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Abstract

A similarity parameter for quasi-steady fluid flows advancing into horizontal
capillary channels is presented. This parameter can be interpreted as the
ratio of the average fluid velocity in the capillary channel to a characteristic
velocity of quasi-steady capillary flows. It allows collapsing a large data set

of previously published and recent measurements spanning five orders of
magnitude in the fluid velocity, 14 different fluids, and four different
geometries onto a single curve and indicates the existence of a universal
prescription for such flows. On timescales longer than the characteristic
time it takes for the flow to become quasi-steady, the one-dimensional
momentum equation leads to a non-dimensional relationship between the
similarity parameter and the penetration depth that agrees well with most
measurements. Departures from that prescription can be attributed to effects

that are not accounted for in the one-dimensional theory.

This work is dedicated to Professor Harvey Lam on the occasion of his

recovery.

1. Introduction

1.1. Historical perspective

The first analytical studies of surface tension and capillarity
were by Young [1] and Laplace [2]. Working independently at
approximately the same time, both stated that at a liquid/vapour
interface the difference between the liquid’s pressure, p;, and
the vapour’s pressure, py, is proportional to the total curvature
of the interface itself. For a spherical meniscus, this can be

written as

pe—p=5 cosd,
where y is the surface tension, @ is the contact angle, and R is
the radius of the interface.

Hagen [3] and Poiseuille [4] later studied the flow of
viscous liquids in circular pipes (including capillary tubes)
and derived an equation for the steady-state volume flow rate
based on the radial velocity profile for a fully developed flow
(Hagen—Poiseuille flow) given by

1 Ap , 2

= —— — s 2

u(r) 4MAx(a ro) (@)

where Ap is the total pressure drop in a column of fluid of

length Ax, 1 is the viscosity, and a is the tube radius. Reynolds

experimentally tested the stability of this profile, finding that
it held for laminar flows [5].
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At the beginning of the 20th century, there were several
works concerned with the dynamics of fluid penetration into
capillary tubes [6-10]. One of the results of these studies
is the derivation of the Washburn equation for laminar fluid
penetration into a horizontal capillary [9]. In the derivation
it is assumed that the pressures at the tube inlet (x = 0) and
in the air beyond the meniscus are equal. The pressure drop,
Ap, over the length of the tube is time-independent and is
given by equation (1) for a circular tube. If the flow is fully
developed and quasi-steady, then the velocity profile is given
by equation (2), where Ax is replaced by the variable meniscus
position, x,, representing the distance the fluid penetrates into
the tube in time ¢. Averaging over the velocity profile and
integrating in time yields

2_ Apa2
4p

x; t. 3)

There have since been several decades of research on
dynamic capillary phenomena such as surface wetting and
droplet spreading by capillary action. Included in this research
have been attempts to reconcile the no-slip boundary condition
of continuum fluid mechanics with the condition of contact
line motion. Comprehensive reviews of capillary dynamics
research can be found in [11-13] and more recent work on
reconciling the no-slip condition is discussed by Cox [14] and
Bertozzi [15].
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Recently, there have been many experimental and
theoretical studies on the one-dimensional spreading rates
of liquids flowing horizontally under capillary action. For
example, liquids have been studied flowing in thin tubes [16],
in surface grooves [17-21] and on microstrips [22]. All of
these systems have been observed to follow Washburn-type
dynamics, meaning the flow dynamics are functionally similar
to equation (3) (i.e. x2 o 7).

1.2. Motivation and organization

While the study of systems adhering to Washburn-type
dynamics is a well developed field and several studies have
employed non-dimensional analysis to find similarities in
capillary flows for specific geometries [23,24], no satisfactory
attempt has yet been made to find non-dimensional similarity
parameters capable of collapsing all experimental data for any
system adhering to Washburn dynamics onto a single curve.
Consequently, capillary spreading data in the literature are
typically presented in various dimensional or dimensionless
forms, and the values of the relevant variables can be quite
disparate, depending on the geometry or fluid tested.

In this paper, we present a non-dimensional similarity
parameter that is a combination of the relevant dimensional
parameters of this problem. The similarity parameter is
equivalent to the ratio of the average fluid velocity and a
characteristic velocity, which is shown to be the maximum
velocity for a quasi-steady capillary flow.  Using the
similarity parameter to non-dimensionalize published capillary
spreading-rate data, a large set spanning five orders of
magnitude in the fluid velocity, nine different fluids, and three
different geometries can be collapsed into a single curve.

In addition to applying our non-dimensionalization
scheme to data found in the literature, we also present
measurements from our experiments on fluids advancing in
a composite capillary tube consisting of two different, constant
cross-sectional area tubes. Five fluids were tested in this
configuration, with the advancing meniscus velocity spanning
four orders of magnitude. Non-dimensionalization of these
data collapses the set to generally within a little more than one
order of magnitude and departures from the non-dimensional
prescription can be primarily attributed to effects that are not
accounted for in our one-dimensional theoretical description.

The data collapse implies that a universal relation for
quasi-steady capillary flows exists. It is shown that the one-
dimensional momentum equation recast in terms of the non-
dimensional parameter leads to such a universal relation when
the timescales are much longer than the characteristic time it
takes for the flow to become quasi-steady.

The outline of the rest of this paper is as follows. In
section 2, we introduce the similarity parameter that forms
the basis of the paper. In section 3, we introduce the different
experimental geometries to which the similarity parameter will
be applied. Recent and previously published experimental data
from these geometries are then presented and reduced to non-
dimensional form in section 4 as a means of evaluating the
physical importance of the similarity parameter. In section 5,
we discuss some physical insight into the problem and the
limitations of the similarity parameter’s validity. Finally, in
section 6, we present and apply a universal scaling relation for
these flows.

2. Similarity parameter

For this problem, the relevant dimensional parameters and their
units are

[w)]=LT", la] =L, [x.] =L,

[wl=ML™'T", [Ap]l=ML™'T2,
where (u) is the average fluid velocity and a is a characteristic
length (the radius for capillary tubes). The surface tension,
while not explicitly included in this list, is implicitly included
because the total pressure drop in these systems is a function
of the surface tension as well as the geometry of the problem.
The Buckingham Pi theorem states that we should be
able to find two independent, dimensionless parameters by
combining the above dimensional parameters. Two such
independent parameters are the similarity parameter,

o on )
alAp
and the non-dimensional length,
X
X=—. 5)
a

We see that, physically, IT is the ratio of the competing effects
of viscosity and the driving pressure, which is a function of
the surface tension. We also recognize that IT is similar to
the well-known Capillary number, Ca = (u)u/y. However,
by including the total pressure drop in our list of dimensional
parameters instead of the surface tension, we can tailor the final
form of IT to different geometric configurations.

Note that IT is also equivalent to a ratio of two velocities.
Based on this, we can define a characteristic velocity for
capillary flows,

al
Ucap = P (6)
%
and rewrite IT as
(u)
n=—-—. 7
Ucap

We shall defer to section 5 an explanation of the physical
meaning of Ucyp.

Had time been added to the list of relevant dimensional
parameters, an additional non-dimensional parameter, such as
tAp/u, would need to be added to our list of dimensionless
variables. However, as we show in section 4, the collapse of
the data is attained without invoking time. We also show, in
section 5, that the irrelevance of time is due to the quasi-steady
condition prevailing in all the considered flows.

3. Experimental geometries

In this paper, we apply the similarity parameter to data sets
from four different geometries (see figure 1). The geometries
analysed are: (a) a stepped capillary tube, (b) a single capillary
tube, (c) a V-shaped groove, and (d) a hydrophilic microstrip.
In the following text, we describe each geometry and the
experiments that were originally performed and attempt to
write IT and X in terms of relevant, measurable variables. We
shall find that the parameter that is most difficult to determine
in all these cases is the total pressure drop, Ap, over the length
of the capillary.
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Figure 1. (a) A schematic of the stepped capillary tube geometry.
(b) Schematic of a single tube geometry. (c) A view looking along
the channel of the V-groove geometry (after [19]). (d) A view
looking down on the microstrip geometry (after [22]).

3.1. Stepped tube

We conducted experiments using the geometry shown in
figure 1(a). All quantities with a subscript of 1 denote values
in the larger radius tube while the subscript 2 denotes values
in the smaller radius tube. The tubes employed were drawn
borosilicate glass capillaries with radial tolerances ranging
from £0.05 mm (0.3 mm radius) to £0.1 mm (1.5 mm radius).
The joint between the two different radius capillaries was
constructed using epoxy on the flat mating surfaces. A piece of
Teflon tubing having a radius approximately equal to the small
tube was inserted through both tubes to ensure that when the
joint was pressed together epoxy was not forced inwards to
form a section possessing a smaller radius than either tube.

We discovered that how the joint is prepared or the
roughness of the surface at the joint itself does not matter much,
so long as that region is either fully immersed in the liquid
(i.e. no liquid/gas/solid interface) or there was not a moving
contact line (i.e. trapped air in a crack forming a non-moving
liquid/gas/solid interface). To the order of accuracy of our
penetration data, this lack of dependence on the preparation
of the stepped-tube joint was expected based on the analysis
performed both in this section and the appendix, where only
moving interfaces are assumed to affect the bulk motion of the
fluid.

The capillaries were cleaned by first immersing them in
a solution consisting of equal parts HyO,(30%) and H,SO4
(15 ml each), diluted by 70 ml of deionized water. After being
immersed in the solution for 15 min, the capillaries were rinsed
by flowing deionized water through them for 2—-3 min and then
finally blown dry using dry air. The penetration experiments
were performed within minutes of completion of the cleaning
process.

Initially, fluid was injected into the larger radius tube until
the meniscus reached the smaller radius tube. Once the fluid
entered the smaller radius tube and fluid completely immersed
the joint between the tubes, all active injection was halted. The
meniscus position was recorded onto videotape using a camera
and VCR. The leading meniscus velocity, (u,) ~ Ax/At, was
determined using a standard central-differencing method.

Five different capillary tube radius combinations were
tested. These combinations are listed in table 1. In

3158

Table 1. Stepped capillary tube radius combinations tested.

a; (mm) a; (mm)
Combination I~ 1.50 1.10
Combination 2 1.50 0.60
Combination 3 1.50 0.30
Combination4  1.35 0.60
Combination 5  1.35 0.30

Table 2. Stepped capillary tube fluids and their properties. The
surface tensions and contact angles for the final three fluids were
measured by the authors.

4 2 P 0

Name (mNm™) (mPas) (kgm~3) ()

Methanol 22.1 0.54 790 0
(CH,0)

Propanol-2 20.9 2.04 830 0
(C3Hs0)

Dibutyl phthalate 223+1.8 203 1044 8+4
(C16H204)

Fisherbrand 19 20.8 £ 1.8 47.9 870 22+6
Mechanical pump oil

Invoil 940 21.6+£2.2 259 1070 19£8

Si-diffusion pump oil

addition to varying the radii, five different fluids were tested,
and their properties are given in table 2. The properties
for methanol and propanol-2 were taken from [25]. The
viscosities and densities of dibutyl phthalate (Sigma-Aldrich
Corp., St. Louis, MO) and mechanical and diffusion pump
oils (Inland Vacuum Industries, Churchville, NY) were taken
from manufacturer data. The listed surface tensions for these
three fluids were found by measuring the vertical capillary
rise in several different radius tubes while the static contact
angles were measured using image analysis. We note that
in our computations the static contact angles will always be
employed. This is not strictly correct as there is typically
some small difference between advancing and receding contact
angles (hysteresis, a few degrees for simple liquids [13]).
Also, moving contact angles have been observed to differ
from their associated static contact angles. However, the
moving contact angle is increasingly less sensitive to the flow
velocity as the fluid slows [26]. The contact angle enters the
non-dimensionalization scheme through the cosine function
and since the above effects, in general, introduce only small
variations in the similarity parameter, assuming a contact angle
equal to the static angle should be an acceptable approximation.

To write the non-dimensional parameters, we must first
find a solution for the average fluid velocity, (u,). Taking the
pressure gradient, d P /dx, equal to a constant k in each tube,
we can average equation (2) over the cross-sectional area of
the tube to obtain an average velocity,

2
B k2a2

(uz) = ﬁ (®)

An incompressible continuity equation for each radius tube
results in the compatibility condition

ay 4
k= (7) k». ©)
a
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Figure 2. Pressure profile in a stepped capillary tube.

We bring closure to this formulation by assuming a
pressure profile in the fluid (see figure 2). The meniscus at
each end is exposed to the same outside pressure, and it is
known from equation (1) that if the menisci are spherical, the
discontinuities in the pressure at each meniscus will be

2
AP = il cos 6,
a

(10)

2y
AP, = — cos6,.
a

Using equations (9) and (10) and the fact that the pressure
is piecewise continuous between the menisci (see figure 2),
analytical expressions for k| and k, can be found!. These are

_ 2y (cos b, /a, — cosb/ay)

X25 — X15(az/ay)*

kl (a2/al)4a

an
2y (cosbr/a, — cosb/ay)
X2 — X1x (@2 /ar)*
In our coordinate system, x,, is measured such that it is always
negative and so the denominators in these expressions are
always positive.
It is worth noting that the quantity x.q., which we define as

4
a

Xeqx = X2 — X1 | — s
ap

has a physical interpretation. It is the length of a column of
fluid of radius a, and constant pressure gradient k, having a
pressure drop equal to the total pressure drop between the two
menisci. In other words, |kyXeqs| = [k1x1:] + [k2x24].

We can now write k; as Ap /xeq. and express the similarity
parameter (4) as

ka

(12)

1
_ (uz) (13)
2)/ az(COS 92/612 — COS 91/611)
and the dimensionless length (5) as
X = T (14)
a

where the radius, a, is used as the characteristic length.

! Normally, the assumption for the pressure profile at x ~ 0 would be
that Bernoulli’s constant is conserved at the step. However, since the fluid
velocities and dynamic pressures in these flows are quite low relative to the
static pressure, we can neglect their contributions and assume continuity of
static pressure at the step. This can be shown rigorously based upon the
analysis performed in section 5.

3.2. Single tube

Fisher and Lark [16] collected data for fluids flowing in thin
capillaries. They measured the value of x2 /¢ for different tube
radii (see figure 1(b)). These experiments were conducted
using both water (y /i = 72.7ms™!, 6 = 0°) and cyclohexane
(y/u = 22.1ms™", § = 8°) as the working fluid. The goal
in that work was to verify the applicability of the Washburn
equation (3) for very small tube radii’.

We see that a single tube is a special case of a stepped
capillary tube where a; — oo. Using this fact allows us to
simplify the similarity parameter and non-dimensional length
given in equations (13) and (14) to

() 1

M= ,
2y cos6

15)
X =2
a

Note that this form assumes the pressure at the immersed end
of the tube is equal to the vapour pressure at the fluid/vapour
interface (typically atmospheric pressure, Py). However, as
long as the flow can be considered quasi-steady, (15) can be
generalized to account for an arbitrary pressure, Py, at the
immersed end. In that case, the pressure difference over the
length of the fluid is

2y cos 6
Ap=Py—|Ph— ——
a
and TIT takes on the more general form
1
o= (u)p (16)

2y ([(Pa — Po)al/(2y) +cos )

3.3. V-shaped grooves

For fluids flowing in V-shaped grooves, we use data found
in [19]. The geometry that was employed in these experiments
(see figure 1(c)) consisted of a groove of angle B and height A
being fed from a liquid reservoir. Multiple groove angles,
groove heights, and liquids were tested, with each test’s
properties listed in table 3.

A solution for the pressure drop over the length of
the groove can be determined using the results of [19]. In
that work, the authors found that the governing equation for
the spreading could be written as

h
2 =K@, 0) 0,
"

a7
where the angle « is shown in figure 1(c). If we assume
that the flow is fully developed and quasi-steady, the velocity
profile will have a form similar to that of the Hagen—Poiseuille
flow of equation (2) and the flow should follow the Washburn
equation (3). Setting a = hy and comparing equations (17)
and (3), it is evident that they are identical if the pressure drop

is given by the expression
4y K (6,
Ap= KGO (18)
ho

2 In [16], a velocity-independent contact angle, 6, of 30° for water was
assumed for agreement with the Washburn equation. We will not do this in
our treatment, opting instead to use the typical water contact angle of 6 = 0°.
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Table 3. Fluids tested in V-shaped grooves and their properties
(after [19]).

K@®,a)?
v/ 6 B ho

Liquid (ems™") () () (um) Exptl Equation (19)
1,4-Butanediol 59.5 29 45 98.7 0.245 0.282
Cyclohexanol 58.2 6 45 98.7 0.247 0.301
1-Butanol 941 6 45 98.7 0.270 0.301
2-Octanol 408 <2 45 98.7 0.259 0.297
Diethylene 162 33 45 98.7 0.231 0.273
glycol

1-Heptanol 489 <2 45 98.7 0.249 0.297
1,4-Butanediol 59.5 29 77 91 0.244 0.219
Cyclohexanol 58.2 6 77 91 0.275 0.248
1-Butanol 941 6 77 91 0.294 0.248
2-Octanol 408 <2 77 91 0.298 0.241
Diethylene 162 33 77 91 0.187 0.204
glycol

1-Heptanol 489 <2 77 91 0.281 0.241
Cyclohexanol 58.2 6 124 47.8 0.190 0.174
1-Butanol 941 6 124 47.8 0.194 0.174
2-Octanol 408 <2 124 47.8 0.202 0.166
1-Heptanol 489 <2 124 47.8 0.199 0.166

Several analytical solutions for K have been found
[18,19], each involving a different assumption regarding the
radius of curvature of the top surface of the fluid, Ry, (see
figure 1(c)). The solution for K that is generally closest to the
experimentally determined value is based on a flat topped fluid
(Rop = 00) and is given by

(¢ — 60) cos(w)

K@®,0) = sin(a — 0)

1
7 sin@) |:cos(6’) ] , (19)
where the angle « is shown in figure 1(c). This allows us to
write the similarity parameter and dimensionless length for this
geometry as
(whp 1
4y K@, a)’

(20)

X =2
ho

3.4. Microstrips

Darhuber et al [22] conducted experiments using hydrophilic
microstrips etched onto a hydrophobic background (see
figure 1(d)). The microstrips were connected to a reservoir pad
of the same hydrophilic material. A quantity of the working
fluid (polydimethylsiloxane silicone oil [Fluka], y/u =
1.03ms™!) was deposited on the reservoir pad and the fluid
then spread along the microstrip through capillary action. In
that study it was found that the spreading was governed by an
equation similar to (17).

Using the methods of [ 18], Darhuber et al [22] determined
for this geometry the variation of their K with the strip
width. Unlike the V-shaped grooves, there are no known
fully analytical solutions for K in this geometry. However,
it was found that the average streamwise velocity should vary
according to the relation
K ya yuw*l

LA Sy
W Xy

(u) =

= 21
7 eay)
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where w is the strip width, which we shall take as the
characteristic length scale. To determine Ap for this case, we
compare equation (21) with the average fluid velocity of a flow
having the velocity profile given by equation (2). Recasting
this average velocity in terms of our dimensional variable list
and setting a = w, we obtain

Ap w?
) =—-—,
Xy S

which when compared with equation (21) yields
_ 8y w?

A , 22
P c (22)

where we have multiplied the far right-hand side of
equation (21) by the proportionality constant ¢ ~!. We can now
write the similarity parameter and dimensionless length as

(uhp ¢

m= ,
8y w3

(23)
X =2
w
Note that ¢ is a factor with dimensions of length cubed. If
equation (22) accurately describes how Ap varies with w and
y, then ¢ should be a constant for a given fluid, irrespective of
the strip width or surface tension.

4. Experimental data

In this section, we present experimental data for each of the
four geometries previously discussed. The literature data will
be plotted using the appropriate non-dimensional prescriptions
previously developed while the data we present for the
stepped capillary tube configuration will first be presented
dimensionally and then non-dimensionally. We shall show
that, for all cases, the non-dimensional parameter collapses
these data, i.e. significantly reduces the range of data spread
in one of the variables. The stepped capillary tube data set
and discussion will be deferred to the end of this section as an
extensive discussion of the data is required.

4.1. Single tube

The penetration data of Fisher and Lark [16] are given in
figure 3(a) in coordinates of penetration depth squared per unit
time and capillary radius. If the spreading follows equation (3)
and the pressure drop is constant, then the value of x2 /¢ should
be a constant, G, for a single fluid and tube radius combination.
To obtain velocities from these data, we differentiate xf =Gt
to obtain dx,/dt = (u) = G/2x,. For comparing the various
data sets, we took x, = 50 mm for all single tube data’. The
data, non-dimensionalized using equation (15), are replotted
in figure 3(b).

3 The penetration depth for the data set of [16] was not reported in that work.
However, it is important to note that whether the penetration depth is taken
on the order of 1 or 100 mm, the calculated velocities for this geometry are
still bounded by the velocities measured or computed for the other geometries.
Hence, the five orders of magnitude collapse in velocity we cite in the abstract
is largely independent of the choice of penetration depth for the single tube
geometry data.
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Figure 3. (a) Data for fluid penetration rates into a single tube as a
function of radius (after [16]). (b) The same data plotted using the
non-dimensionalization given in equation (15).

We see that the data for both water and cyclohexane do
collapse to a single curve. The deviation from this curve
at larger values of X is due to the larger relative error in
determining the values of x2/¢ at smaller values of a.

4.2. V-shaped grooves

Data sets for fluids flowing into V-shaped grooves are taken
from [19] and the fluids tested and their properties are listed in
table 3. Included in this table are the values of K (0, «)!/?
that were computed in [19], where column 6 contains the
experimentally determined values and column 7 contains the
values computed using equation (19). The data set for 8 = 45°
is found in figure 4, the data set for § = 77° is found in
figures 5(a)—(c), and the data set for § = 124° is found in
figures 5(d)-(f). The velocities were computed in a manner
nearly identical to that used for the single tube geometry except
that values of x, need not be assumed as they are explicitly
given in the original data set.

We see from the plots in figures 4 and 5 that not only
can the data all be collapsed to one curve for each angle
B (as Rye et al [19] showed), but also that the similarity
parameter collapses the data from all groove angles tested to
the same curve. Finally, we see that the analytical expression
for K (0, @), figures 4(b), 5(b) and (e), yields values of II that
are very close to those computed using the experimentally
determined values of K (6, o), figures 4(c), 5(c) and (f), in

(a)
1.4 —
oo
1.2 - -
1.0 - @]
5 0.8 —
* 0.6
Error
0.4 — X. = +/- 0.025 cm
12 12
0.2 - t=+-(1/30)"s
0.0 5
I I I
6 8 10
s ]
(b) . =
b O 1,4-butadiol
9] O cyclohexanol
¢ diethylene glycol
0 1—5 Avg. Error = +/-5%( | v 2-octanol
e A 1-butanol
- + 1-heptanol

Figure 4. (a) Penetration data (after [19]) for fluids flowing in
V-shaped grooves cut with an angle 8 = 45°. The same data are
then replotted using the non-dimensional prescription given in
equation (20) with the value of K (6, «) (b) given in equation (19)
and (c) computed by Rye et al [19] from a curve fit of the
experimental data.

all cases, leading us to conclude that equation (19) is a good
expression for K (0, o).

It is worth mentioning that the collapse of the data in
figures 4 and 5 for X < 10 is not nearly as good as in the
cases where X > 10. There are a couple of possible reasons
for this. The first is that when X < 10, x, is small and the
relative error in knowing its value is larger. Thus, the error
bars on the corresponding non-dimensional data are larger.
A second reason is that the raw data, plotted in x, and t'/?
coordinates, may be slightly offset (i.e. a straight line curve fit
may not exactly pass through zero) due to an initial transient
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Figure 5. (a) Penetration data (after [19]) for fluids flowing in V-shaped grooves cut with an angle 8 = 77°. The same data are then
replotted using the non-dimensional prescription given in equation (20) with the value of K (6, ) (b) given in equation (19) and
(c) computed by Rye er al [19] from a curve fit of the experimental data. Analogous data for a groove angle 8 = 124° are given in (d)—(f).

in the motion of the flow, which could be different for each
fluid. A third possibility could be that the flow in this region
is not yet quasi-steady, and so our one-dimensional theory and
subsequent scaling parameters fail. This possibility will be
discussed again in section 5.

4.3. Microstrips

The experimental data for the spreading of liquids on
microstrips are taken from [22] and presented in figure 6(a).
The data set is replotted in figure 6(b) using the non-
dimensional form given by equation (23). The proportionality
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constant ¢ has been treated as a free parameter in this case.
Its value has been chosen such that the data agree with the
universal scaling relation presented in section 6. The value of
¢ used to non-dimensionalize these data was 5.55 x 107%m?
or¢'A =1.77cm.

As shown in figure 6(b), the data sets for all four widths
effectively collapse onto a single curve when our constant ¢
is used to compute [1. However, the collapse is independent
of the numerical value of ¢, as long as it is a constant for all
four widths. This further validates the relevance of both the
non-dimensionalization prescribed by equation (23) and the
scaling of the velocity given in equation (21).
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Figure 6. (a) Penetration data for polydimethylsiloxane silicone oil
flowing on microstrips of varying widths, w (after [22]). (b) The
same data replotted using the non-dimensionalization given in
equation (23), where ¢ has been taken equal to 5.55 x 107% m? for
all widths.

4.4. Stepped tube

Our experimental data for fluids flowing in stepped capillary
tubes are shown in figures 7(a) and (b). These data are divided
into two groups, each corresponding to a given radius, a;
(see figure 1(a)). In figures 7(c) and (d), the data have been
non-dimensionalized according to equations (13) and (14).

4.4.1.  Discussion of results. ~We first notice that the
dimensional data for the lower viscosity fluids lie virtually
on top of each other, while the same data, when recast in
the form of the similarity parameter, actually separate. The
authors do not know for certain why the dimensional data are
aligned in some cases and the corresponding dimensionless
data become more poorly aligned. However, we speculate that
the advancing contact angles may differ from the static angles
given in table 2 due to the higher fluid velocities in those cases
and these differences may, in fact, not be the same for different
tube radii.

While non-dimensionalizing does collapse the data
significantly, the spread is still a little more than an order
of magnitude. We especially draw attention to the data
corresponding to ¢; = 1.5mm and a, = 1.1 mm. Except
for the data for isopropanol these data do not follow the data
for any other radius combination. Also, even when the non-
dimensionalization is applied, the data do not conform to the

other data sets. It may be that the isopropanol tracks the other
data sets better because its penetration, due to its greater speed
relative to the other datafora, = 1.1 mm, is still predominately
governed by a one-dimensional momentum equation like the
one employed in section 3.1.

We argue that the data sets that do not track the theory
well actually show the usefulness of the similarity parameter.
In these cases, we believe that some physical mechanism other
than Washburn dynamics is governing the penetration of the
fluid. The fact that the different data sets are operating in
different physical regimes is clearly demonstrated when the
penetration data are plotted in coordinates of IT and X. We
shall revisit this point again once we derive a universal relation
between the similarity parameter and non-dimensional length.

4.4.2. Alternative physical mechanisms. There are a few
possible effects that could be influencing the data in figure 7,
especially at the higher values of a;. The first may be
that gravity is introducing two-dimensional effects into the
problem. Itis convenient for us to use the Bond number, which
is defined as the ratio of gravitational to surface tension forces
and is written as 5
Bo — P84
14

where d is the capillary tube diameter. The values of Bo
for tubes possessing radii corresponding to values of a, vary
between O(0.1) and O(1), implying that gravity should play
some role in the development of the flow in at least some of
the cases.

It is experimentally observed that the meniscus deforms
with increasing Bo, as shown schematically in figure 8. This
deformation may yield a pressure drop across the mensicus
that is no longer given by equation (10). As such, we would
fully expect the non-dimensionalization to fail for cases where
Bo is close to unity.

A second possibility is that the meniscus is not moving
in the assumed steady, continuous fashion, but instead is
exhibiting stick—slip motion and contact line pinning as
discussed in [27,28]. It is possible that the higher viscosity,
slower moving fluids in our experiments were advancing in
this manner and that this resulted in deviations from the
one-dimensional theoretical description.

5. Physical insight and limitations

In the appendix, we show that the momentum equation for a
flow entering a capillary tube from a semi-infinite reservoir can
be written as

Brt? ( +a)d2x*+1 dx, 2 1 X, T dxy
2 |(\"72) 2 T \ar ) | T @@ ar

In this equation, t and B are, respectively, a dimensional
timescale and a dimensionless parameter and are defined as

(24)

8u pa>  pa*Ap
="K B = =

~Ap] S TAp B
Also, x,, dx,/dt, and d’x, /dr? are, respectively, the position,
velocity, and acceleration of the moving air-liquid interface.
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Figure 7. (a) and (b) Velocity as a function of penetration depth for fluids flowing in stepped capillary tubes (a; as noted on the graphs).
(c) and (d) The same data plotted using the non-dimensionalization of equations (13) and (14).
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Figure 8. Schematic showing how the meniscus deforms with
increasing Bo.

5.1. Dimensionless formulation and solution

Introducing the dimensionless variables X and &,

X t tA
x=2  g=-=P
a T 8

we can rewrite equation (24) as

1\ d2X 1 /dXx\? dx
Bl[X+=-)—+-(— =1-X—.

2) dg2 8 \ d& dé
For problems of interest, the condition X > 1 should be

satisfied. We notice that if the left-hand side of equation (25)
is negligible, the solution is

X =2,

which is the non-dimensional version of the Washburn
equation (3).

(25)

(26)
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Consistent with the Washburn solution we have

dx\*> 1 d’x 1

- =5 X—F=———.

dé 2¢ dg? 2&
For the left-hand side of equation (25) to be negligible, the

inequality B < & must be satisfied. Rewriting this inequality
in terms of dimensional parameters, we obtain

27)

2

pa
fco = 57— K,

8 (28)

where 7 is the ‘crossover’ time. This implies that for the flow
to be considered quasi-steady, the time must be much greater
than 7co, which is essentially the time it takes for viscous
diffusion to travel a distance O(a).

We now return to the case of the V-groove penetration
data where X < 10, as found in figures 4 and 5. Equation (26)
can be rearranged and used to substitute for 7 in equation (28).
Taking X = 10, a quick calculation shows that 7¢¢ can, in fact,
be greater than 1% of ¢, implying that the flow in cases where
X < 10 may not yet be quasi-steady.

5.2. Meaning of Ucyp

If we operate at a time that satisfies the inequality in
equation (28), we can substitute for time using the first equation
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in (27). Substituting and rearranging yields the expression

2

Al (ﬂ (29)

2
=2Re|y, 1> < 1,
1 Ucap) v

where Re|y,,, is aReynold’s number based on the characteristic
velocity, Uc,p. For most practical flows such as those discussed
here Re|y,,, = O(1).

We know that as (#) — Ucyp, I — 1. When this
occurs the inequality in equation (29) is violated and the flow
cannot be considered quasi-steady. We conclude that Uy, is
a characteristic velocity for capillary flows. For times later
than #co, the flow becomes quasi-steady, the inequality in
equation (29) holds, and the fluid velocity is always less than
Ucap. Since (u) is less than U, for all the developed flows
considered in this paper, we conclude that these flows are
essentially quasi-steady”.

6. Scaling relation

In this section, we turn our attention to the problem of finding
a relationship between the similarity parameter, I, and the
non-dimensional length, X. For times greater than #co, we can
set the left-hand side of equation (25) equal to zero and then
rearrange the right-hand side to obtain

dx

aa —1
iz =X (30)

Writing the left-hand side of this equation in terms of the
similarity parameter yields the universal relation
X*l

= (31)

o=

In figure 9, we have plotted all the literature data presented
in this paper using the variables IT and X while the authors’ data
for a stepped-tube can be found in figure 10. In addition, the
line given by equation (31), representing the scaling relation
between the non-dimensional parameters, has been plotted in
both figures. The first plot shows that not only do all the
literature data, independent of geometry or fluid, effectively
collapse to a single curve, but that this curve is given by the
scaling relation. The second plot shows the increasing failure
of the scaling relation to fully collapse the authors’ own data
as ap increases (see figure 7 for the corresponding values of
ay). We again emphasize that this failure should be understood
as a crossover between a regime where Washburn dynamics
governs the penetration of the fluid and a regime where some
other physical effect begins to dominate. The usefulness of
plotting data using the similarity parameter and comparing
these plots with the universal scaling relationship is that one can
unequivocally determine if the flow is governed by Washburn
dynamics.

4 It is interesting to note that the similarity parameter, I1, is analogous to
the Crocco number, Cr, of compressible gas dynamics [29], which is also
equivalent to a velocity non-dimensionalized by a maximum velocity, V / Viax.
In that case, Viax is the maximum velocity a gas can attain when adiabatically
expanded to zero temperature.
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Figure 9. All literature penetration data contained within this paper
plotted in coordinates of IT and X. In addition, equation (31),
representing the universal scaling relation, is plotted.

T T T T T T
10° 10’ 10°

Figure 10. The authors’ stepped-tube penetration data plotted in
coordinates of IT and X. In addition, equation (31), representing the
universal scaling relation, is plotted.

7. Conclusions

This study leads to the following major conclusions.

e A similarity parameter for quasi-steady fluids advancing
into horizontal capillaries exists and can be found by
combining the relevant dimensional parameters of this
problem.

e The similarity parameter consists of the ratio between
either the effect of viscosity and that of the driving
pressure, or the average fluid velocity and a characteristic
capillary velocity, Uc,,. When the time is greater than the
‘crossover’ time, the characteristic velocity is greater than
the fluid velocity.

e The similarity parameter collapses a large data set
spanning five orders of magnitude in penetration velocity,
14 different fluids, and four different geometries to a single
curve. This implies that a relation between the similarity
parameter, I1 = (u)/Ucp, and the non-dimensional
distance, X, exists.

e The equation IT = (%)X =1, which holds for fully
developed quasi-steady flows (i.e. for times much greater
than pa®/811), provides a universal scaling relation that
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agrees well with the collapsed data set over a large range
of experimental parameters.

e A determination of whether or not a fluid’s penetration
is governed by Washburn dynamics can be made by
observing if data plotted in coordinates of IT and X
align with the universal scaling relation. In this study, a
crossover between different physical regimes can clearly
be seen when data from the stepped tube experiments are
analysed in this manner.
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Appendix. Origin of equation (24)

We proceed with a derivation of equation (24) from first
principles.

Appendix A.1. Formulation

Consider a straight, round, semi-infinite tube of radius a. This
tube extends in the positive x-direction and it is connected to a
much larger radius tube in the negative x-direction. Atz < 0,
liquid fills the x < O side and there is no liquid in the x > 0
portion of the tube. Att > 0, liquid is expected to enter the
narrow tube. The static pressures at x = oo are identical
and denoted by py. The static pressure on the liquid side of
the liquid—air interface is reduced by the surface tension and
is given by equation (1). For the moment, we shall take the
pressure reduction due to surface tension to be equal to Ap.
Let x, denote the location of the moving air-liquid interface
and (u) denote its average velocity, or

_ dx,

() =4

) 0<x<x,, t20. (A1)

Note that we can rewrite the parabolic velocity profile,

equation (2), as
2
u(r) = 2(u) (1 - %) .

Appendix A.2. Static pressure at x ~ 0

(A2)

The liquid at x < 0 converges and flows towards the entrance
of the narrow tube. The static pressure at x & 0 is less than py.
For the region where x < 0, we can use Bernoulli’s equation
for an inviscid, unsteady flow,

=p+ ve + 99 _ tant (A3)
po=p+tp > Py = constant,
where ¢ is the velocity potential defined as
V=V¢ (A4)
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and V is the liquid velocity vector of magnitude V. Equating
the flowrate into the narrow tube with the flowrate through any
tube cross-section, we can find a simple sink velocity potential,

(u)a®

2r
where r is the radial spherical coordinate. We can now evaluate
equation (A3) at x =~ 0 as

1 /dx, 2 a d?x,
px=0)=po—p *( )+§ , (A6)

¢ = (A5)

8 \ dr dr?

where the dynamic pressure and unsteady term in
equation (A3) were evaluated at » = a. The time-dependent
pressure gradient in the narrow tube is expected to be a constant
with respect to x. This can be computed by

ap _ (po—Ap) — plx=0)

ax Xy ’

Ap p (1 [dx, 2 o4 d2x,
=—+—|= + = . (A7)
Xe X, \ 8\ dt 2 dr?

Appendix A.3. x-Momentum equation

The x-momentum equation in the narrow tube is

9 (u) ap 2
=——+uVv .
P, ax TH u(r)
Taking u(r) to be given by equation (A2), we can rewrite the
momentum equation as

o) __op _ 8ulw)

ot dx a? -’
Substituting equation (A7) for the pressure gradient and
rearranging, we obtain

Bt? ( . a) d?x, N 1 /dx, 2
A (x+ = z —
a? 2/ d2 8\ dr
(A10)

where we have defined a dimensional timescale, 7, and a
dimensionless parameter, B, as

(A8)

(A9)

X5 T dx,
a? dt’

8u pa’  pa*Ap

Yy T TAp T Gw?

Equation (A10) is exactly equation (24).

We assumed a velocity profile in the derivation of
equation (A10) and then performed a ‘momentum integral’
type analysis. It is interesting to note that our result recovers
the form of the governing equation derived using an energy
balance formulation by Szekely et al [30] but differs on two
coefficients (one on the d’x, /dt2 term and the other on the
(dx,/dt)? term).

The other, implicit assumption we make in introducing
the inviscid Bernoulli equation (A3) is that the flow Reynolds
number is low. The unsteady terms arising in the x-momentum
equation as a result of using the inviscid Bernoulli equation are
not reliable except in their order of magnitude (the same is true
of the result in [30]). However, we are only interested in the
upper bound on these unsteady terms. The useful result of
this derivation is the condition under which the neglect of the
unsteady terms is justified.
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