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An interactive software tool is developed to characterize the waves and instabilities
present in plasma thrusters by solving for the complex zeros of plasma dispersion rela-
tions. This tool helps researchers explore plasma waves and instabilities in their particular
plasma thruster configuration. A user-friendly graphical interface allows versatile data in-
put and parametric control. The zeros of the dispersion relation are located and tracked
by root-finding algorithms based on Cauchy’s Argument Principle and Newton-Raphson’s
method. Information about the instabilities found is presented through various data visu-
alization options. The software tool is validated by reproducing previous work concerning
instabilities arising in Hall thrusters from solutions to a simplified Esipchuk-Tilinin disper-
sion relation.

Nomenclature

ω Angular frequency, rad/s
k Wavenumber, /m
λ Wavelength, m
p Plasma parameter
n Density, /m3

T Temperature, eV
φ Potential, V
B Magnetic field, G
u Velocity, m/s
m Gas mass, kg
λD Debye length, m
vA Alfvén velocity, m/s
udey E×B electron drift velocity, m/s
uB Magnetic drift velocity, m/s

Subscript
e Electron
i Ion
o Neutral
p Plasma
c Cyclotron
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I. Introduction

Waves and instabilities in a plasma thruster’s discharge can affect the theoretical modeling and practical
aspects of the device’s operation as well as its implementation in spacecrafts. For example, high-frequency
radiation emitted by the plume of a plasma thruster can interfere with nearby communications equipment on
a spacecraft. Reliable operation of a plasma thruster itself can be compromised by the presence of a plasma
wave. This is the case in Hall thrusters, where oscillations in the 1-20 kHz band can have amplitudes on the
order of the discharge voltage and sometimes lead to the discharge extinguishing.1 The effects of plasma waves
in Hall thrusters are also part ongoing research involving theoretical modeling of the observed ‘anomalous’
electron current. Since the applied radial magnetic field in these devices hinders the flow of electrons to the
upstream anode, cross-field electron transport models include effects of plasma waves2–5 to predict the axial
electron current. Unfortunately, the models developed so far underestimate the anomalously high measured
electron current6 and have yet to develop a fully self-consistent approach of the physics involved.7,8

Determining the dependence of plasma waves and instabilities on operational parameters can guide
modeling efforts or help mitigate problems in the thruster’s operation. For example, characterizing the linear
stability of a wave as a function of controllable magnetic field profiles or mass flow rates informs researchers
of desirable parameter spaces at which to operate. Similarly, finding where in the thruster instabilities arise
aids focus refined modeling efforts to the regions where the effects of plasma waves are relevant. Plasma
waves are analyzed by deriving a dispersion relation of the form D(ω,k; p1, p2, . . . ) = 0 from models of plasma
discharges. The complex zeros of D characterize the wave modes or branches of the dispersion relation that
arise in the plasma. Exploring the dependence of these complex zeros on operational parameters across
relevant frequency or wavenumber ranges yields valuable information to researchers. However, currently
there is no tool available to readily conduct these types of investigations based on input from a particular
plasma thruster configuration.

In this paper we present the Plasma Rocket Instability Characterizer (PRINCE), an interactive software
tool which allows researchers to carry out parametric investigations of waves and instabilities for their
particular plasma thruster configuration. Based on versatile data input from the user, PRINCE computes
plasma dispersion relations and solves for their complex zeros. The goal is to provide the user a robust method
to characterize the initially linear oscillations that may arise in a particular plasma thruster. This serves as
a first step for approaching plasma thruster instability physics to aid develop analytical or numerical models
or guide experimental investigations. We present the features and underlying mathematics of PRINCE
along with a representative example of its use as follows. In Section II we describe the program’s three
main components: the graphical user interface for data input in Section II.A, the implemented root-finding
algorithms in Section II.B, and the data visualization capabilities in Section II.C. We validate PRINCE in
Section III with a brief characterization of an instability potentially found in Hall thrusters and end with
concluding remarks in Section IV.

II. Components of PRINCE

PRINCE has three main components: 1) a graphical user interface, 2) robust root-finding and tracking
algorithms, and 3) data visualization routines to provide insight into the numerical results. The current
version is implemented in Wolfram Research’s Mathematica 10.4 with plans to have future versions be
stand-alone programs which run computationally intensive routines in a compiled language such as C++.
In the subsections below we describe the features and details of each of these components.

A. Graphical User Interface

The graphical user interface is divided into three panels. In the Plasma Parameters panel, shown in Fig-
ure 1, the user inputs information concerning various physical parameters of the thruster plasma. PRINCE
accepts discrete spatially-resolved data for eight different parameters as a function of zero, one, or two co-
ordinates (Cartesian in the current version). The user specifies the units of the coordinate system and gas
species at the bottom of the panel. PRINCE determines the spatial discretization from the imported data
and calculates any gradients required by the dispersion relation.
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Figure 1. Plasma Parameters Panel. The tool offers several dimensionality and Cartesian coordinate de-
pendence options for eight different input parameters. The user also specifies the units of the input spatial
discretization as well as the working gas species.

In the Solver Settings panel, shown in Figure 2, the figure at the left displays the orientation of the
Cartesian coordinate system as well as dynamically updated vectors of selected electric and magnetic fields.
The user chooses from the dropdown menu a pre-set dispersion relation for PRINCE to solve, which displays
in the middle of the panel and dynamically updates as the user selects input parameters to include. The
present options include a (simplified or full) Esipchuk-Tilinin dispersion relation, warm damped Langmuir
waves, and high-frequency E×B drift waves. The required and optional parameters for the selected dispersion
relation appear at the right informing the user of the scope of applicable input. Future versions of PRINCE
will include more pre-set options as well as allow the user to input a custom dispersion relation through a
palette.

At the bottom of the panel the user specifies the dependent variable of the zeros and the range over which
to track their locations. Future versions of PRINCE will have an additional panel that displays spatially-
resolved calculated plasma characteristic parameters such as cyclotron frequencies that will help the user
choose a relevant ω or k parameter space to explore. Only one of the wavevector components can be iterated
over or solved for during one run of the program, so fixed values for the other two components need to be set.
For example, the user can choose kx as the dependent variable and fix ky and kz to characterize the waves
for varying degree of propagation in the x-direction. PRINCE would then calculate numerical solutions to
ω(kx) over the range and at the resolution specified for kx at every spatial point. The user can analyze and
output these results with the features of the Data Visualization panel described in Section II.C.

B. Algorithms for Root-Solving

We first overview the procedure to numerically solve for the zeros of the dispersion relation before presenting
descriptions of the mathematics of the root-finding algorithms. For clarity, we assume the user wants to solve
for ω over a range of ky, implying fixed values for kx and kz. However, the user can permute the k components
in this configuration or switch to an iteration over ω and solve for one of the k components, specifying fixed
values for the other two. These options allow the user to characterize waves based on direction of propagation
and the range of interest of wavelength or frequency as well as explore the convective or absolute nature of
an instability.

PRINCE begins by evaluating the input plasma parameters in the dispersion relation at each spatial
point, simplifying D(ω,k; q1, q2 . . . ) to a set of point-specific D(ω,k) functions. Any necessary parameter
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Figure 2. Solver Settings Panel. The dynamically updated figure at left helps the user input the desired
magnetic and electric fields. The selected dispersion relation and secondary quantities change as the user
picks parameters to include from the list at right. Variable specifications at the bottom serve as input to the
iterative root-tracker.

gradients or secondary quantities, such as thermal velocities or cyclotron frequencies, are calculated directly
from the imported data or through third order interpolations. To simplify to functions of a single variable
D(ω), PRINCE evaluates each D(ω,k) at the minimum value of ky, chosen to be the starting point of
the root-tracking iteration, and the fixed values of kx and kz. A global root-finding algorithm based on
Cauchy’s Argument Principle9 and described in Section II.B.1 then finds the initial number of zeros and
estimates for their locations in the complex ω-plane for each D(ω). PRINCE passes the initial estimates
of the zeros’ locations to the more efficient local root-finding Newton-Raphson’s method to calculate more
accurate values. PRINCE uses a different root-finding algorithm at the start of the first iteration step since at
that stage no information is available on the location or number of zeros of D(ω), which the Newton-Raphson
method requires to reliably converge to the correct zero. The iterative procedure described in Section II.B.2
continues using the Newton-Raphson algorithm to track the location of each zero in the complex ω-plane as
ky increments over the user-specified range. The result of the calculations is a set of point-specific numerical
solutions for the zeros ω(ky) initially located in the physically relevant search region which characterize the
oscillation modes for varying degrees of propagation in the y-direction.

1. Global Root-Finding

While several algorithms exist to find a zero of a complex function, many involve an iterative procedure
that requires an initial guess for the location of the zero.10 Moreover, which zero (if there are multiple)
the iteration converges to can be a highly sensitive or even chaotic function of the initial guess. This
presents difficulties when root-finding as it requires the user have some a priori knowledge on the number
and locations of the zeros of the function for the algorithm to converge to the correct zero. The dispersion
relations studied in plasma physics can commonly have an unknown (possibly infinite) number of complex
zeros, so this knowledge is not readily determined for an arbitrary non-linear D(ω,k; q1, q2, . . . ). We therefore
design PRINCE to not require such knowledge as input from the user and instead autonomously determine
it. To accomplish this, we implement a global root-finding algorithm based on previous work by Choueiri11,12

that takes advantage of the meromorphic nature of plasma physics dispersion relations.
Consider a meromorphic (analytic except for poles) function f(z) and an analytic function g(z) in a

simply-connected open domain R. Assuming that f(z) and g(z) are analytic and f(z) is non-zero on the
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positively-oriented closed contour γ bounding R, Cauchy’s Argument Principle states that

1

2πi

∮
γ

g(ζ)
f ′(ζ)

f(ζ)
dζ =

∑
k

mkg(zk)−
∑
p

dpg(zp), (1)

where zk and zp are the zeros and poles of f(z) contained in R with multiplicities mk and dp, respectively.
Assuming f(z) has no poles in R, thus removing the summation over p above, and letting g(z) = zt, we use
Eq. 1 to define the contour integral

It =
1

2πi

∮
γ

ζt
f ′(ζ)

f(ζ)
dζ =

∑
k

mkz
t
k. (2)

For the case t = 0, the integral gives the sum of the multiplicities of the zeros contained in R. If the domain
contains only one zero, then for the case t = 1 the integral gives the value of the zero times its multiplicity.

PRINCE conducts the search for the initial zeros of the dispersion relation by substituting each D(ω)
for f(z) in Eq. 2 and evaluating It over a physically relevant search domain S. We can guarantee the S we
consider contains no poles as most D(ω,k; q1, q2, . . . ) do not have poles or their locations are known from
the start,13,14 justifying the removal of the second summation in Eq. 1. The non-relativistic and quasi-
neutrality considerations applicable to plasma thrusters determine the extent of the search domain in the
real and imaginary directions. For the search over an ω domain, the upper bound on the zero corresponds
to roughly non-relativistic particle motion over a Debye length (ωλD ≤ c). If instead the search were over
a k component domain, the upper bound on the zero is such that the corresponding wavelength is greater
than the local Debye length (k = 2π/λ ≤ 2π/λD). Additionally, the search excludes strictly real or purely
imaginary zeros, which correspond to linearly stable waves or non-propagating oscillations. These zeros can
be more computationally intensive to resolve and are less consequential to waves and instabilities studies.

The algorithm to find the number and locations of the initial zeros of the dispersion relation is as follows:11

1. Divide the search domain S in the complex ω-plane into rectangular cells.

2. For each cell, evaluate I0 numerically along the delimiting contour.

3. For each cell, take one of three actions based on the value of I0:

(a) If <{I0} = 1 within tolerance, a simple zero was found, so calculate and store I1 as the estimate
for its location.

(b) If <{I0} = 0 within tolerance, no zeros are contained in the cell, so disregard it.

(c) If |<{I0}| > 0 and |1 − <{I0}| > 0 within tolerance, the cell may contain unresolved zeros, so
label the cell as suspect.

4. If there are no suspect cells, all zeros were found and the search terminates. Otherwise, for each suspect
cell there are two options:

(a) If D (I1/<{I0}) = 0 within tolerance, the cell contains a single degenerate zero with multiplicity
<{I0}, so store I1/<{I0} as the estimate for its location.

(b) If D (I1/<{I0}) 6= 0 within tolerance, the suspect cell contains unresolved zeros, so recursively
apply the algorithm to the cell.

Figure 3 illustrates this procedure for the example of four zeros, three of which correspond to physically
relevant, linearly unstable waves. The sign of the real part of the zero indicates whether the wave’s phase
velocity is parallel or anti-parallel to the (kx, ky, kz) vector. The search domain S is the union of four disjoint
rectangular regions, one in each quadrant of the complex plane and each off-set from the real and imaginary
axes by a predefined distance. PRINCE recursively applies the search algorithm only to the suspect cells
containing unresolved zeros (Cell B in this example). The other cells are discarded once the number and
locations of any resolved zeros are stored.
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Figure 3. Root-Finding Recursion. The tool determines in the 0th Recursion Step that cells C and D contain
no zeros while cell A only contains zero ω1. Cell B is suspect, so it is subdivided into smaller cells in the 1st

Recursion Step to resolve zeros ω2 and ω3. As zero ω4 is not inside any of the search cells, it is ignored.

2. Iterative Local Root-Tracking

Once the global root-finding algorithm finds and calculates the initial locations of the physically relevant
zeros of each D(ω), PRINCE passes this information to an iterative local root-tracking routine. Now that
knowledge regarding the zeros is available, we implement Newton-Raphson’s method, which requires adequate
initial guesses as input, to track these zeros as ky increments over the user-specified range. At the first
iteration step, PRINCE refines the initial locations of the zeros using the values calculated with I1 as initial
guesses for the Newton-Raphson solver. In the following iteration steps, PRINCE re-evaluates the dispersion
relation at the new value of ky and uses the zeros’ locations from the previous step as initial guesses for
the Newton-Raphson algorithm to determine the new locations of the zeros. The process continues until
PRINCE completes the iteration over the specified ky range.

C. Data Visualization

PRINCE provides data visualization routines to interpret the results of the numerical solver. Raw data
output is also available if the user wishes to conduct their own analysis on the numerical results. The data
visualization features currently available in PRINCE highlight the relevant information of the zeros with the
largest positive imaginary part (growth rate) across all branches at a spatial point, i.e. the most unstable
mode which will dominate due to its exponential growth.

From the Data Visualization panel the user can output the real and imaginary parts of the zeros as
a function of the iteration variable for each branch at each spatial point. The Single Branch button plots
the value of the zero as a function of the iteration variable for an individual branch at a spatial point; this
is the only local data visualization feature. The Binary Instability Spatializer option shows for each
spatial point the binary status (yes or no) of an instability’s prescence. This serves to readily visualize the
regions where instabilities arise. Two contour plots available under the Dominant Unstable Mode section
display information related to the zero with the largest growth rate across all branches at each spatial point.
The plots show either the value of the iteration variable at which the zero attains that growth rate or the
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real part of the zero that accompanies that growth rate.

III. Validation

We validate PRINCE by reproducing previous work1 which investigated instabilities arising in a Hall
thruster channel from solutions to the Esipchuk-Tilinin dispersion relation15

1

ω2
pi

− 1

(ω − kxui)2
+

1

ωceωci
+

1

k2⊥v
2
A

− ky(udey − uB)

k2⊥u
2
i (ω − kyudey)

= 0. (3)

Here ωpi is the ion plasma frequency, ui the ion velocity, ωce and ωci the electron and ion cyclotron frequencies,
vA the Alfvén velocity, udey the E × B electron drift velocity, and uB the magnetic drift velocity. Ref. 1
restricted the frequency range considered such that (ω− kxui)2 � ωceωci � ω2

pi and (ω− kxui)2 � k2⊥v
2
A to

simplify the dispersion relation to

1

(ω − kxui)2
+

ky(udey − uB)

k2⊥u
2
i (ω − kyudey)

= 0, (4)

so this is the version we analyze with PRINCE. Extracted experimental data sets with xenon as propellant16

with a spatial resolution of 0.5 mm of electron density, electric potential, and radial magnetic field, reproduced
in Figure 4(a)-(c), served as input to calculate ui, udey = −Ey/Brad, ωci = eBrad/mi, and uB = ∂Brad

∂x ui/ωci

in both the previous work and our reproduction.
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Figure 4. Esipchuk-Tilinin Dispersion Relation Example. Profiles of the electron density, electric potential,
and radial magnetic field extracted from Ref. 16 display in panels (a), (b), and (c), respectively. The real
frequency of the unstable modes of Eq. 4 with k⊥ = 1/z and mostly azimuthal propagation (ky = 10kx) are
displayed in panel (d). Blue denotes stable regions.

Ref. 1 characterized instabilities arising in the mostly azimuthal propagation (ky = 10kx) of the mode

with k⊥ =
√
k2x + k2y = 1/z, where z is the local radius of curvature of the channel. The results comprise
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computations of the complex zeros ω(kx, ky) using the analytical solution of Eq. 4. Figure 9(f) in Ref. 1 plots
the real part of the zeros at the locations where the zero has a positive imaginary part, signifying the mode is
unstable. To reproduce this analysis, we use PRINCE to characterize the zeros ω(k) of Eq. 4. We set kz = 0
and ky = 10kx and vary kx between 2 m-1 and 4 m-1 at a resolution of 0.05 m-1. We extract the value of ω
corresponding to the mode k⊥ = 1/z for each spatial point from the output raw data to produce Figure 4(d),
our reproduction of Figure 9(f) from Ref. 1. The locations where instabilities arise match well, corresponding
as expected to the region in the channel where the radial magnetic field gradient is negative with respect to
the axial variable (∂Brad/∂x < 0). The frequency range (20-50 kHz) is also comparable, differences no larger
than 10 kHz potentially due to different interpolation schemes used to calculate the gradients and secondary
plasma quantities.

IV. Conclusion

We presented the interactive software tool PRINCE which aids users characterize plasma waves by
finding and tracking the zeros of dispersion relations. Researchers can use PRINCE to conduct exploratory
investigations of plasma instabilities arising in their particular plasma thruster configuration. Using versatile
data input from the user, PRINCE implements a global root-finding algorithm to search for the locations of
the complex zeros of dispersion relations. An iterative procedure then uses a local root-finding algorithm to
track the zeros over a user-specified range, resulting in numerical solutions of the zeros which characterize the
wave modes that can arise in the plasma thruster. We validate PRINCE by reproducing the results of previous
work concerning instabilities arising from a simplified version of the Esipchuk-Tilinin dispersion relation in
the channel of a Hall thruster. Future versions of the program will feature more intricate and customizable
dispersion relations and solver settings as well as advanced data post-processing and visualization features.
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