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Thrust and efficiency model for electron-driven magnetic nozzles
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USA

(Received 1 May 2013; accepted 23 September 2013; published online 11 October 2013)

A performance model is presented for magnetic nozzle plasmas driven by electron thermal

expansion to investigate how the thrust coefficient and beam divergence efficiency scale with the

incoming plasma flow and magnetic field geometry. Using a transformation from cylindrical to

magnetic coordinates, an approximate analytical solution is derived to the axisymmetric

two-fluid equations for a collisionless plasma flow along an applied magnetic field. This solution

yields an expression for the half-width at half-maximum of the plasma density profile in the

far-downstream region, from which simple scaling relations for the thrust coefficient and beam

divergence efficiency are derived. It is found that the beam divergence efficiency is most

sensitive to the density profile of the flow into the nozzle throat, with the highest efficiencies

occurring for plasmas concentrated along the nozzle axis. Increasing the expansion ratio of the

magnetic field leads to efficiency improvements that are more pronounced for incoming plasmas

that are not concentrated along the axis. This implies that the additional magnet required to

increase the expansion ratio may be worth the added complexity for plasma sources that exhibit

poor confinement. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4824613]

I. INTRODUCTION

Simply stated, a magnetic nozzle (MN) converts random

thermal energy of a plasma into directed kinetic energy. This

conversion occurs as the plasma expands through a cylindri-

cally symmetric magnetic field that is contoured similarly to

the solid walls of a conventional rocket nozzle (see Fig. 1).

Momentum imparted to the accelerated plasma is transferred

back to the MN through the repulsion of the magnetic circuit

and internal plasma currents. Applications include laboratory

simulations of space plasmas,1 surface processing,2 and

plasma propulsion for spaceflight.3–22

MNs have been envisioned as the acceleration stage for a

diverse number of space propulsion concepts ranging from

50 W thrusters14 to 1 GW Fusion rockets.21 Their ability to

scale to high powers is largely due to their independence from

electrodes, whose erosion typically limits the lifetime of high-

power thrusters.23 Other benefits include magnetic shielding

of solid surfaces from high energy particles (recently observed

to significantly decrease the erosion of Hall thruster

channels),24–26 a quasi neutral exhaust beam, and the ability to

use various propellants.27 The main challenges to the efficacy

of MNs for space propulsion are poor ionization and excessive

losses at low powers and magnetic fields,7 and plasma detach-

ment from the applied magnetic field.28–32

The low densities and high temperatures within a typical

MN plasma frequently prevent thermal equilibrium among

the various species.22 Oftentimes, the energization stage of

the upstream plasma source targets a single species (e.g., res-

onant wave heating). As a result, the plasma expansion dy-

namics will be driven primarily by the species that possesses

the highest temperature.33,34

An electron-driven magnetic nozzle (ED-MN), the focus

of this paper, is characterized by the flow of a hot electron,

cold ion plasma (Te � Ti) through a convergent-divergent

magnetic field topology. The electrons, by virtue of their

temperature, naturally expand through the nozzle at a rate

greater than the ions. The tendency of the plasma to remain

globally quasineutral leads to the formation of an ambipolar

electric field,4,5 and under certain circumstances a current-

free double layer (CFDL)35–38 or quasineutral steepened

layer (QSL),8,9 which accelerates the cold ion popula-

tion.19,39 Confinement of the thermal electrons by the applied

magnetic field induces an azimuthal current density, or elec-

tron diamagnetic current, which is the primary mechanism of

momentum transfer between the plasma and nozzle.3,6,16,31

A. Motivation for an ED-MN performance model

ED-MNs are commonly found as the acceleration stage

of wave-produced plasma propulsion concepts, e.g., electron-

cyclotron-resonance (ECR)10–12 and helicon thrusters.13–18 In

contrast to the generalized MN field geometry of Fig. 1, expan-

sion and acceleration of the plasma typically occur in the

fringe field of the plasma source magnets. For a fully ionized

argon plasma with an electron temperature of 10 eV, input

power of 1 kW, 50% thrust efficiency, and thrust coefficient

(defined later) of 4, these devices have the potential to operate

near a specific impulse (Isp) of 2000 s with 50 mN of thrust.

Direct thrust stand measurements of helicon thrusters

have recently been used to verify the generation of thrust,15–18

observe force coupling between diamagnetic plasma and elec-

tromagnet currents,16 and characterize the performance over a

wide operational parameter space.17,18 These thrust measure-

ments, typically between 1 and 10 mN=kW, demonstrate spe-

cific impulse values in the range of 100–500 s with thrust

efficiencies near 1%.a)jml@princeton.edu. URL: http://alfven.princeton.edu
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Clearly, a deeper understanding of the loss processes

inside the plasma source and through the expansion region is

required if thrusters that utilize ED-MNs are to reach their

potential and become competitive with established electric

propulsion devices within a similar class (102�104 W).

Assuming the plasma is singly ionized, the specific

impulse may be written as Isp � gmIi;e
sp . Here, gm ¼ _mi= _m is

the propellant mass utilization efficiency and Ii;e
sp is the spe-

cific impulse contribution from the ions and electrons. The

thrust contribution of the neutral gas is assumed to be negli-

gible due to low temperatures and pressures.16

We define the thrust coefficient as the thrust normalized

by the pressure force at the nozzle throat. The thrust coeffi-

cient relates to the specific impulse and the ion acoustic speed

at the nozzle throat, cs ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Te=mi

p
, through CT ¼ g0Ii;e

sp =cs. A

normalized specific impulse may then be defined such that,

Î sp �
g0Isp

cs
¼ gmCT : (1)

We will later show that CT typically takes values between 2

and 7 and depends mainly on the MN geometry. Equation

(1) demonstrates the known influence of the mass utilization

efficiency on the specific impulse. This has been experimen-

tally shown to be the primary cause of the poor Isp-perform-

ance of ED-MN thrusters.15,18

The thrust efficiency, g, is classically defined40 as

g ¼ F2

2 _mPtot

; (2)

where F is the thrust, _m is the total mass flow rate, and Ptot is

the total input power. It may be expressed as the product of a

beam divergence efficiency (gdiv) and plasma source internal

efficiency (gint): g ¼ gdivgint.
41 Here, gdiv is the ratio of the

directed to undirected kinetic power of the exhaust beam and

gint accounts for losses associated with coupling between the

power supply and plasma, ionization and excitation of the

propellant, radiation, and particle transport to the walls of

the thruster.

The plasma source influences gm and gint,
41 while the

MN controls gdiv and CT.6 Thus, the specific impulse and

thrust efficiency of an ED-MN thruster depend on parameters

inherent to either the plasma source or the MN. It is, there-

fore, possible to separate the performance of the plasma

source from that of the ED-MN when developing thrust and

efficiency models.

The properties of the source plasma are likely to depend

on the mass flow rate, source geometry, magnetic field

strength and geometry, input power, ionization mechanism,

and operation mode.42–44 Therefore, performance modeling

of the plasma source is difficult to generalize even among

this restricted class of magnetic nozzle thrusters. Models

have been put forth to explain the power balance within

ECR2 and helicon thrusters.41 The addition of geometric

effects and wave physics has proven to be difficult, however.

Fortunately, the nature of plasma flow through the MN

is more amenable to a general analytical model. Thus, the

question that we will address in this paper is the following:

how does the beam divergence efficiency, gdiv, and thrust

coefficient, CT, of an electron-driven magnetic nozzle scale

with the properties of the incoming plasma flow and mag-

netic field geometry?

B. Previous ED-MN models

Andersen et al.45 used a quasi-one-dimensional (Q1D)

model to analyze experimental data that showed ion

acceleration through a MN. Modifications to this model

have included disparate ion and electron temperatures,46

ionization,2 recombination,47 neutral collisions,48 CFDLs,37

and electron kinetic effects.49

Q1D models are limited by the fact that any variation of

the plasma parameters in the direction perpendicular to the

flow is averaged out. Therefore, it is impossible to predict

the effect of non-uniformities in this direction. Some semi-

empirical performance models have had success by assuming

that the radial plasma density profile maintains the same

shape, or is self-similar, throughout the exhaust.16,48 The

self-similar assumption, however, is not capable of describ-

ing the radial focusing of the plasma density profile with

respect to the magnetic field divergence: a behavior that has

been observed in several experiments4,13,50,51 and numerical

models.6,13

Ahedo and Merino investigated the 2D nature of ED-

MNs by numerically solving the collisionless two-fluid

plasma equations.6 They showed that the relative focusing of

the density profile occurs along with the growth of an electric

field perpendicular to the direction of the applied magnetic

field. They also observed separation between the ion and

electron (magnetic) streamlines. A later extension of their

numerical model to the far downstream region revealed that

ion separation from the magnetic field lines results in the

bulk flow of momentum towards the downstream direction,

thus minimizing the problem of plasma detachment, and

allowing for the determination of gdiv and CT.52

Numerical models have provided valuable insight into

the 2D nature of ED-MN exhaust plumes, but a simple per-

formance model that captures this nature is lacking. Because

FIG. 1. Example of a magnetic nozzle configuration. Solid gray lines repre-

sent the surfaces of constant magnetic flux along which the magnetic field

vector, ~B, is tangential.
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of its ability to self-consistently reproduce 2D effects, we

seek an approximate, fully analytical solution to the model

of Ahedo and Merino. We derive in Sec. II a general solution

to the two-fluid equations for a collisionless, magnetized

plasma flow with Te � Ti. In Sec. III, we apply this solution

to the ED-MN exhaust plume and compare the analytical so-

lution to the numerical results of Ahedo and Merino. The

transparency of our analytical solution allows us in Sec. IV

to analyze in greater depth than possible with numerical sol-

utions the dependence of the 2D nature of the plasma exhaust

on the properties of the plasma flow into the MN. This analy-

sis ultimately yields analytical scaling laws for gdiv and CT in

terms of the properties of the plasma flow into the MN and

magnetic field geometry.

II. TWO-FLUID MODEL SEPARABLE SOLUTION

In this section, we derive an approximate analytical solu-

tion to the two-fluid model proposed by Ahedo and Merino.6

Our solution is motivated by their numerical results, which

indicate that the average of the plasma potentials along the

nozzle axis and the exhaust boundary approximates the poten-

tial predicted from the Q1D model. Assuming that the ion tra-

jectory approximately follows the magnetic field lines, it is

possible to find the potential gradient in the direction perpen-

dicular to the magnetic field. This result, combined with the

Q1D solution for the potential averaged over the plasma

cross-section, yields an analytical expression for the 2D poten-

tial distribution in the plasma. Conservation equations provide

the plasma density and ion Mach number.

A. Governing equations

We restrict our model to an isothermal, collisionless

plasma flow. The isothermal electron assumption is common

in the literature due to the high electron thermal conductivity

along the magnetic field.2 The validity of the collisionless

assumption depends strongly on the properties of the source

plasma, but is typically met in low-pressure, high-tempera-

ture ED-MN plasmas.22

The model also neglects electron inertial effects and

induced magnetic fields. Electron inertial effects become im-

portant when rL;e=LrB � 1, where rL;e is the electron Larmor

radius and LrB ¼ jB=rBj is the magnetic field scale length.

The magnitude of the induced magnetic field becomes the

same order as the applied magnetic field as b � 1. Here, b is

the ratio of the thermal energy density of the plasma to the

magnetic field energy density. These requirements

(rL;e=LrB � 1 and b� 1) are met in a typical ED-MN plasma

source.22 Far downstream, however, both rL;e=LrB and b may

approach unity,22 at which point these processes have been

hypothesized to play a pivotal role in plasma detachment.29–32

In light of the above assumptions, the problem is

described by the momentum and continuity equations for the

ions and electrons.6 These eight equations may be re-cast in

the following dimensionless form:

r 1

2
u2

i þ /

� �
¼ ui �

B

qi

þr� ui

� �
; (3)

rðln n� /Þ ¼ ue �
B

qe

; (4)

r 	 ðnuiÞ ¼ 0; (5)

r 	 ðnueÞ ¼ 0: (6)

Here, we have normalized the ion and electron velocities by

the ion acoustic speed, cs ¼ ðkbTe=miÞ1=2
. The electric poten-

tial, U, is normalized by the electron temperature, Te, such

that / ¼ eU=kTe. Furthermore, qj ¼ ðmjcs=eB
Þ=L
 is the

normalized Larmor radius of species j, with B
 and L


the characteristic magnetic field strength and length scale of

the plasma, respectively. We note qi represents an effective
Larmor radius for the ions, and can be viewed as a measure

of ion magnetization.6

B. Quasi-field-aligned approximation

Using an approximation for the ion trajectory, we will

now reduce Eqs. (3)–(6) to a system of three equations for

three unknowns: the ion Mach number, M ¼ juij; the plasma

density, n; and the plasma potential, /.

First, we consider the component of Eq. (4) along the

magnetic field unit vector, b,

b 	 rð/� ln nÞ ¼ 0: (7)

This is the well-known Boltzmann relation.53

Ahedo and Merino6 show that the terms on the right hand

side of Eq. (3) have little influence on the ion dynamics for

flows that satisfy qi � 1. The triviality of this term, which

includes the centrifugal and magnetic forces, implies that the

ion motion is dominated by electrostatic forces. Furthermore,

they find M� jui 	 ehj, which implies the ion velocity unit

vector, s, is contained primarily in the r–z plane: s 	 eh � 0.

Projecting Eq. (3) onto the ion velocity unit vector

relates the ion Mach number and potential,

s 	 rðM2 þ 2/Þ ¼ 0; (8)

which represents the conservation of ion energy along an ion

streamline.

The final equation comes from rewriting Eq. (5) in inte-

gral form. Applying the divergence theorem yields,ð
S

nMðs 	 dAÞ ¼ 0; (9)

where S denotes the control surface.

Equations (7)–(9) represent an underdetermined system

of three equations for four unknowns: M, n, /; s. The only

physical phenomena eliminated from the governing equa-

tions, Eqs. (3)–(6), are the magnetic and centrifugal forces

on the ions. Closure of the problem does not require the

equation for electron force balance in the perpendicular

direction as it would introduce the electron azimuthal veloc-

ity, uh;e, as a fifth unknown. In fact, assuming knowledge of

the plasma parameters along a cross-sectional flow plane,

uh;e is uniquely determined everywhere by only the magnetic

field topology.32
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Numerical results6 indicate that, even for plasmas where

the ion streamlines deviate significantly from their initial mag-

netic flux surface, the local angle between the magnetic field

and ion velocity unit vectors remains less than 5� even far

downstream into the plume. Thus, we close the system of

equations by assuming that ion velocity unit vector is approxi-
mately parallel to the magnetic field unit vector, s � b. We

refer to this assumption as quasi-field-aligned flow.

While the quasi-field-aligned approximation seems pro-

hibitive, especially in the presence of significant cross-field

ion motion, we will show in Sec. III that it allows analytical

solutions that exhibit remarkable agreement with numerical

solutions. Eventually, however, this approximation becomes

invalid in the far-field region beyond the turning point of the

magnetic field.52

C. Coordinate transformation

With the aim of further simplifying Eqs. (7)–(9), we

employ a transformation from cylindrical to magnetic

coordinates.54

The magnetic field vector, B, may be described in terms

of two scalar functions as

B ¼ � 1

r
ðeh �rwÞ ¼ �rf; (10)

where w is constant along any magnetic flux surface, f is con-

stant along any surface that is everywhere normal to the mag-

netic field vector, and eh is the unit vector in the azimuthal

direction. We will refer to surfaces of constant w and f as w-

surfaces and f-surfaces, respectively. Figure 2 illustrates the

conversion from cylindrical coordinates to magnetic coordi-

nates for a plasma flow contained within the flux surface wp.

The coordinate transformation allows the simplification,

b 	 dA ¼ dA, where dA is the differential area of a f-surface.

The integral of a function Xðw; fÞ over a f-surface from w 2
½0;wp� simplifies to

ð
f
Xðw; fÞdA ¼ 2p

ðwp

0

Xðw; fÞ
Bðw; fÞ dw: (11)

Furthermore, the w-average of this function is given by

�XðfÞ ¼ ½AðfÞ��1

ð
f
Xðw; fÞdA; (12)

where AðfÞ is the total area of the f-surface.

D. Throat plane

We now assume that there exists a throat plane defined

by f ¼ ft, along which Mðw; ftÞ ¼ 1 and /ðw; ftÞ ¼ 0. The

plasma density profile along this plane is defined by the func-

tion nðw; ftÞ ¼ ntðwÞ.
Using the quasi-field-aligned assumption, the conditions

at the throat plane may be substituted into Eqs. (7) and (8) to

yield algebraic expressions for the density and ion Mach

number in terms of the electric potential,

n ¼ nte
/; (13)

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2/

p
: (14)

Thus, our main task is to derive /, from which n and M may

be found from Eqs. (13) and (14).

E. Separable solution

The coordinate transformation presented in Sec. II C

enables the separate treatment of the electric potential aver-

aged over the beam cross-section and its variation across the

beam cross-section,

/ðw; fÞ ¼ �/ðfÞ þ uðw; fÞ; (15)

with the additional requirementð
f
uðw; fÞdA ¼ 0: (16)

Hence, along each f-surface, the potential is separated into a

w-averaged component, �/, and a two-dimensional, w-de-

pendent correction, /, whose average over the entire beam

cross-section along the f-surface is zero.

The f-dependence of the w-averaged potential is

obtained from the well known Q1D model,45

e
�/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�/

q
¼ At

A
: (17)

Here, At ¼ AðftÞ may be found from Eq. (11). We note that

Eq. (17) is an implicit equation and does not have a closed-

form solution.

The w-dependent correction, /, may be found from the

force balance on ions in the direction perpendicular to the

magnetic field,

rB
du
dw
¼ �M2

Rc
: (18)

We have introduced here the local radius of curvature of the

ion streamline, Rc ¼ jn 	 ðs 	 rsÞj�1
, where n is the unit vec-

tor along a f-surface.

Invoking the quasi-field-aligned approximation, we

express the radius of curvature in terms of the unit vectors

perpendicular and parallel to the applied magnetic field, h

and b, respectively: Rc � jh 	 ðb 	 rbÞj�1
. This allows Rc to

be determined from the local radius of curvature of the

applied magnetic field.
FIG. 2. Transformation from cylindrical (r, z) to magnetic (w,f) coordinates.
~B represents the magnetic field vector aligned along surfaces of constant w.
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Substitution of Eqs. (14) and (15) into Eq. (18) allows

the description of u in terms of the nonlinear ordinary differ-

ential equation,

du
dw
þ 1� 2�/ � 2u

rBRc
¼ 0; (19)

from which separation of variables and Eq. (15) yield

/ðw; fÞ ¼ 1

2
þ CðfÞexp

�ðw

0

Kðw0; fÞdw0
�
: (20)

Here, K ¼ ðrBRcÞ�1
, and represents the effective local

curvature of the magnetic field in the magnetic coordinate sys-

tem. The integration constant, C, may be found from Eq. (16).

We take a moment to discuss an inconsistency that

arises from solving Eq. (18) with the quasi-field-aligned

approximation. Specifically, the formation of a perpendicular

electric field implies a changing cross-sectional density pro-

file through Eq. (13). However, the changing density profile

requires that the ion streamlines deviate from the magnetic

field lines to preserve quasineutrality. The implication is that

perpendicular electric fields are incapable of constraining

ions to exactly follow curved magnetic field lines.

Therefore, the quasi-field-aligned approximation is incon-

sistent with Eq. (18) because the local ion curvature radius can-

not equal the magnetic field curvature radius. By setting the

two curvature radii to be equal, Eq. (18) overestimates the elec-

tric field, and thus also the potential gradient in the cross-field

direction. We will show, however, that the error due to this

inconsistency is relatively small for plasma flows through

slowly diverging magnetic fields. This is because the cross-field

velocity of the ions remains small compared to the field-aligned

velocity, which implies that the length scale of separation

between the ion streamlines and magnetic field lines is much

smaller than the length scale over which that separation occurs.

Ultimately, this allows our analytical solution to capture the

effect of ion cross-field motion on the plasma density profile

without consistently solving the ion equations of motion.

F. Mass conservation

Using the expansion region of an ED-MN plasma as an

example, we will show in Sec. III that the analytical equations

derived in Sec. II E predict /, M, and lnðnÞ to within a few

percent of the values obtained from the numerical solution to

the fluid equations. However, the error in / increases in the

far downstream region due to ion cross-field motion. Because

errors in n scale exponentially with errors in /, the separable

solution violates mass conservation in this region. To deter-

mine the nozzle thrust coefficient, CT, it is necessary to imple-

ment a mass conservation correction into the solution.

The excess mass flow rate through each f-surface is

given by

� _m ¼
1

�ntAt

ð
f
nMdA; (21)

where zero error occurs for � _m ¼ 1. We multiply each

plasma parameter by a correction factor, a, that is a function

of only f, such that,

/! a//; n! ann; M! aMM: (22)

Using Eq. (21), mass conservation is guaranteed for any

a-combination that satisfies

� _m ¼ ðaManÞ�1: (23)

The mass-conserving solutions must also satisfy the

quasi-one-dimensional equations. From these, we derive the

final two equations needed to solve for each a

ð1� 2�/Þexp½2ð1� a/Þ�/� � �2
_mð1� 2a/

�/Þ ¼ 0; (24)

an ¼ exp½ða/ � 1Þ�/�; (25)

Here, �/ is the w-averaged potential prior to applying the

mass correction. Equation (24) represents an implicit equa-

tion for a/ in terms of �/ and � _m . The mass-conserving poten-

tial may then be found by multiplying the right hand side of

Eq. (20) by a/.

III. ELECTRON-DRIVEN MAGNETIC NOZZLE FLOW

We will now demonstrate how our 2D separable solu-

tion can be applied to the exhaust plume of an ED-MN

plasma. Most experiments and physical models of MNs use

a simple magnetic configuration for which acceleration

occurs in the fringe fields of the plasma source magnets. We

will not restrict ourself to this configuration, but rather allow

for an acceleration region prior to the exhaust plane as

depicted in Fig. 1. Ultimately, this is equivalent to starting

the model of Ahedo and Merino6 with a Mach number

greater than one.

A. Magnetic field model

We begin by defining the coordinate transformation

from cylindrical to magnetic coordinates (Figure 3). The

magnetic field in the exhaust region may be approximated by

the magnetic field of a single loop of current, from which the

w-surfaces29 and f-surfaces may be further approximated as

wðr; zÞ ¼ r2=2

ð1þ r2 þ z2Þ3=2
; (26)

fðr; zÞ ¼ z=2

ðr2 þ z2Þ3=2
: (27)

All lengths above and throughout the remainder of the paper

are normalized by the effective radius of the exhaust magnet,

ae. Equation (27) is a valid approximation to Eqs. (10) and

(26) for values of z > 1. From this point forward, our results

will be limited to MN exhausts whose magnetic field may be

approximated by that of a dipole, or Eqs. (26) and (27).

The specific magnetic field topology in the acceleration

region is peripheral if we assume the following: (1) the

plasma remains self-similar in the acceleration region and

(2) the flow is field-aligned and directed along the nozzle

axis at the exhaust plane (Br � ur � 0). The first requirement

implies,

103501-5 J. M. Little and E. Y. Choueiri Phys. Plasmas 20, 103501 (2013)



ðRERA;tÞ1=2 <
le

at
<

2

30RA;t
;

where le is the distance between the exhaust and throat mag-

nets. We define the expansion ratio, RE ¼ ðre=rtÞ2, and throat

aperture ratio, RA;t ¼ ðrt=atÞ2. The first inequality promotes

flow stability by limiting the magnetic field curvature in this

region,56 while the second inequality is required for self-

similarity (see Sec. III C).

B. Acceleration region

The acceleration region, used to increase the Mach num-

ber of the flow prior to entering the exhaust region, relates

the throat and exhaust plane plasma parameters. For the

magnetic field model above, the throat is not necessarily

located at z¼ 0, but rather at some unspecified location

upstream the exhaust plane. Along the throat plane, the

potential and ion Mach number are given by Mðw; ftÞ ¼ 1

and /ðw; ftÞ ¼ 0, respectively.

An analytical expression for the radial density distribu-

tion of plasma confined within a cylindrical vessel was

derived by Ahedo,55 and later used by Ahedo and Merino6 to

characterize the 2D expansion of a non-uniform magnetic

nozzle plasma. To allow direct comparison with their numer-

ical results, we adopt their expression and transform it to

magnetic coordinates as

nðw; ftÞ ¼ J0 a0r
2w1=2 þ 3w3=2

2w1=2
p þ 3w3=2

p

 !" #
: (28)

In this equation, J0 is the zeroth Bessel function, a0 is the

first zero of J0, and r is a parameter less than unity that con-

trols the uniformity of the density profile at the throat. For

example, r ¼ 0 represents a radially uniform plasma. The

uniformity decreases for r > 0.

The plasma at the nozzle exhaust plane is related to the

throat plane by two geometric ratios: the expansion ratio, RE,

and exhaust aperture ratio, RA;e. The expansion ratio, defined

above, determines the Mach number at the exhaust plane,

Me, through Eq. (14),

RE ¼
1

Me
exp

M2
e � 1

2

� �
: (29)

The exhaust aperture ratio, RA;e ¼ ðre=aeÞ2, determines the

bounding magnetic field flux surface, wp ¼ wðre; 0Þ, and thus

the divergence of the plasma boundary in the exhaust region.

It is no surprise at this point that Me, re, and r will ultimately

be used as the independent variables of the ED-MN perform-

ance model.

C. Analytical solution

Armed with a magnetic field model (Sec. III A) and

exhaust plane conditions (Sec. III B), our task is now to solve

Eq. (20) for /.

Substitution of Eq. (26) into Eq. (10) yields an expres-

sion for B. This expression may then be inserted into Eq.

(11) with X¼ 1 to find the cross-sectional area, A. The area

of the plasma at ft is given by At ¼ Ae=RE ¼ pr2
e=RE.

Finally, insertion of the ratio At=A into Eq. (17) yields �/.

An analytical solution to Eq. (20) is still out of reach

due to the complexity of the function Kðw; fÞ. It is possible

to show that K is much more sensitive to variations in f than

w. In fact, K varies by less than a factor of 2 along a f-

surface. Thus, we approximate this function as constant with

respect to w, from which we take the Taylor series of K and

consider the limit as w! 0. This procedure yields,

Kðw; fÞ � kðfÞ ¼ 3
ffiffiffi
2
p

8

1þ 4fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fð1þ 2fÞ

p
" #

� 3

4
ffiffiffiffiffi
2f
p ; (30)

where the approximation on the far-right-hand side is valid

for f < 1 (or, z > 1). Equations (16) and (20) thus give

/ ¼ 1

2
1� ð1� 2�/Þ

kwp

ekwp � 1
ekw

� �
: (31)

We note that �M
2 ¼ 1� 2�/. Equation (31) then suggests that

the extent to which non-uniformities manifest within the

exhaust depends on the local, w-averaged ion Mach number.

Indeed, we will show in Sec. IV that the relative focusing of

the exhaust beam, and consequently the detachment of ions

and beam divergence efficiency of the nozzle, both scale

with �M.

The location at which 2D effects become important may

be determined from the parameter,

�u �
/ðwp; fÞ � /ð0; fÞ

�/ðfÞ � /e

����
���� � 2kwp 1þ Me= �M

� 	2
h i

: (32)

The approximation on the right-hand side is valid in the im-

mediate expansion region (kwp � 1). Setting �u ¼ 0:05 in

FIG. 3. Transformation from cylindrical (r, z) to magnetic (w, f) coordinates

using Eqs. (26) and (27). Distances are normalized by the effective radius of

the exhaust magnet, ae. In this example, the bounding flux surface is given

by wp ¼ wð0:185; 0Þ. The f-surface corresponding to the turning point (tp)

of wp is labelled ftp.
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the limit Me= �M � 1 yields z
 � ð2=30Þr�2
e , where z
 is the

axial location along the nozzle axis at which point 2D effects

become predominant, which also corresponds to the break-

down of the self-similar assumption and the point at which

ion detachment from the applied magnetic field begins.

Clearly, z
 will increase for highly magnetized plasmas.

Closed-formed solutions for n and M are obtained by

substituting Eqs. (28) and (31) into Eqs. (13) and (14). These

expressions are not shown here for the sake of brevity.

Finally, it may be necessary (e.g., to calculate CT) to imple-

ment the mass-conservation correction outlined in Sec. II F.

Numerical integration of Eq. (21) yields � _m . Equations

(23)–(25) can then be used to find a/; an, and aM.

Contour plots of /, n, and M are presented in Fig. 4 for

Mt ¼ Me ¼ 1 and rt ¼ re ¼ 0:185. A number of observations

may be made about the nature of this flow that are in qualita-

tive agreement with the analysis of Ahedo and Merino:6 (1)

A large potential well develops along the plasma edge in the

far field of the plume; (2) the increased potential gradient

near the edge of the plume leads to a rarefaction of the

plasma edge; and (3) ion acceleration near the nozzle axis is

impeded in the far field region.

We show in Fig. 5 a quantitative comparison of our 2D

separable solution to the numerical results of Ahedo and

Merino. Specifically, we take sample points from the low

magnetization (Xi ¼ 0:1) curve of Fig. 4 from Ref. 6 to com-

pare the analytical and numerical solutions for the axial de-

pendence of /, n, and M along the nozzle axis, w ¼ 0, and

plasma edge, w ¼ wp. The dashed lines correspond to the so-

lution without the mass conservation correction, while the

solid lines include the correction.

A strikingly good agreement is found between our ap-

proximate, analytical solution and the numerical solution to

the full two-fluid equations. Specifically, the analytical so-

lution, both with and without the mass conservation correc-

tion, accurately tracks the non-uniformities in the potential

and ion Mach number that develop in the downstream

region. Furthermore, the increased rarefaction of the plasma

along the boundary as predicted by the analytical solution

matches that of the numerical solution. Finally, we note

that z
 ¼ 1:95 for this example, which coincides well with

the location at which the two curves bifurcate in Fig. 5.

IV. THRUST AND EFFICIENCY MODEL

The main question presented in the Introduction may

now be recast in terms of the specific parameters relevant to

the 2D separable solution. Specifically, how does the beam

divergence efficiency, gdiv, and thrust coefficient, CT, of an

ED-MN depend on the normalized plasma radius, re, ion

FIG. 4. Contour plots of the approximate analytical solution for the potential, /, density, n, and ion Mach number, M, for the plasma exhaust plume of an ED-

MN. The exhaust and throat planes coincide (Me ¼ Mt ¼ 1), and the plasma radius at the exhaust plane is re ¼ 0:185.

FIG. 5. Comparison of the approximate analytical solution with (solid) and without (dashed) the mass conservation correction for the potential, /, density, n,

and ion Mach number, M to the numerical results (shaded points) from Fig. 4 of Ref. 6. Note that the x-axis of the numerical data was adjusted to be consistent

with our normalization.
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Mach number, Me, and density profile uniformity, r, at the

nozzle exhaust plane?

A. Model domain

It is necessary to first define the domain of our performance

model. It is reasonable to suspect that the loss of magnetic con-

finement through plasma detachment defines the downstream

boundary to the domain of a performance model. This is

because the reaction force of the plasma on the MN results from

the diamagnetic current, and this current is a by-product of con-

finement of the thermal plasma by the magnetic field. With that

said, the process by which the plasma detaches from the MN is

not fully understood and is a topic of active research.28–32

Fortunately, recent simulations of the far-field region of

an ED-MN by Merino and Ahedo52 show that a large portion

(>99%) of the ion flow effectively separates from the

applied magnetic field. In their model, the electrons are still

confined by the magnetic field and continue to transfer mo-

mentum throughout the plume. Ion detachment implies that

the bulk of the plasma, and thus the region that transfers the

most momentum, continues to flow downstream as opposed

to returning along the diverging magnetic field.

We conjecture, based on the results of Merino and Ahedo,

that it is not necessary to include electron detachment within an

ED-MN performance model as long as the solution captures

the effects of ion detachment (specifically, the relative focusing

of the plasma with respect to the applied field). Furthermore,

the axial separation between the magnets and the far-field

plasma implies that very little momentum is exchanged beyond

the turning point of the applied magnetic field.

With this in mind, we define the domain for our

performance model to be the volume of plasma up until the

f-surface corresponding to the turning point of the nozzle,

ftp (see Fig. 3). Effectively, we are assuming that electron

detachment occurs downstream of ftp. The performance pa-

rameters may then be obtained by considering the relevant

momentum and power fluxes through the surface defined by

ftp. The algebraic complexity of the coordinate transforma-

tion precludes an analytical description of ftp as a function of

wp. However, ftp may be found numerically by solving

Bzðwp; ftpÞ ¼ 0. Fitting a curve to the various solutions, we

obtain the relation, ftp � 2:5w2
p, which is accurate to within

8% for wp 2 ½0; 0:07�.

B. Relative focusing and ion detachment

The plasma beam divergence will depend on the rela-

tive focusing of the plasma density profile in the plume

with respect to the divergence of the applied magnetic field.

As an index of this focusing, we derive here a scaling rela-

tion for the half-width at half-maximum of the plasma den-

sity profile at ftp.

The normalized density profile at ftp is given by,

vtpðWÞ ¼
nðW; ftpÞ
nð0; ftpÞ

; (33)

where W � w=wp. The normalized half-width at half-

maximum of the density profile at the nozzle turning point in

the magnetic coordinate system, W1=2, may then be found

from vtpðW1=2Þ ¼ 1=2.

We find n using Eqs. (13) and (31), and approximate the

plasma density profile at the throat, Eq. (28), as ntðWÞ � 1

�½1� J0ða0rÞ�W. We substitute n into Eq. (33), expand

vtpðWÞ in a Taylor series up to second order in W, and solve

for vtpðW1=2Þ ¼ 1=2. From this procedure we find,

W1=2 �
1

2

�
fbð �M tp; rÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fbð �M tp; rÞ2 � 4fcð �M tp; rÞ

q �
; (34)

where the functions fb and fc are given by

fbð �M tp; rÞ ¼
1

c1
�M

2
tp

þ 1

1� J0ða0rÞ
; (35)

fcð �M tp; rÞ ¼
1� hf=2

½1� J0ða0rÞ�c1
�M

2
tp

; (36)

with constants,

c1 ¼
c2

2

2ðec2 � 1Þ ; c2 ¼
3

4
ffiffiffi
5
p : (37)

Here, �M tp ¼ �MðftpÞ is the w-averaged Mach number at the

nozzle turning point. The additional constant, hf, accounts

for higher order terms.

Equation (34) implies that W1=2 is dependent upon only

two parameters: �M tp and r. Using the quasi-1D equations,
�M tp may be well-approximated as

�M tp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

e � 2lnð51=2Mew
3
pÞ

q
: (38)

To verify the scaling of Eq. (34), we plot in Fig. 6 the

numerical solution to Eq. (33) for W1=2 versus �M tp for the

following parameter space P : Me 2 ½1; 4�; re 2 ½0:02; 0:45�,
and r 2 ½0:25; 1:0�. We note that this parameter space will be

used extensively throughout Sec. IV. Also shown in Fig. 6

are four curves that correspond to Eq. (34) with r ¼ 0:25,

0.5, 0.75, and 1.0. Here, hf ¼ 1:22 is chosen to produce the

best fit.

The density profile HWHM at the exhaust plane may be

approximately found by solving J0ða0r
ffiffiffiffi
W
p
Þ ¼ 0:5, which

yields W � 6:4, 1.6, 0.7, and 0.4 for r ¼ 0:25, 0.5, 0.75, and

1.0, respectively. It is clear from Fig. 6 that the HWHM at

ftp is much less than its initial value, which indicates that the

density profile has become focused with respect to the

diverging magnetic field. Furthermore, this focusing

increases with �M tp.

C. Performance scaling

We now use the results of Sec. IV B to derive scaling

relations for gdiv and CT. Under the quasi-field-aligned

assumption, the beam divergence efficiency may be written

as,

gdiv �
P
b
Pb
¼
ð

ftp

nM3 B2
z

B2
dA


ð
ftp

nM3dA: (39)
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Unfortunately, even though we now have analytical equa-

tions for the 2D distributions of each plasma parameter, the

above integrals do not yield simple closed-form solutions.

Therefore, gdiv must be found through numerical integration

of Eq. (39).

It is reasonable to assume, however, that the beam diver-

gence efficiency may scale with the HWHM of the plasma

density profile. As W1=2 decreases, we anticipate the beam

divergence efficiency to increase because more plasma is

concentrated along the nozzle axis. We take the effective

plume half-angle, hdiv, to be the angle that the magnetic field

vector makes with the nozzle centerline at W1=2. This may be

approximated as coshdiv � 1�W1=2. The beam divergence

efficiency should then scale as gdiv � ð1�W1=2Þ2. Indeed,

Fig. 7 shows that this scaling is valid for small W1=2.

Adding a term to correct for larger values of W1=2, we

propose the following model for gdiv:

gdiv � cg1½ð1�W1=2Þ2 � 1� þ cg2W
2
1=2 þ 1: (40)

Here, cg1 ¼ 1:432 and cg2 ¼ 3:473 result from the method of

least-squares. Equation (40), with W1=2 found from Eqs. (34)

and (38), represents a fully analytical equation for the beam

divergence efficiency of an ED-MN in terms of Me, re, and r.

Fig. 8 shows the beam divergence efficiency versus the

normalized plasma radius for four different values of the ion

Mach number at the exhaust plane and r ¼ 1. Similar agree-

ment between the numerical solution to Eqs. (39) and (40)

may be seen for different values of r. We can summarize

from these plots the general dependence of the beam diver-

gence efficiency on the nature of the exhaust plane plasma:

1. gdiv decreases as re increases, and is very sensitive to

changes in re.

2. The increased gdiv that results from increasing Me

becomes more pronounced for Me > 1 and re > 0:1.

3. Decreases in r lead to decreases in gdiv (not shown).

4. The sensitivity of gdiv to changes in r is much greater for

small Me (not shown).

Each of these dependencies is predicted by Eqs. (34),

(38), and (40) over the chosen parameter space. We note that

the first and third dependencies were first observed in the nu-

merical results of Ahedo and Merino.6

We now consider the thrust coefficient, CT. Earlier we

defined the thrust coefficient as the thrust divided by the

pressure force of the plasma at the nozzle throat. Within the

quasi-field-aligned framework this may be written as,

CT ¼
1

�ntAt

ð
ftp

nðM2 þ 1ÞBz

B
dA: (41)

Here, we take the thrust to be equal to the momentum flux

through the surface ftp.

We note that CT represents the thrust coefficient of the

entire magnetic nozzle. Because we assume the flow is

choked, CT is independent of the internal thermal energy of

the plasma. The thrust coefficient contribution of the plasma

upstream of the exhaust plane is equal to Me þ 1=Me, where

the first and second terms represent the ion kinetic and elec-

tron thermal momentum flux contributions, respectively.

FIG. 7. Beam divergence efficiency, gdiv, versus the quantity ð1�W1=2Þ2.

Data points are found from the numerical solution of Eq. (39) in the parame-

ter space P. The analytical solution (solid line) comes from Eq. (40).

FIG. 8. Beam divergence efficiency, gdiv, versus the normalized exhaust ra-

dius, re, for r ¼ 1 and Me 2 ½1; 4�. Data points are found from the numerical

solution of Eq. (39). The analytical solution (solid lines) comes from Eq. (40).

FIG. 6. Half-width at half-maximum of the normalized density profile, W1=2,

versus the w-averaged Mach number, �M tp, at ftp. Data points are found from

the numerical solution of vtp ¼ 1=2. The analytical model (solid line) comes

from Eq. (34).

103501-9 J. M. Little and E. Y. Choueiri Phys. Plasmas 20, 103501 (2013)



For Me ¼ 1, only half of the internal energy has been con-

verted into kinetic energy at the exhaust plane, and a sizable

portion of the thrust is generated in the exhaust region.

It can be noted that CT !1 as Me !1. However,

this limit implies through Eq. (29) that RE !1, which is

clearly unphysical. Furthermore, Me is relatively insensitive

to large increases in RE for Me > 4. Thus, the Me � 1 limit

is not relevant to our model.

We anticipate that the thrust coefficient will exhibit

some dependence on gdiv. We characterize this dependence

in Fig. 9 by plotting the numerical solutions for CT versus

gdiv for r ¼ 1. It is clear from this figure that CT increases

with gdiv. This indicates that, for a fixed throat pressure, the

thrust increases as the beam divergence decreases.

Furthermore, CT exhibits a linear relationship with gdiv, with

the proportionality constants depending on Me. It can be

shown that the constants of proportionality also depend on r.

Therefore, we construct the following model for CT:

CT ¼ f1ðMe; rÞgdiv þ f2ðMe; rÞ; (42)

f2ðMe; rÞ ¼ q1ðrÞM2
e þ q2ðrÞMe þ q3ðrÞ; (43)

f1ðMe; rÞ ¼ q4ðrÞf2ðMe; rÞ þ q5ðrÞ: (44)

It may be shown that qjðrÞ is approximately quadratic in r,

such that

qjðrÞ ¼
X2

k¼0

qjkr
k: (45)

Fifteen coefficients are required to solve for CT in Eq. (42).

We obtain these coefficients by taking the numerical solution

to Eq. (41) over the parameter space P and performing a

least-squares fit to the above model. These are tabulated in

Table I. Plots of Eq. (42) using the coefficients in Table I

may be seen in Fig. 9 for r ¼ 1.

The thrust coefficient dependence on the exhaust plane

plasma radius for various Mach numbers is shown in Fig. 10

for r ¼ 1. From this figure, we see that the dependence of

CT on the different exhaust plane plasma parameters is very

similar to the dependence that we summarized above for

gdiv. With that said, we do note one exception: unlike for

gdiv, CT maintains approximately the same sensitivity to Me

regardless of the value of re=ae. This is because the constant

of proportionality between CT and gdiv depends on Me.

The form of Eqs. (39) and (41) inherently assumes that

the ion velocity vector is aligned with the local magnet field

vector at the nozzle turning point. The error due to this

assumption leads to gdiv and CT values lower than would be

predicted if the slip angle of the ion velocity vector were

included. We analyze the effect of this error by assuming a

slip angle between the two vectors at ftp of the form

d ¼ dmsinðpW=2Þ, where dm is the maximum slip angle.

Including the slip angle within the gdiv and CT equations, it is

possible to show that the error in Eqs. (39) and (41)

scale according to �g � 2dmð1� gdivÞ3=2
and �CT � 0:35dm

ð1� CT=10Þ2, respectively. �g remains less than 5% for re 

0:15 and dm 
 15�. As re increases, however, �g can rise up to

10% for dm ¼ 15�. To good approximation, �CT � �g=2.

Our analytical solution prevents a consistent description

of dm because of the limitations of the quasi-field-aligned

approximation. As a result, the performance model derived

in this section underpredicts gdiv and CT by an error that

scales according to �g and �CT
, respectively. While this error

remains low for CT, a semi-empirical correction that

accounts for the ion slip angle is needed to improve the accu-

racy of the gdiv-model for gdiv � 0:80. However, the general

scaling of gdiv, shown in Fig. 8, remains unchanged with the

FIG. 9. Linear relationship between CT and gdiv. Data points are found from

the numerical solution of Eqs. (39) and (41). The analytical model (solid

lines) results from Eq. (42).

TABLE I. Least-squares coefficients for Eq. (45).

k ¼ 0 1 2

q1k �1.010 �0.574 0.520

q2k 2.287 0.928 �1.024

q3k �10.223 4.062 �6.616

q4k �1.214 �0.002 0.024

q5k 6.602 0.278 �0.216

FIG. 10. Thrust coefficient, CT, versus the normalized exhaust radius, re, for

r ¼ 1. Data points are found from the numerical solution of Eq. (41). The

analytical model (solid lines) results from Eq. (42).
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exception that the curves are translated upward by a factor

proportional to dm. Therefore, the qualitative trends observed

in this section remain valid for finite dm.

D. Nozzle design implications

Most ED-MN thrusters that have been built in the labo-

ratory utilize the fringe fields of the plasma source as a sim-

ple MN. The results of Sec. IV C allow us to compare the

performance of the more general MN configuration depicted

in Fig. 1 with the simple MN. Specifically, we want to an-

swer the question: how is the divergence efficiency of an
ED-MN affected by the addition of an acceleration region?

We showed in Sec. III B that the ion Mach number and

plasma radius at the exhaust section may be adjusted by alter-

ing the MN geometry. Specifically, Me is determined by the

expansion ratio from Eq. (29). Using the simple two magnet

configuration depicted in Fig. 1, the normalized plasma radius

at the exhaust, re ¼ R1=2
a;e , is related to the aperture ratio at the

throat of the nozzle and the expansion ratio through

RA;e

RA;t
� RE

at

ae

� �2

� 1

RE

It

Ie

� �2

: (46)

Here, It ¼ atBt and Ie ¼ aeBe represent the effective total

current needed to produce the magnetic field Bt and Be for

the throat and exhaust magnets, respectively.

We may use Eq. (46) to examine the effect of adding an

acceleration region to a given thruster. It is clear that RA

decreases with increasing RE if the exhaust magnet carries

the same current as the throat magnet, but at a larger radius.

Alternatively, RA increases with RE if the exhaust magnet,

while carrying less current, is the same size as the throat

magnet.

Because gdiv increases as RA decreases, it is not benefi-

cial to add an exhaust magnet that is the same size as the

throat magnet. The addition of an exhaust magnet that is

larger than the throat magnet, yet carrying comparable cur-

rent, does lead to increased performance. However, it can be

shown that this increase in performance is only significant

for plasmas in which the throat aperture ratio is relatively

large (RA;t � 0:2). This relates to our previous observation

that improvements in gdiv become more sensitive to increases

in Me as re increases.

In general, the addition of an acceleration region adds

weight and complexity to the thruster. Equation (46)

implies that an exhaust magnet may only be beneficial for

thrusters that exhibit poor confinement near the throat

(large RA;t). This may change, however, for highly magne-

tized plasmas (qi � 1). The desire to reduce losses within

the plasma source may lead to magnetic fields much

larger than those reported in the literature for ED-MN

thrusters. Plasma flow from an ED-MN in the high magnet-

ization limit has been marked by a noticeable decrease in

performance.6,52 Therefore, substantial efficiency improve-

ments may be seen by using an exhaust magnet to step

down the effective level of ion magnetization prior to exit-

ing the thruster. A full analysis of this problem, however, is

beyond the scope of this paper.

V. CONCLUSIONS

An approximate, fully analytical solution to a two-fluid

model of plasma flow along an applied magnetic field has

been derived to aid performance modeling of propulsion plas-

mas. The model is relevant to collisionless plasmas with cold

ions and isothermal electrons. It was applied to the problem of

plasma expansion through a magnetic nozzle, from which

excellent agreement was found between our analytical solu-

tion and the numerical solution6 to the same model.

From our analytical solution, scaling relations for the

beam divergence efficiency and thrust coefficient of an

ED-MN were derived. It was found that these performance

parameters depend on the ion Mach number, normalized

plasma radius, and density profile uniformity at the nozzle

exhaust plane. Improved performance is predicted for small

plasma radii with density profiles that are peaked on the noz-

zle axis because the effective divergence of the applied mag-

netic field is lower in this region, which agrees with the

numerical simulations of Ahedo and Merino.6 Additionally,

high exhaust Mach numbers increase the performance by

decreasing the divergence losses of the exhaust beam. We

conclude from these observations that the addition of an

acceleration region to allow for high Mach number exhaust

flow is only beneficial if it also decreases the plasma radius

relative to the exhaust magnet radius.

Omissions from the 2D performance model include the

magnetic force on the ions and electron detachment from

the applied magnetic field. Numerical simulations imply that

the magnetic force on ions may be neglected for ED-MN

plasmas of similar properties to those in the literature.6 If the

magnetic field strength is substantially increased, which may

be necessary to improve the performance of these thrusters

by limiting energy losses within the plasma source,41 then

the magnetic force should be taken into account within the

performance model. Furthermore, it is possible that electron

detachment occurs prior to the nozzle turning point. Two

such mechanisms by which this detachment may occur are

the demagnetization of the electrons due to finite Larmor ra-

dius effects29,32 or induced magnetic field effects.13,31,49 It is

predicted that both of these effects increase the divergence

of the plasma and lead to decreased performance.31,32

Incorporating these effects within an analytical model has

proven to be quite complex, and will likely need further as-

sistance from experimental observations and computational

modeling.
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