propulsion performance.
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IV.A. Plasma Focusing in Magnetic Nozzle Experiments

Interest in plasma detachment from magnetic nozzles has provided multiple experimental studies of the axial
evolution of the radial density profile in magnetic nozzle plasma plumes.3,6–8 Many of these studies have
observed focusing of the plasma beam with respect to the expanding magnetic field lines.6–8

A variety of explanations for this phenomenon have been put forth. Deline showed that the location
where focusing becomes noticeable in his experiment corresponds to the point in the flow where the plasma
kinetic energy density exceeds the applied field energy density.7 This led him to suggest, in accordance with
the MHD plasma detachment scenario of Arefiev and Breizman,11 that the focusing is due to the effective
detachment of both the ions and electrons from the applied magnetic field. Takahashi et al.,8 on the other
hand, concluded that the focusing effect observed in their experiment results from separation of only the
ions from the magnetic field.

We are now prepared to answer the question that we posed at the outset: are experimental plasma
density measurements consistent with the focusing effect predicted to result from the development of a strong
downstream radial electric field?

We begin by fitting our analytical model to data from three independent experiments: (1) Deline et.
al.7 used Langmuir and Faraday probes to measure both the half-width at half-maximum (HWHM) of
the radial density profile (Figure 5(a)) and the on-axis ion current (Figure 5(b)) of a coaxial gun plasma
expanding through the magnetic field of electromagnetic coils; (2) Takahashi et. al.8 used a retarding
field energy analyzer (RFEA) to determine the HWHM of the radial density profile (Figure 5(c)) for the
expansion through permanent magnetics of an inductively-coupled, RF plasma; and, in a later experiment,
(3) Takahashi et. al.4 measured the on-axis plasma density (Figure 5(d)) using a Langmuir probe in an RF
(mode unspecified) plasma flow through a single electromagnetic coil (Case B in Ref.[4]).

A number of steps were required to allow the data to be analyzed within the context of the normalized
coordinate system of the analytical model. These steps are as follows:

1. The lengths provided in the referred publications are normalized using the effective plasma coil radius.

This is found by fitting the equation, B(z) = B0

(
1 + (z/rc)

2
)−3/2

, to the reported measurements of the
on-axis magnetic field strength for each experiment. Here, B0 is the value of the maximum magnetic
field strength. This procedure yields rc,1 = 15 cm, rc,2 = 8.5 cm, and rc,3 = 9 cm for experiments 1-3,
respectively. We note that these values approximate that of the physical radius of the electromagnetic
coil/permanent magnet for each experiment.

2. The analytical curve in Figure 5(a) is found using the density profile of Eq. (28) and adjusting the
initial plasma radius such that the curve approximately passes through the data point at z ≈ 3. This
resulted in rp0 = 0.167.

3. The data in Figure 5(b) is normalized to match the data point at z ≈ 3 to the analytical curve. The
entrance conditions used to obtain this curve are the same as those used in Figure 5(a).

4. The analytical curve in Figure 5(c) is obtained by setting the initial radius equal to the diameter of
the plasma source used in the experiment, rp0 = 0.388. We used the entrance density profile provided
in Ref.[4] for the same plasma source.

5. The initial radius for the analytical curve in Figure 5(d) is found by approximately fitting the analytical
curve to the first few data points. This procedure gives rp0 = 0.39, which is less than the radius of the
plasma source, rs = 0.5. This is justified, however, because the retraction of the magnetic coil from
the exit of the plasma source should produce an effective plasma radius less than that of the source
(see Figure 2(b) in Ref.[4]). The radial density profile is also obtained from Ref.[4].

The normalized experimental data from these experiments is presented in Figures 5(a)-(d) along with
analytical curves found using the two-dimensional separable solution presented in Section III. Also shown
is the scaling associated with plasma flow for which both the ions and electrons remain attached to the
magnetic field.

The experimental data show two clear trends that result from focusing of the plasma beam with respect
to the diverging magnetic field: (1) the HWHM deviates significantly from its initial ψ-surface towards the
nozzle axis, and (2) the on-axis ion flux, Ji, and density, n, are much greater than the values predicted from
the magnetic field scaling (i.e. the self-similar model).
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Figure 5. Application of the separable analytical model (solid lines) to experimental results (shaded points) for: (a)
HWHM of the radial density profile along the nozzle axis from Ref. [7]; (b) on-axis ion flux, Ji, from Ref.[7]; (c)
HWHM of the radial density profile along the nozzle axis from Ref.[8]; and (d) on-axis density, n, from Ref.[4]. The
dashed lines show the expected scaling for uniformly magnetized plasma flow.

It is clear from Figure (6) that the two-dimensional correction to the quasi one-dimensional equations
described in Section II accurately reproduces both of the trends that result from plasma focusing. This
indicates to us that the experimentally observed focusing of the plasma with respect to the applied magnetic
field is, in accordance with the analysis of Ahedo and Merino,9 due to the formation of radial electric fields
that manifest from the ion kinetic pressure and the preservation of quasi neutrality. This picture is consistent
with the explanation by Takahasi8 that the deviation of the HWHM occurs due to ion separation. As a
consequence, deviation of the density profile HWHM from its initial flux surface indicates the onset of ion
cross-field drift, but not necessarily plasma detachment.

IV.B. Implications for Nozzle Performance

The ability to characterize the plasma flow of a magnetic nozzle beyond the turning point of the applied
magnetic field gives our model the unique ability to investigate the trade-off between the momentum gain
from further expansion and the divergence of the flow and its influence on the predicted thrust. If the plasma
is unable to detach from the applied magnetic field, the flow divergence will negate the momentum gain.

We define the thrust coefficient of the nozzle as the ratio of the ψ-averaged axial momentum flux of the
plasma flow through a ζ-surface to the mean pressure force at the nozzle throat,

CT ≡
Fz
p̄0A0

=

∫
ζ

(
M2 + 1

) Bz
B

ndA

n0A0
. (34)

Here, we have again considered the flow to be approximately field-aligned, s ≈ b. We note that the thrust
coefficient given in Eq. (34) is a function of ζ. Under the questionable assumption that the plasma detaches

12 of 16

American Institute of Aeronautics and Astronautics



HTLHTLHTLHTL

ø

ø

ø
ø
ø

0 5 10 15 20 25 30
0

1

2

3

4

5

z0

C
T

0.0 0.2 0.4 0.6 0.8 1.0
2.0

2.5

3.0

3.5

4.0

4.5

5.0

rp0

C
T*

CT ,Max

CT
90HTL

ø
rp0 = 0.10

0.20

0.30

0.40

0.50
(a)

Actual

Fit

(b)

Figure 6. (a) Variation of the thrust coefficient throughout the plume shows clear locations for maximum thrust marked
by stars. Curves are shown for rp0 ∈ [0, 0.5]. z0(ζ) is the axial location at which the ζ-surface intersects the nozzle axis.
(b) Value of the maximum thrust coefficient versus the initial plasma radius.

from the applied field, and that momentum transfer is not transfered beyond a surface defined by ζ = ζdet,
the thrust coefficient may be determined from CT (ζdet).

Immediately, we see from Eq. (34) that a competition will occur as expansion of the plasma increases
n(M2 + 1) but decreases the ratio Bz/B. We may approximate this ratio as

Bz
B
≈ 1− 2

ψ

ψp
sin2

(αp
2

)
, (35)

where αp is the angle that the magnetic field vector makes with the nozzle axis along the plasma boundary,
ψ = ψp. Note that αp is a function of only ζ.

We admit at this point the main fallacy of the theoretical model presented in Section II: strict conservation
of mass and momentum is valid only in the limit where the errors on the right hand side of Eqs. (18)-(20) are
vanishingly small. This is not ensured by the two-dimensional separable model in its current form. As such,
we cannot quantify the influence of plasma focusing on the thrust coefficient. Conservation of the mass and
momentum is valid for the mean parameters, however, and we abandon the ψ-dependent corrections (M,
N , ϕ) in the following discussion.

Substitution of Eq. (35) into Eq. (34) yields a simplified form for the thrust coefficient,

CT =
n̄A
(
M̄2 + 1

)
n̄0A0

cos2
(αp

2

)
(36)

This expression is plotted in Figure 6(a) for five values of rp0 ∈ [0, 0.5]. We note that the horizontal axis
corresponds to the axial distance at which the ζ-surface intersects r = 0, or z0 = (2ζ)−1/2.

A clear maximum is demonstrated for the thrust coefficient in Figure 6(a). The values of these maxima,
C∗T , are marked with stars. We also indicate the value, C90

T , that corresponds to the ζ-surface for which
the edge of the plume has turned a full ninety degrees, or αp = π/2. Of course, it is beneficial to prevent
expansion of the plasma beyond the turning point of the applied magnetic field.

It is interesting to note that the thrust measurements taken by Takahashi et al.4 were obtained for
plasmas whose bounding flux surface intersect the walls of their vacuum chamber near the location of C90

T .
The measured thrust would indicate a value of CT ≈ 2, in accordance with the predictions of Figure 6(a).

Two conclusions relevant to their experiment may then be made: (1) an efficiency increase of
(
C∗T /C

90
T

)2 ∼ 2
is possible if they find a way to force plasma detachment closer to the nozzle, and (2) a significant decrease
in performance could be expected if the thruster were to operate in a larger vacuum chamber.

Finally, we estimate the maximum thrust for a given plasma source by plotting the maximum thrust
coefficient, CT,max, versus the normalized plasma radius, rp,0. This is shown in Figure 6(b). The data is
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well represented by the equation
C∗T ≈ c1e−c2(rp/rc) + c3, (37)

where c1 = 3.28, c2 = 6.97, and c3 = 2.63 result from the method of least-squares.

V. Conclusions

An analytical model was derived that is capable of reproducing the two-dimensional profile of the poten-
tial, density, and ion Mach number of an axisymmetric plasma flow along magnetic field lines. Application
of this model to magnetic nozzle plasmas allows us to draw the following conclusions:

• Experimentally observed focusing of the plasma exhaust of a magnetic nozzle with respect to its applied
magnetic field can be explained analytically in terms of the development of a radial electric field in the
downstream region. As such, this phenomenon does not necessarily preclude detachment of the plasma
from its guiding magnetic field.

• The competition in the expansion process between the conversion of thermal energy into kinetic energy
and the loss of useful kinetic energy to plume divergence leads to an optimum detachment location at
which thrust is maximized.

The main limitations of the analytical model, which prevent its use in a detailed magnetic nozzle thrust
model, are its non-conservation of mass and momentum and its inability to self-consistently incorporate
physical processes relevant to plasma detachment, such as induced magnetic fields and non-neutral effects.
These limitations will be the topic of future research.

Appendix A: Ion Magnetization

In Section II.G. we used an approximate equation for the ion force balance perpendicular to its streamline,
Eq. (22), to find the ψ-dependent potential correction, ϕ, for the case of unmagnetized ions, ρi >> 1. A
correction to that equation that includes finite ion magnetization effects was presented in Section II.I, Eq.(25).
In this appendix, we will describe the physical reasoning in going from Eq. (22) to Eq. (25).

Eq. (22) was derived assuming the ion dynamics are influenced only by the ambipolar electric fields that
result from the desire of the plasma to remain quasineutral. In reality, there will also be a Lorentz force
on the ions due to their motion perpendicular to the applied magnetic field. The azimuthal ion velocity,
induced to conserve canonical angular momentum due to ion cross-field motion, leads to a restoring force
that tries to push the ions back onto their initial flux surface. Thus, the appropriate form of Eq. (22)) to
account for the magnetic force may be written as:

M2

Rc
+ rB

∂ϕ

∂ψ
− uθiB

ρi
= 0. (38)

The first, second, and third terms on the left hand side are the ion centrifugal force, the force due to
the ambipolar electric field, and the magnetic force, respectively. Furthermore, the normalizations are in
accordance with those presented in Section II.

Our task now becomes to find an expression for the azimuthal ion velocity in terms of the parameters of
our model. Taking the dot product of Eq. (1) with the direction normal to the ion velocity, n, and applying
the conservation of ion energy and canonical angular momentum yields

uθ,i/ρi = ωθ,ie
−φ, (39)

where ωθ,i is the azimuthal component of the ion vorticity, ω = ∇×u. This equation carries the additional
assumption that the initial ion azimuthal velocity and potential are both zero.

We now consider the limit that the ions are highly magnetized, ρi << 1, and remain attached to their
initial magnetic flux surface. Eventually we will arrive at a heuristic solution that is combination of the
unmagnetized and highly magnetized results.

For the highly magnetized case, the ion velocity vector is parallel with the magnetic field vector, s = b,
and we may adopt the following simplification for the azimuthal ion vorticity,

ωθ,i = θ · (∇× u) ≈ B
[
n · ∇

( u
B

)]
. (40)
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Figure 7. Comparison of the radial density profile for ρi = 10 and ρi = 0.01 using Eq. (43) and the numerical results
from Ref. [9]. Values of a = 0.02 and b = 1/3 are used in Eq. (43).

Furthermore, the ion continuity equation ensures that

u · ∇
(nu
B

)
= 0. (41)

Finally, we may combine Eq. (5) with Eqs. (39)-(41) to arrive at an expression for the azimuthal ion
velocity in terms of the effective ion Larmor radius, ρi, radial coordinate, r, ion Mach number, M , and the
derivative of the two-dimensional potential correction, ϕ, with respect to ψ,

uθ,i/ρi ≈ −rM2 ∂ϕ

∂ψ
. (42)

The equation above is valid for entrance flows that satisfy M0 = 1.
A new expression for the ψ-dependent potential correction, valid for highly magnetized ions, results from

substitution of Eq. (42) into Eq. (38). We summarize this result along with Eq. (21) as

∂ϕ

∂ψ
=

KM2 for ρi � 1

KM2
(
1 +M2

)−1
for ρi � 1

where K = (rBRc)
−1. In the unmagnetized case, ρi � 1, the potential gradient increases with the square of

the Mach number because the electric field in the normal direction must balance the ion dynamic pressure.
For the case where the ions are highly magnetized, ρi � 1, ion confinement is helped by the Lorentz force
on the ions, for which the potential gradient is allowed to decrease by the factor (1 +M2).

Possessing knowledge of the projection of the potential gradient along a ζ-surface for both unmagnetized
and highly magnetized ions, we now propose the following heuristic equation for the influence of the effective
ion Larmor radius on the two-dimensional flow properties:

dϕ

dψ
+KM2

(
1 + aρ−bi

1 + aρ−bi M2

)
= 0. (43)

Here, a and b are empirically determined constants.
Application of the ion magnetization correction to the magnetic nozzle example in Section IV gives

values of a ≈ 0.02 and b ≈ 1/3. These numbers were obtained by comparing the radial density profile at two
different downstream locations with the numerical results of Ahedo and Merino for values of ρi = 0.01 and
ρi = 10. This comparison is shown in Figure 7. Additional numerical and experimental results are required
to further validate Eq. (43). However, as we mentioned is Section IV, this correction is only necessary for
highly magnetized flows for which ρi � 1.
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