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The requirements for an electric propulsion system needed to maximize the return mass

of asteroid capture-and-return (ACR) missions are investigated in detail. An analytical

model is presented for the mission time and mass balance of an ACR mission based on

the propellant requirements of each mission phase. Edelbaum’s approximation is used

for the Earth-escape phase. The asteroid rendezvous and return phases of the mission

are modeled as a low-thrust optimal control problem with a lunar assist. The numerical

solution to this problem is used to derive scaling laws for the propellant requirements based

on the maneuver time, asteroid orbit, and propulsion system parameters. Constraining

the rendezvous and return phases by the synodic period of the target asteroid, a semi-

empirical equation is obtained for the optimum specific impulse and power supply. It

was found analytically that the optimum power supply is one such that the mass of the

propulsion system and power supply are approximately equal to the total mass of propellant

used during the entire mission. Finally, it is shown that ACR missions, in general, are

optimized using propulsion systems capable of processing 100 kW – 1 MW of power with

specific impulses in the range 5,000 – 10,000 s, and have the potential to return asteroids

on the order of 103 � 104 tons.

Nomenclature

af = semi-major axis
CP = power coe�cient
ef = eccentricity
fj = acceleration of jth maneuver
I
sp

= specific impulse
J = cost function
ue = e↵ective exhaust velocity
ra = orbit apsis
rp = orbit periapsis
r
leo

= low-Earth orbit radius
rm = Moon orbit radius
tf = final maneuver time
tj = time of jth maneuver
t
min

= minimum possible maneuver time
t
syn

= synodic period
↵ = propulsion and power system specific power
� = spacecraft dry mass fraction
�v⇣ = minimum possible delta-v
⌘ = propulsion system e�ciency
� = angle of lunar assist delta-v
µ = ratio of returned asteroid mass to low-Earth orbit insertion mass
µe = Earth’s gravitational parameter
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⌫ = normalized lunar assist delta-v
⇢ = propulsion and power system mass fraction
⌧ = parameter governing non-optimal delta-v behavior
⇠ = time-free minimum fuel trajectory scaling parameter
⇣j = propellant mass fraction of jth maneuver

I. Introduction

In just over a century since Konstantin Tsiolkovsky predicted that the advent of the rocket will ultimately
enable human exploration of asteroids,1 mankind has guided robotic spacecraft on scientific missions to
eleven neighboring planetoids.2–4 These missions have characterized asteroid structure and composition
using advanced imaging and spectroscopic diagnostics, and have even returned surface samples to terrestrial
research laboratories for detailed analysis, thus contributing to the understanding of solar system formation.

Recently, the Keck Institute for Space Sciences (KISS) published a study that investigated the feasibility
of a robotic mission to capture and return an entire near-Earth asteroid (NEA) into a stable cis-lunar orbit
to serve as a destination for future manned missions.5 According to their report, a project of this magnitude
promises to improve NEA detection techniques, advance high power electric propulsion technology, further
understanding of asteroid composition and formation, and provide a testing platform for the development
of asteroid resource extraction technology to support in situ resource utilization. These advances may
ultimately provide a defense mechanism against potential asteroid impacts6,7 and encourage a new space
economy centered around asteroid resources.8–11

The feasibility of placing an asteroid into orbit around Earth was analyzed as early as Hills in 1992,6

who concluded that decommissioned ICMs equipped with nuclear warheads could be used to force asteroids
up to 170,000 tons into orbit around Earth for use as a planetary defense shield from potential impactors.
Chemical rockets have been shown to be suitable for NEA rendezvous,12 sample return missions,13 and return
missions of entire asteroids on the order of 100 tons to a stable Sun-Earth L2 orbit.14 The required delta-v
of the impulsive capture maneuver to an Earth orbit10 compared to the relatively low specific impulse of
chemical rockets renders them impractical for returning sizable (> 100 tons) asteroids to Earth orbit due to
the excessive propellant requirement.

Multiple case studies have been performed for human exploration of NEAs15,16 and asteroid capture-
and-return (ACR) missions5,17 using near-term, high-power electric propulsion technology. As a precursor
to the KISS study,5 it was found that a 10 ton NEA could be returned to the International Space Station
(ISS) using a 40 kW solar electric propulsion system operating four 3,000 s specific impulse Hall thrusters.17

In comparison, the KISS study determined that the same propulsion system may be capable of capturing
and returning an 1,800 ton asteroid to cis-lunar space within a ten year mission span.5 Both of these studies
rely on lunar assists, which are shown to drastically reduce the propulsion system requirements and aid the
insertion of the NEA and spacecraft into their final orbit.18

Literature in support of the technical capabilities of electric thrusters for ACR missions has only begun
to emerge. Landau et al.18 estimated the retrievable NEA mass as a function of the return trip time and
asteroid orbit for the specific propulsion system chosen by the KISS study. Furthermore, they present six
di↵erent cases that show the e↵ect of changing the specific impulse and initial spacecraft mass (based on
the launch vehicle size) on the maximum return mass for 40 kW of available power. Assuming constant
acceleration and using a simplified dynamical model without lunar assist, Hasnain et al.19 characterized the
acceleration requirement to return an NEA to Earth orbit within a constrained mission time.

Missing from the literature is a general analysis of the relationship between the propulsion system and
asteroid orbit and mass for ACR missions that utilize lunar assists. To help fill this gap, we propose to answer
the following questions: What are the electric propulsion system parameters that maximize the return mass
of a given asteroid? Furthermore, how does the optimal electric propulsion system scale with the asteroid
orbit and mass? Notably, we will address the issue of the optimum specific impulse and power supply,20,21

which becomes quite compelling for ACR missions based on two facts: (1) NEAs have been, and continue
to be, found in a variety of di↵erent orbits,22–24 and (2) the target becomes the payload.
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II. ACR Mission Performance Model

We begin with a simplified theoretical model for an ACR mission. Following the analysis of the KISS
study,5 we separate the mission into three phases: (1) low-Earth orbit (LEO) to lunar gravity assist, (2)
lunar gravity assist to asteroid orbit, and (3) asteroid orbit to lunar gravity assist.

The final mission time, tm, may be expressed as

tm =
3X

j=1

tj (µ) + tc, (1)

where tj is the transfer time of the jth phase, and tc is the time required to de-spin and capture the asteroid.
We extend the conventional, multi-stage, spacecraft mass conservation equation25 to account for the

addition of an added quantity of mass between the second and third mission phases. Defining the mass
amplification ratio, µ, as the ratio of the asteroid mass to the total mass launched into LEO, the mass
conservation equation takes the deceptively simple form

µ =
1

⇣
3

2

4
3Y

j=1

(1� ⇣j) (1� ⇣c)� � � ⇢ (tm, µ)

3

5 . (2)

Here, ⇣j is the propellant mass fraction of the jth mission phase, ⇣c is the propellant mass fraction required
for capture operations, � is the dry mass fraction of the spacecraft minus the power supply mass fraction,
and ⇢ is the power supply mass fraction. Throughout the rest of our analysis we will ignore tc and ⇣c because
they are typically small compared to tj and ⇣j , respectively.5

The functional dependences shown in Eqs. (1) and (2) emphasize the relationship between the asteroid
mass, available power, and final mission time at a fixed specific impulse. For example, a more massive
asteroid requires a larger power supply to move within a given time constraint than a less massive aster-
oid. Alternatively, for a fixed asteroid mass, the minimum transfer time decreases as the available power
increases.19 We also note that Eq. (2) stresses the previously observed sensitivity of the mass amplification
ratio to the propellant mass fraction of the return phase, ⇣

3

.18

III. Trajectory Scaling

We develop in this section expressions for the propellant mass fraction as a function of the transfer time,
propulsion system constraints, and asteroid orbit and mass. Using the patched conic approximation, we treat
the Earth departure phase (1) in a geocentric reference frame and the asteroid rendezvous (2) and return
(3) phases in a heliocentric reference frame. The lunar assist will be modeled as as part of the initial/final
conditions of the later two phases.

Throughout our analysis we will model the problem as a central body (either the Earth or sun), and a
point mass (either the lone spacecraft or the spacecraft with the captured asteroid). We neglect any outside
gravitational perturbations and ignore time-dependent corrections to the available power, such as shadowing
and degradation of solar panels. Furthermore, we restrict our analysis to the ecliptic plane, and assume that
the asteroid has a negligible inclination (i ⇡ 0) with respect to the ecliptic.

A. Earth Departure

We base our analysis of the low-thrust transfer between LEO and the lunar gravity assist on a simplified
model based on Edelbaum’s approximation,26 which assumes that in every revolution about the central
body, the trajectory of the point mass remains nearly circular and the acceleration vector constant. Further
assuming that the acceleration is directed along the motion of the point mass with magnitude f

1

, the transfer
time may be written as25

t
1

=

p
µe

f
1

⇣
r�1/2
leo

� r�1/2
m

⌘
. (3)

Here, µe is Earth’s gravitational parameter, and r
leo

and rm are the orbital radii of LEO and the moon,
respectively. The propellant mass fraction is then given by

⇣
1

⇡ f
1

t
1

g
0

I
sp

=

p
µe

g
0

I
sp

⇣
r�1/2
leo

� r�1/2
m

⌘
, (4)
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with g
0

the gravitational acceleration at Earth’s surface and I
sp

the specific impulse of the propulsion system.
We have made the additional assumptions that ⇣ ⌧ 1 and the I

sp

is constant throughout the maneuver.
These assumptions will be utilized throughout the remainder of the paper. We note that Eqs. (3) and (4)
yield values consistent with those reported in the KISS study for this phase of the mission.5

B. Asteroid Rendezvous and Return

We seek a generalized scaling law for the time-bounded minimum-fuel (TBMF) propellant mass fraction
for a transfer either to or from an arbitrary asteroid orbit. The solution will depend on the performance
parameters of the propulsion system, asteroid mass, asteroid orbit, and desired transfer time.

As with many general low-thrust optimization studies,27–29 our analysis is simplified by ignoring the
phase di↵erence between the departure orbit and the destination. The implications of this simplification are
that the solution (1) is invariant with respect to the argument of periapsis of the target orbit, (2) represents
the trajectory associated with the optimal departure date,30 and (3) is time-invariant,31 and may be used
for either the rendezvous or return phases of the mission. Therefore, the scaling laws derived in this section
should be viewed as an optimistic estimate for the propellant requirements of a given transfer.

1. Propellent Mass Fraction Semi-Empirical Model

The propellant mass fraction may be approximated as ⇣ ⇡ �v/ue, where ue ⌘ g
0

I
sp

is the e↵ective exhaust
velocity of the propulsion system, and �v is a metric for the energy imparted by the propulsion system on
the spacecraft over the duration of a maneuver. We note the well-known fact that �v is generally not equal
to the change in orbital velocities for low-thrust transfers.

!v

tf

!v"�

tmintmin*

!v ~ e-tf
2

~tf f 

!v�tf 

Figure 1. Qualitative scaling of the optimal �v as a function of transfer time, tf . The minimum-time minimum-
fuel transfer time and delta-v are labeled as tmin and �vtf , respectively. The time-free minimum-fuel delta-v
is labelled as �v⇣ . The dashed line corresponds to the theoretical delta-v that can be obtained in a given
time following a “full-throttle” control law. t⇤min is the time corresponding to the intersection of �v⇣ and the
“full-throttle” line.

The qualitative dependence of the TBMF �v as a function of the transfer time,27,32 tf , of a specific
maneuver is depicted in Fig. 1. As the transfer time is increased, the spacecraft is able to apply thrust in
the most energy-e�cient manner, and �v approaches an asymptote limited by the time-free minimum fuel
(TFMF) problem, �v⇣ . As the transfer time decreases, thrust must be applied at non-optimal times in order
to complete the maneuver within the time constraint. This non-optimality leads to an increase in �v, which
ultimately approaches the minimum-time minimum-fuel (MTMF) value, �vtf .

We now address the task of deriving an equation that is able to capture the salient characteristics of
Fig. 1 in terms of variables that scale with the mission parameters. Based on the results of the following
sections, we adopt the mathematical model for �v as a function of tf :

�v =
⇣
e�ct2f +�v⇣

⌘
H�1 (tf � t

min

) . (5)

Here, c is a constant that determines the shape of the non-optimal region of the curve and the value of t
min

.
We include the Heaviside step function, H (t� t

min

), in the denominator to ensure that �v ! 1 8 tf < t
min

.
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As we will confirm in Sec. 5, it is reasonable to assume that �vtf will fall somewhere on the “full-
throttle”-line described by �v = tff , where f is the maximum acceleration provided by the propulsion
system at the beginning of the transfer. Denoting the time at which �v⇣ intersects the “full-throttle”-line
as t⇤

min

(see Fig. 1), we further assume that t
min

⇡ ⌧ t⇤
min

, where ⌧ is a factor that is larger than unity. Using
these assumptions to eliminate c from Eq. (5) yields

�v = {[(⌧ � 1)�v⇣ ]

⇣
tf f

⌧�v⇣

⌘2

+�v⇣}H�1 (tf � t
min

) . (6)

Eq. (6) may be used to estimate the �v required to perform a specified maneuver with acceleration, f ,
within the maneuver time, tf . The optimal region of the curve asymptotes to �v⇣ , while the shape of the
non-optimal region is governed by the parameter ⌧ . We will now show that numerical solutions to the TFMF
and MTMF optimal control problems may be used to derive simple semi-empirical scaling relations for �v⇣
and ⌧ , respectively, as a function of the mission parameters.

2. Low-Thrust Trajectory Optimization

We treat the asteroid rendezvous and return phases of the mission within the context of the L1-optimal
control problem as described by Ross et al.33,34

The state and control vectors of the problem are given by

x

T := [r, ✓, vr, vt] u

T := [f,�] , (7)

subject to the constraint,
[0,�⇡]  u

T  [fj,⇡] . (8)

Here, fj is the maximum acceleration, which depends on the maximum thrust and spacecraft mass for the
rendezvous phase and spacecraft and asteroid masses for the return phase. The direction of the acceleration
vector with respect to the polar coordinates is determined by � [as shown in Eq. (9)].

The trajectory optimization problem may be formulated as:33

O (af , ef , fj)

8
>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>:

Minimize J [x (·) ,u (·) , tf ]
Subject to ṙ = vr

✓̇ = vt/r

v̇r = v2t /r � 1/r2 + f sin�

v̇t = �vrvt/r + f cos�

eL  e

0

(x
0

)  eU

ef (xf ) = 0

t
0

= 0

tf  tU

(9)

The initial orbit is described by the endpoint function

e

0

(x
0

) :=

0

BBB@

r � 1

(vt � 1)2 + v2r
vt
vr

1

CCCA
, eL :=

0

BBB@

0

0

1� ⌫
max

�⌫
max

1

CCCA
, eU :=

0

BBB@

0

⌫2
max

1 + ⌫
max

⌫
max

1

CCCA
, (10)

which we have modified to include the possibility of a lunar assist with a delta-v whose magnitude normalized
by the Earth’s orbital speed is defined as ⌫, with ⌫ 2 [0, ⌫

max

].
The semi-major axis, af , and eccentricity, ef , of the target orbit determine the second endpoint function

ef (xf ) :=

0

B@
af

⇥�
v2r + v2t

�
r � 2

⇤
+ r

r (1 + ef cos ✓)� (vtr)
2

vr (1 + ef cos ✓)� efvt sin ✓

1

CA . (11)

5 of 15

American Institute of Aeronautics and Astronautics



The maneuver time, tf , is bound by tU , for which we seek values that satisfy tU � tf = O(tf ) > 0 for e�cient
convergence of the solution.

We note that the variables in Eqs. (7)-(11) are normalized such that lengths are in units of astronomical
units (1 AU = 1.49⇥ 1011 m), velocities are in units of Earth’s orbital speed (2.98⇥ 104 m/s) , accelerations
are in units of Earth’s centripetal acceleration (5.93 ⇥ 10�3 m/s2), and time scales are in units of Earth’s
angular period (1/2⇡ years = 5.02⇥ 106 s).

3. Lunar Assist

Case studies have shown that lunar assists on the outbound and inbound phases of the journey drastically
increase the capability of ACR missions.5,18 Therefore, we found it crucial to include the propellant mass
savings of the lunar assist when developing our ACR mission model.

The maximum delta-v of a lunar assist is limited to about �v ⇡ 1.7 km/s.35 Consistent with the lunar
assist used in the KISS study, we assume that the maximum excess hyperbolic velocity that can be either
imparted to the outbound craft or removed from the inbound craft is about 1.4 km/s.5 Therefore, we use
the normalized value ⌫

max

= 0.047 within Eq. (10).

ÊÊ No Earth
Crossing

2008HU4Direct
Insert

No Earth
Crossing

Earth
Crossing

0.7 0.8 0.9 1.0 1.1 1.2 1.3
0.00

0.05

0.10

0.15

0.20

0.25

0.30

a

e

Figure 2. Phase space depiction of asteroid orbits within the ecliptic plane. a is the semi-major axis and e is
the eccentricity. The solid grey region denotes orbits that do not cross the Earth’s orbit. Grey lines correspond
to surfaces of constant excess energy of the asteroid at the point of intersection with the Earth’s orbit. The
light gray region contains orbits whose energy is less than a critical value, where the critical value is defined as
the energy that a lunar assist is capable of imparting to (for rendezvous with) or removing from (for capture
of) the spacecraft. Also shown is the orbit of asteroid 2008HU4.

It is possible under the model presented in Sec. 2 to have a zero-cost transfer for certain target orbits. We
illustrate this in Fig. 2 using a contour plot based on the analysis of Sanchez and McInnes.10 In this plot, the
grey contours represent lines of constant characteristic energy, or C

3

. The dark grey region represents orbits
that do not cross Earth, while the white region represents Earth-crossing orbits whose characteristic energy
exceeds the maximum possible energy change provided by a lunar assist. The light grey region, however,
contains Earth-crossing orbits that the spacecraft may be either directly inserted into of captured from using
a lunar assist with magnitude ⌫ 2 [0, ⌫

max

].
Also shown in Fig. 2 is the orbit of asteroid 2008HU4, which was the focus of the KISS case study. It is

clear that this asteroid is right on the edge of the direct capture region. This is consistent with the criteria
used in the study in which the target asteroid had both a close approach and a low approach speed.

Target orbits within the direct insert/capture region of Fig. 2 will be omitted from the remainder of our
analysis. A detailed study of missions to these asteroids will need to include the relative phase between the
departure orbit and destination orbit. Therefore, the departure date and close approach distance become
important variables, thus rendering this problem beyond the scope of our model.

4. Time-Free Minimum-Fuel Transfers

In support of Eq. (6), we derive in this section a semi-empirical equation for the delta-v of the TFMF problem,
�v⇣ , by analyzing the solution to the optimal control equations outlined in Sec. 2 for 350 di↵erent target
orbits and accelerations within the mission parameter space given by: af 2 [1.02, 1.40], ef 2 [0, 0.25], and
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af = 1.07
ef = 0.10
f j = 0.001
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Figure 3. Example time-free minimum-fuel solution showing: (a) the trajectory in the ecliptic plane, (b) the
radial distance from the sun, (c) the optimal acceleration control law, and (d) the optimal acceleration direction
control law. The target orbit is characterized by af = 1.07 and ef = 0.10, while the maximum acceleration is
given by fj = 0.001.

fj 2 [0.005, 0.05]. The cost function for a minimum-fuel transfer is given by J⇣ [x (·) ,u (·) , tf ] =
R tf
t0

fdt.33

The equations are solved using the MATLAB-based software package DIDO,36 and the control laws are
verified by integrating the dynamical equations with a fourth-order Runge-Kutta solver.37

An example TFMF trajectory is shown in Fig. 3. The trajectory within the ecliptic plane, Fig. 3(a),
reproduces the characteristic low-thrust spiral-orbit with approximately three revolutions for the given input
parameters. Fig. 3(b) shows the normalized radial distance of the spacecraft from the sun. Peaks and valleys
in Fig. 3(b) correspond the the apsides and periapsides of the spiral-orbit, respectively. It is evident from
Fig. 3(c) that the optimal TFMF control law utilizes thrusting arcs while the spacecraft is near periapsis.
Finally, Fig. 3(d) shows that the acceleration vector is applied mainly in the tangential direction.

The delta-v provided by the lunar assist may be written in vector form as �v = ⌫ cos �e✓ + ⌫ sin �er,
where e✓ and er are the tangential and radial unit vectors, respectively. The optimal control problem in
Sec. 2 is formulated such that the strength, ⌫, and angle, �, of the lunar assist are free parameters of the
optimization scheme. Therefore, the solution yields the optimal set of (⌫, �) for a given maneuver.

A strong correlation was observed between the strength of the lunar assist and the apsis of the target
orbit, ra = af (1 + ef ) [Fig. 4(a)]. It is clear from this figure that ⌫ scales linearly with ra until a certain
point after which the full capability of the lunar assist is required, or ⌫ = ⌫

max

. The linear region can be
understood as follows: if possible, the lunar assist should place the spacecraft into an orbit whose apsis is
halfway between of the apsides of the target orbit and the initial orbit. Using this reasoning, the lunar assist
magnitude may be formulated as

⌫ =

8
<

:
1� r̄�1/2

a r̄a < r̄⇤a

⌫
max

r̄a > r̄⇤a
. (12)

Here, r̄a ⌘ 0.5(1 + ra) is the average of the initial and final orbit apsides, and r̄⇤a ⌘ (1� ⌫
max

)�2. Fig. 4(a)
indicates good agreement between the simple model and TFMF solution, with ⇠ 90% of the data points
falling within ⇠ 10% of the model. Finally, Fig. 4(b) shows that � ⌧ 1 over most of the parameter space,
which indicates that the optimal lunar assist is most often applied along Earth’s velocity vector.

Finding a correlation between �v⇣ = J⇣ and the mission parameters proved to be somewhat complex.
For a given eccentricity, J⇣ was observed to be relatively constant as af increased. This proved true until

the value af = (1� ef )
�1, after which J⇣ scaled according to J⇣ + ⌫ ⇡ 1 � a�1/2

f . We note that the
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Figure 4. Scaling of the (a) optimal, normalized lunar assist delta-v magnitude, ⌫, and (b) direction, �, as
a function of the apsis of the target orbit, ra. The data points correspond to the numerical solution of the
time-free minimum-fuel optimal control problem. The solid lines are obtained from Eq. (12).

quantity 1� a�1/2
f is the absolute velocity change of the spacecraft for a zero eccentricity final orbit. These

observations led to the following model for �v⇣ ,

�v⇤⇣ = ⇠H(⇠), (13)

where we define the quantities
�v⇤⇣ ⌘ �v⇣ +

p
1� ef + ⌫ � 1, (14)

and
⇠ ⌘ a�1/2

f

⇣
r1/2p � 1

⌘
. (15)

In Eq. (13), H is the Heaviside step function and marks the transition between the two regions of di↵erent
scaling. Interestingly, ⇠ < 0 corresponds to the Apollo class asteroids, whose orbits cross the Earth’s orbit,
and ⇠ > 0 the Amor asteroids, whose orbits do not cross the Earth’s orbit. The agreement between the
TFMF numerical solutions and the model of Eqs. (13-15) may be seen in Fig. 5(a).
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Figure 5. (a) Scaling of the time-free minimum-fuel delta-v, �v⇣ , with the parameter ⇠. The data points
correspond to the numerically solution of the time-free minimum-fuel optimal control problem. The solid lines
are obtained from Eqs. (13)-(15). Apollo and Amor asteroids correspond to ⇠ < 0 and ⇠ > 0, respectively.
(b) Scaling of the minimum-time minimum-fuel delta-v, �vtf , with the product of the maneuver time and
acceleration, tff . The solid line corresponds to the “full throttle” control law.

5. Minimum-Time Minimum-Fuel Transfers

We apply the optimal control model of Sec. 2 to the MTMF problem over the same parameter space to
determine an estimate for the remaining free parameter in Eq. (6), ⌧ . Recall that ⌧ ⌘ t

min

/t⇤
min

= ft
min

/�v⇣ .
The relevant cost function for the MTMF problem is Jtf [x (·) ,u (·) , tf ] = tf .
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Figure 6. Example minimum-time minimum-fuel solution showing: (a) the trajectory in the ecliptic plane,
(b) the radial distance from the sun, (c) the optimal acceleration control law, and (d) the optimal acceleration
direction control law. The target orbit is characterized by af = 1.07 and ef = 0.10, while the maximum
acceleration is given by fj = 0.001..

An example MTMF trajectory is shown in Fig. 6. Contrary to Fig. 3(a), Fig. 6(a) shows a very quick
transfer from the initial orbit to the final orbit occurring near the orbital intersection. Fig. 3(b) shows
that the normalized radial distance of the spacecraft from the sun monotonically increases for this transfer,
thus indicating that the orbit does not go through a complete revolution. Fig. 3(c) demonstrates that the
optimal MTMF control law utilizes near-continuous thrusting at maximum acceleration. However, Fig. 3(d)
shows that the acceleration vector reverses direction nearly one-third the way through the maneuver, which
suggests that the spacecraft is “braking” until it reaches the target orbit.

In Sec. 1 we made the assumption that the MTMF delta-v, �vtf , is related to the maneuver time, tf , by
the “full-throttle” control law, or �vtf = tff . We verify this assumption in Fig. 5(b), which shows that the
vast majority of MTMF solutions fall within ⇠ 20% of the “full-throttle”-line for all of the MTMF solutions
within our parameter space.
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Figure 7. Delta-v, �v, versus maneuver time, tf , for the solution to the time-bound minimum-fuel optimal
control problem (data points) and using the scaling model of Eq. (6) with ⌧ = 1.7. Solutions are presented for
two di↵erent target orbits and accelerations. Dashed lines correspond to the “full throttle” control law.

Unfortunately, a clear correlation between ⌧ and the mission parameters did not reveal itself over the
chosen parameter space. We did, however, observe a slight decrease of ⌧ with increasing af . Furthermore,
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⌧ was seen to be independent of fj for fj  0.05. As a result, we are forced to keep ⌧ as a free parameter,
with the additional insight that the MTMF solutions yield an approximate value of ⌧ = 1.7 ± 0.6, which
will be used throughout our analysis. A comparison between the model given by Eq. (6) with ⌧ = 1.7 and
the numerical solution to the TBMF problem over a wide range of maneuver times for two di↵erent sets of
mission parameters is shown in Fig. 7. We note that the under-prediction of �v by Eq. (6) in the non-optimal
region of the curve is consistent with the optimistic nature of our model.

IV. Maximum Return Mass Scaling

We are now in the position to return to the question posed at the outset: How does the optimal electric
propulsion system scale with the asteroid orbit and mass? The mission time and mass balance, Eqs. (1)
and (2), are related to the propulsion system and asteroid parameters through the Earth escape time and
propellant mass fraction equations for phase one, Eqs. (3) and (4), and optimal rendezvous and return
propellant mass fractions for phases two and three, Eq. (6).

We re-cast the power supply and propulsion system mass fraction in the more insightful form:

⇢ =
uef2 (1� ⇣

1

)

2⌘↵
. (16)

Here, ⌘ is the thrust e�ciency of the propulsion system and ↵ is the power supply specific power. The model
inputs are now the set of values corresponding to (t

2

, t
3

, f
2

, ue, ⌘, ↵, �, af , ef ). The accelerations of the
other two mission phases, f

1

and f
3

, result from f
2

and the overall mission mass balance.
We further constrain the problem by imposing the requirement that t

2

+ t
3

= t
syn

, where t
syn

is the
normalized synodic period of the target orbit, and is a function of only af . The time between close approaches
between the asteroid and Earth scales approximately with the synodic period.38 Therefore, this constraint
implies that the departure and capture lunar assists occur at a time of close approach, which is consistent
with the assumptions of our trajectory optimization model.

Furthermore, the time constraint implies t
2

f
2

= t
3

f
3

, from which Eq. (6) yields ⇣
2

= ⇣
3

. The inputs to
the model are then reduced to (f

2

, ue, ⌘, ↵, �, af , ef ). The model is now su�ciently constrained to find

the optimum acceleration, f̂
2

, and exhaust velocity, ûe, as a function of the target orbit parameters, af and
ef , and the spacecraft and propulsion system performance specifications, �, ⌘, and ↵. Here, we define the
optimum acceleration and exhaust velocity as the values that maximize the mass amplification ratio, µ.
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mp,1 ëmleo

r

d
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m ê m̀

2 4 I
é
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`
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Figure 8. Spacecraft mass balance (gray lines) and mass amplification ratio (black line) for the target orbit

(af , ef ) = (1.07, 0.10) with ↵ = 20 W/kg, ⌘ = 0.6, and � = 0.1. f̂2 = 1.54 ⇥ 10�4 m/s2 corresponds to the optimal

value for the given orbit and specifications. The maximum mass amplification ratio is µ̂ = 86 at Îsp = 7, 456 s.
Near-optimal conditions are found to be Ĩsp = 5, 592 s with µ̃ = 82.

A plot of the I
sp

-dependance of µ and the various mass ratios for the target orbit (af , ef ) = (1.07, 0.10) is

shown in Fig. 8. In this example we take ↵ = 20 W/kg, ⌘ = 0.6, and � = 0.1. Furthermore, f̂
2

= 1.54⇥10�4

m/s2, which corresponds to the optimal value for the given orbit and specifications. Note thatmp,j represents
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the propellant mass consumed in the jth mission phase. The maximum mass amplification ratio is defined
as µ̂, which occurs at I

sp

= Î
sp

. Near Î
sp

, the majority of the mass inserted into LEO, m
leo

, consists of
the power supply and propulsion system and the propellant used in the third phase of the mission. The
propellant used in the first phase of the mission and the spacecraft mass also make up a non-negligible part
of m

leo

. The propellant used in the second phase, however, is typically an order of magnitude lower than
any of the other masses over the relevant specific impulse range.

The curves in Fig. 8 were found numerically using the implicit solution to Eq. (2) after substituting the
delta-v model of Sec. II into the respective propellant mass fractions. It is possible using this method to
find ûe and f̂

2

, and thus the optimal specific impulse and thrust (or power), for any target asteroid. While
analyzing these solutions over a wide parameter space, we noticed a very simple and general trend emerge
between the optimal power supply and propulsion system mass fraction and the spacecraft mass fraction,
specifically ⇢̂ ⇡ 0.48 (1� �). While the numerical method is useful in its generality, we use this insight to
seek a less exact, yet more intuitive approximation for optimal propulsion system parameters.

We begin by defining a modified mass amplification ratio

µ⇤ ⌘ ue (1� � � ⇢)

�v⇣
, (17)

where µ⇤ takes into account the spacecraft, power supply and propulsion system, and third phase propellant
mass balance in the limit �v

3

! �v⇣ . We will eventually add a correction for the non-negligible first phase
propellant mass (e.g. see Fig. 8).

With the goal of finding an analytical solution for the optimal power supply and propulsion system mass
fraction, ⇢̂, we use Eq. (16) to rewrite ue in terms of ⇢ and f

2

,

ue = u⇤
e +�v

1

, (18)

where we have defined

u⇤
e ⌘ 2⌘↵⇢

f
2

. (19)

We substitute Eqs. (18) and (19) into Eq. (23) and solve for the extremum. This ultimately produces
the following analytical equation for ⇢̂ in terms of f̂

2

and the mission parameters:

⇢̂ =
1

2
(1� �)� f̂

2

�v
1

4⌘↵
. (20)

Indeed, we were able to show that the numerical solutions over a wide parameter space collapsed entirely
onto the line described by Eq. (20). Furthermore, substitution of Eq. (19) into Eq. (20) yields

⇢̂ ⇡ 1

2

✓
1� �v

1

2û⇤
e

◆
(1� �) , (21)

in the limit where �v
1

/u⇤
e ⌧ 1. The first term in brackets is typically ⇠ 0.95, thus we have recovered

the general trend that emerged from the numerical solutions. The meaning of Eq. (21) is the following: to
maximize the return mass of the asteroid, the mass of the propulsion system and power supply should be
nearly equal to the mass of propellant used throughout the entire mission.

Eq. (20) is significant because, if a similar scaling relation for f̂
2

can be found, Eqs. (18) and (19) give
a closed-form analytical equation for ûe. Indeed, using the numerical solution to the mass optimization
problem over a wide parameter space and least-squares fitting the data, we found that f̂

2

approximately
follows the scaling relation,

f̂
2

⇡ 10�4t�0.5
syn

(⌧/1.7)0.5 (↵⌘)0.53
�
6�2 + 0.04

��0.12
. (22)

Here, f̂
2

is given in m/s2, t
syn

is given in years, ↵ is given in W/kg, and all other variables are dimensionless.
We note that Eq. (22) was observed to reproduce the numerical solution to within a few percent.

We add the propellant mass of the first phase to the modified mass amplification ratio to arrive at an
approximate equation for the maximum mass amplification,

µ̂ = µ̂⇤ � �v
1

�v⇣
, (23)
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Figure 9. Scaling of the maximum return mass solutions. A comparison is shown between the numerical
solution (crosses) to Eq. (2) and the semi-empirical model (lines) of Eqs. (23-22) for (a) the optimal and near-
optimal specific impulses, Îsp and Ĩsp, respectively, and (b) maximum mass amplification, µ̂. Orbital phase

space (af -ef ) contour plots are presented for (c) Îsp, (d) µ̂. Dashed lines represent the division between Apollo
and Amor asteroids, and orbits that do and do not utilize a full lunar assist. The shaded region corresponds
to direct insertion orbits of Fig. 2.

where µ̂⇤ is evaluated using Eqs. (18-20) and (22).
Finally, we note that the curve for µ vs. I

sp

is not strongly peaked near Î
sp

, which is exemplified in Fig. 8.
Therefore, a small sacrifice in the return mass may be used to obtain a significant decrease in the required
specific impulse. We define the near-optimal specific impulse, Ĩ

sp

, as the specific impulse required to bring

back 95% of the maximum possible mass, or µ̃ = 0.95µ̂. Substituting this metric into Eq. (23) with f̃
2

= f̂
2

,
it can be shown that the near optimal conditions are well-approximated by: Ĩ

sp

⇡ 0.75Î
sp

, ⇢̃ ⇡ 0.75⇢̂.
The value of the optimal specific impulse from Eq. (18) and near-optimal specific impulse as a function

of the semi-major axis of the target orbit, af , for ↵ = 20 W/kg, ⌘ = 0.6, � = 0.1, and ef = 0.07 are shown
in Fig. 9(a). Also shown are data points corresponding to the numerical solution to Eq. (2) for optimality
and near-optimality. It is evident that the optimum specific impulse of the longer duration missions (lower
af ) is much higher than the shorter duration missions (higher af ). This is because longer duration missions
may be completed with much lower levels of thrust, and therefore higher specific impulses.

Scaling of the maximum mass amplification ratio may be seen in Fig. 9(b). The asymptote in these figures
corresponds to the direct-insertion region described in Sec. 3. For the Amor asteroids, with af (1� ef ) > 1,
this implies that µ̂ increases drastically as the close approach distance decreases. The increase observed as
the Apollo asteroid orbits approach the asymptote can be explained by a decreased relative velocity between
the Earth and asteroid at the point of their orbital intersection. These results extend the findings of Landau
et. al,18 who concluded that the return mass of the asteroid can be maximized at a fixed-I

sp

by decreasing
the close approach distance and relative velocity.

Contour plots of the optimal specific impulse and mass amplification ratio as a function of the target
asteroid orbit may be seen in Figs. 9(c)-(d) for ↵ = 20 W/kg, ⌘ = 0.6, and � = 0.1. The shaded regions of
these plots correspond to the direct insertion region of Fig. 2. It is clear that Î

sp

is independent of ef , which
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results from the time constraint on the second and third mission phases.
The dashed lines in Fig. 9(d) represent to the division of the Apollo and Amor asteroids, and target

orbits whose optimal trajectories use either a partial or full lunar assist [see Eq. (12)]. Fig. 9(d) indicates
that the scaling of µ̂ varies over four distinct regions in the following manner:

I. Apollo + Partial LA: The maximum return mass is large near the direct-insertion region, but falls o↵
rapidly as the relative velocity between the asteroid and Earth at the orbital intersection increases.
The increase in the returnable mass as af ! 1 is a result of the rapidly increasing mission time.

II. Apollo + Full LA: The maximum return mass is somewhat independent of af , and rapidly decreases
for increasing ef .

III. Amor +Partial LA: The maximum return mass is mostly independent of ef , and rapidly decreases for
increasing af .

IV. Amor + Full LA: The maximum return mass scales mainly with the periapsis of the target orbit,
and rapidly increases as the distance between the periapsis approaches Earth’s semi-major axis. The
maximum values in this region are higher than those in region I.

Thus, the results of our mission model imply that the most desirable targets are Amor asteroids whose
periapsis approaches Earth’s semi-major axis (rp ! 1) and whose apsis satisfies ra < 2 (1� ⌫

max

)�2 � 1,
where ⌫

max

is the maximum delta-v of the lunar assist normalized by Earth’s orbital speed. Apollo asteroids
whose semi-major axis approaches that of Earth’s also provide large return mass opportunities, however
their large synodic period implies unreasonable mission durations. Finally, both Apollo and Amor asteroids
whose orbits require a full lunar assist are attractive targets near the full lunar assist boundary, but rapidly
become unattractive away for that boundary. We note that an increase of around

p
2 in the returnable mass

for asteroids in this region is observed by extending the mission duration to 2t
syn

, however, this value is still
much lower than the best region III asteroids.

We complete this section with a discussion of the values obtained for the optimal and near-optimal specific
impulse and mass amplification ratio. As we mentioned in Sec. 5, the shape of the non-optimal region of the
�v-tf curve within our model depends on the free parameter, ⌧ . By solving for Î

sp

, and µ̂ while varying ⌧ ,
we find that the uncertainty in the values presented in Fig. 9 are around 20% for ⌧ within the limits observed
by the MTMF solutions. More accurate values may be obtained if a scaling relation for ⌧ can be found in
terms of the parameters of the model, however, we note that a 20% uncertainty is likely consistent with the
uncertainties inherent to the assumptions of our simplified model.

V. Conclusions

We presented a simple model for the mission time and mass constraints of an asteroid capture and re-
turn mission based on the propellant requirements of each mission phase. Using numerical results from the
nonlinear optimization software, DIDO, we derived scaling laws for the propellant requirements of the ren-
dezvous and return phases of the mission based on the maneuver time and the asteroid orbit and propulsion
system parameters. Constraining the rendezvous and return phases of the mission by the synodic period of
the target asteroid, we used the mass conservation equation to numerically solve for the optimum specific
impulse, and developed from this solution a semi-empirical equation for the optimal and near-optimal specific
impulse, and mass amplification ratio.

Emerging from this model was a simple scaling relation between the optimal power supply and propulsion
system mass ratio and the spacecraft mass ratio. From this relation we can define a power coe�cient,

CP ⌘ P

↵m
leo

(1� �)
, (24)

which relates the power, P , to the specific power, ↵, spacecraft mass ratio, �, and total spacecraft mass in
low-Earth orbit, m

leo

. Eq. (21) implies that the maximum mass amplification of an ACR mission requires
CP ⇡ 1/2, while a mission capable of 95% of the maximum mass amplification requires CP ⇡ 3/8. This
simple result is general and accurate to O (�v

1

/2u⇤
e). We note that the power increases with the specific

power of the power supply due to the increased return mass capability. In other words, for a given asteroid
mass, m

leo

decreases as ↵ increases.
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It was determined by the KISS case study that “su�ciently powerful” electric propulsion systems are
an enabling technology for asteroid capture and return missions.5 Their results showed that an 18.8 ton
spacecraft equipped with near-term power and propulsion technology (four 10 kW/3,000 s Hall thrusters
operating on 40 kW solar power) is capable of returning a 1,300 ton asteroid. The results from our model,
on the other hand, can be used to determine the far-term requirements of electric propulsion systems needed
to maximize the capability of asteroid capture and return missions. The deliverable mass to LEO of current
(and former) launchers is on the order of 104 � 105 kg. For a specific power of 20 W/kg, our model implies
that propulsion systems capable of processing 100 kW – 1 MW of power with a specific impulse in the range
5,000 – 10,000 s have the potential to return asteroids on the order of 103 � 104 tons.
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