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Abstract

A probe-based diagnostic which uses harmonically-rich wave packets to measure

the dispersion relation in low-temperature laboratory plasmas is presented. Disper-

sion relation measurements provide the necessary experimental verification for theo-

retical models describing plasma wave physics; however, existing techniques exhibit

fundamental and technical drawbacks some of which the Active Wave Packet Injection

(AWPI) seeks to address. Using a frequency-domain analysis of ion-saturation-current

probe time traces, which uses coherence metrics to identify wave propagation and in-

terferometry to calculate wavenumber as a function of frequency, the AWPI diagnostic

is developed to measure dispersion relations simultaneously at multiple frequencies.

A comb generating circuit is designed to excite harmonically-rich wave packets by

producing tens of harmonics of an input square wave’s fundamental frequency.

A proof-of-concept implementation of the diagnostic is used to measure the disper-

sion relation of electrostatic ion-cyclotron waves in a 250 W magnetized RF plasma

source. In an argon plasma, the diagnostic is used to measure the perpendicular prop-

agation and decay of electrostatic ion-cyclotron waves with wavelengths greater than

∼ 3 cm and characteristic decay length-scales of 4.5-6 cm. The nearly three dozen

simultaneously measured wavenumbers agree with the prediction of a fluid plasma

wave model for frequencies spanning 6 harmonics of the ion-cyclotron frequency (20-

120 kHz). In a helium plasma, the diagnostic is used to measure the perpendicular

and parallel propagation of the same wavemode with perpendicular wavelengths in

the 1.4-3 cm range and a roughly constant parallel wavelength of 7.8 cm. Nearly

five dozen simultaneously measured wavenumbers agree with the prediction of a ki-

netic plasma wave model for frequencies spanning 2 harmonics of the ion-cyclotron

frequency (400-800 kHz).
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Chapter 1

Introduction

1.1 Overview and Motivation

A plasma can sustain numerous plasma wave modes which span orders of magnitude

of frequency and wavelength. Unlike in regular fluids, long-range electromagnetic

interactions are as important as or even dominant over hydrodynamic interactions

in plasma systems, leading to markedly different behaviors. The disparity between

ion and electron masses, the anisotropy induced by background magnetic fields, and

particle kinetic effects are some of the characteristics particular to plasmas that allow

for more complex wave phenomena. This usually means that plasmas are dispersive

media in which the phase velocity of waves is a function of wave frequency. Plasma

wave modes are present in naturally occuring systems, such as electromagnetic ion-

cyclotron waves in Earth’s outer magnetosphere [1], and play roles in physical pro-

cesses like the acceleration of ions in Earth’s ionosphere [2] or the reconnection of

magnetic field lines in the solar corona [3]. On Earth, multiple engineering systems

use plasma waves for a variety of purposes: to sustain plasma discharges (e.g. by

depositing energy through helicon waves [4, 5, 6]), to heat plasmas (e.g. by selectively

coupling to tail electrons with lower-hybrid waves [7, 8]), or to measure plasma proper-
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Figure 1.1. Hall effect thruster operating with xenon. Picture courtesy of
jpl.nasa.gov.

ties (e.g. by conducting reflectometry of high-frequency electron Langmuir waves [9]).

Additionally, unstable plasma wave modes (i.e. instabilities) affect both the theoreti-

cal understanding and operation of plasma devices (e.g. instability-induced turbulence

in tokamaks [10]).

In the field of electric propulsion, research concerning plasma waves and instabil-

ities is important as these phenomena impact the modeling, design, and certification

of plasma thrusters. In particular, the Hall effect thruster (HET), pictured in Fig. 1.1,

has been a focus of plasma wave research over the past decades as this device exhibits

oscillations in the 1 kHz – 60 MHz frequency range [11] which affect our fundamen-

tal understanding of the plasma physics of the discharge. As shown in Fig. 1.2, the

Hall effect thruster has an annular channel inside which propellant is ionized and

accelerated to generate thrust [12]. The crossed electric and magnetic field (E ×B)

configuration magnetizes electrons emitted by the cathode and causes them to pri-
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marily drift in the azimuthal direction. Due to their larger mass, the ions are not

magnetized and instead are accelerated axially by the electric field, creating an ion

plume that is neutralized by a portion of the electrons emitted by the cathode.

While electron motion is mostly confined to the azimuthal E×B direction, there

is axial transport across the background magnetic field in order to close the electrical

circuit between cathode and anode. The axial electron current density can be written

as [13]

Jex = ene

(
Ex
Bz

)
1

ωc,eτ
, (1.1)

where ne is the electron number density, Ex is the axial electric field, Br is the radial

magnetic field, ωc,e = eBr/me is the electron cyclotron frequency, and τ is the mean

time between electron and neutral collisions (the most relevant type of collision for

classical cross-field transport). The inverse Hall parameter 1/ωc,eτ , which is directly

proportional to the cross-field electron mobility and axial electron current density, can

be calculated using measurements of Jex, ne, Ex, and Bz. However, as exemplified by

Fig. 1.3, the measured inverse Hall parameter exceeds the values expected by classical

transport models [14, 13], most notably in the region near the channel exit.

Explaining this non-classical or anomalous cross-field electron diffusion [14] which

causes the higher-than-expected Jex and associated electron mobility remains part

of ongoing research [15, 16, 17, 18, 19]. So far, numerical simulations of HETs have

relied on ad-hoc models of the anomalous transport with free parameters that are

adjusted until the simulation matches experimental data [18, 19]. From a theoretical

standpoint, it is suspected that plasma oscillations play an important role in the

plasma dynamics of the discharge [20, 21, 17], resulting in microturbulence or large-

scale structures [22, 23, 24]. Recent work has focused how the electron cyclotron drift

instablity could produce enhanced transport in these devices [25, 26, 27, 18]. However,

4



(a) Experimental measurements and classical theory predictions for the
inverse Hall parameter, along with Bohm’s constant value of 1/16.

(b) Experimental and classical theory predictions for the inverse Hall
parameter, along with Ref. [13]’s improved but still incomplete model.

Figure 1.3. Plots of anomalous transport as represented by the inverse Hall
parameter 1/ωc,eτ , which is proportional to electron mobility. Reproduced from
Ref. [13].
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Hall effect thrusters are capable of sustaining many different types of oscillations [11]

and the results arising from including different wavemodes currently do not allow for

“definitive conclusions about the exact physical mechanism responsible for anomolous

transport” [18] to be drawn.

Though modeling and understanding (either theoretically or numerically) the ef-

fect of plasma waves and instabilities on plasma transport is a challenging task [28,

29, 19], initial steps can be taken by first characterizing the propagation and growth of

plasma wavemodes of interest. Quasilinear theory, for example, “include[s] the effects

of turbulence self-consistently through anomolous transport terms which depend on

the unstable mode or modes and which evolve in time and space as the macroscopic

plasma parameters evolve” [30]. This methodology yields turbulence-related terms for

particle fluid equations which depend on an instability’s propagation (which relates

to the wave’s frequency and wavelength) and linear growth rate (see, for example,

Eqs. 11–13 in Ref. [30]). This vital information is contained in the wavemode’s disper-

sion relation, which we discuss in the following section. Deriving explicit expressions

for quantities such as linear growth rate from a dispersion relation is unfortunately

not always analytically possible without enforcing assumptions that do not reflect

the plasma discharges encountered in real propulsion systems (e.g. ignoring plasma

parameter gradients or particle kinetic effects). Numerical characterizations of the

plasma dispersion relations are therefore necessary to provide the input for advanced

transport models like this. Similarly, measuring the plasma wavemodes’ dispersion

relation provides the needed verification for the models developed.

6



1.2 The Dispersion Relation

The fundamental concept employed to mathematically describe plasma oscillations

(or oscillations in any kind of media) is the dispersion relation, commonly written

as [31]

D(ω,k; p1, p2, . . .) = 0, (1.2)

where the function D relates the wave frequency ω and the wavenumber vector k to

plasma parameters pi such as electron temperature Te or background magnetic field

B0. The roots ω(k; p1, p2, . . .) or k(ω; p1, p2, . . .) of the above function (sometimes

referred to as branches) represent the allowed wavemodes that may arise in the plasma

system which D models. These roots can be complex, so they are typically written as

ω = ωr + iωi or k = kr + iki to distinguish the portion describing propagation (ωr or

kr) from that describing growth or decay (ωi or ki ). This interpretation corresponds

to expressing a physical quantity that oscillates in space or time due to a wave’s

presence (such as electron density ne or electric field E) as

a(x, t) = a0(x, t) + a1 exp(ik · x− iωt), (1.3)

where a0(x, t) is the background value of a(x, t) and a1 is the amplitude of the linear

perturbation induced by the wave.

The exact form of D depends on the model chosen to describe the plasma sys-

tem. For example, using the convention in Eq. 1.3 for ion density ni, ion velocity vi,

pressure P, and magnetic field B, we can linearize and combine the ideal magneto-
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hydrodynamic (MHD) equations

∂ni

∂t
+∇ · (nivi) = 0, (1.4)

nimi

(
∂

∂t
+ vi · ∇

)
vi =

(B · ∇)B

4π
− ∇(B ·B)

8π
−∇P, (1.5)

∂B

∂t
= ∇× (vi ×B), (1.6)(

∂

∂t
+ vi · ∇

)(
P

nγi

)
= 0, (1.7)

to write the dispersion relation for electromagnetic Alfvén wave modes [32, 33]

(ω2 − v2
Ak

2
‖)
[
ω4 − (v2

A + c2
S)k2ω2 + v2

Ac
2
Sk

2
‖k

2
]

= 0, (1.8)

where vA = B0/
√
µ0nimi is the Alfvén velocity, cS =

√
Te/mi is the ion sound speed,

and k‖ and k⊥ (with k2 = k2
‖ + k2

⊥) refer to the components of k in the directions

parallel and perpendicular to the background magnetic field, respectively. Closed-

form analytical expressions are readily obtainable for the various branches of this

dispersion relation.

However, not all dispersion relations can be analytically solved like Eq. 1.8 for

ω(k) or k(ω). Such is the case for the general electrostatic dispersion relation for a

warm magnetized plasma [31]

k2
⊥ + k2

‖ +
∑

s

1

λ2
D,s

×[
1 +

n=∞∑
n=−∞

(ω − k‖vd,s − nωc,s)Ts⊥ + nωc,sTs‖√
2k‖Ts⊥

e−bIn(b)Z(ζn,s)

]
= 0,

(1.9)

where In is the nth order modified Bessel function of the first kind, Z the plasma

dispersion function of Fried and Conte,

ζn,s =
ω − nωc,s − k‖vd,s√

2 k‖vth,s
, bs =

k2
⊥v

2
th,s

ω2
c,s

, (1.10)
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λD,s =
√

ε0Ts/e2ns the species Debye length, vth,s =
√

Ts/ns the species thermal veloc-

ity, vd,s the species drift velocity, and ωc,s = eB/ms the species cyclotron frequency.

Even simplifying this expression for limiting cases like isothermal species (Ts‖ = Ts⊥)

or fully magnetized electrons (be � 1) does not produce analytically tractable re-

sults. Numerical techniques are therefore used to successfully solve for the roots of

complicated dispersion relations like this.

However, even if analytically or numerically solvable, the models used to derive

a particular dispersion relation may integrate assumptions which do not reflect the

true nature of the plasma studied. For example, models which assume a homogeneous

plasma do not capture the effects spatial gradients of plasma parameters, like those

of density [34] or magnetic field [11] in Hall effect thrusters, have on the propagation

or stability of wavemodes. Similarly, simpler but more analytically-tractable fluid

models can fail to capture modes of propagation which rely on the inclusion of kinetic

effects, such as with the neutralized ion Bernstein wave [35, 36]. Experimental mea-

surements of the dispersion relation ultimately provide the necessary verification for

the theoretical framework established to understand the plasma wave physics. This

can be a challenging undertaking as experimental diagnostics can perturb the state

of the plasma, particularly when physical access to the locations is not easy in real

plasma systems and devices. Additionally, the advanced equipment sometimes nec-

essary to perform these measurements can present a high financial barrier and have

limited compatibility with different gases.

1.3 Thesis Objective and Structure

Motivated by the importance to experimentally characterize plasma wavemodes in en-

gineering devices like plasma thrusters or natural settings like Earth’s ionosphere to

better understand the underlying physics, this dissertation presents the Active Wave

9



Packet Injection (AWPI) diagnostic, an experimental diagnostic used to measure

dispersion relations in low-temperature laboratory plasmas using harmonically-rich

wave packets. We manufacture a prototype of the diagnostic and integrate it into an

existing experimental testbed to validate its perfomance. We also complement this

experimental investigation with numerical characterizations of relevant plasma wave-

modes using the Plasma Rocket Instability Characterizer (PRINCE), a numerical

software which solves for the roots of arbitrary dispersion relations over a versatile

and customizable parameter space.

We begin in Chapter 2 with a review of existing techniques for measuring plasma

dispersion relations along with a discussion of the procedure for numerically solving

for the roots of dispersion relations. Chapter 3 details the relevant signal analysis

methodologies and hardware implementation of the AWPI diagnostic, which result

in the successful generation of harmonically-rich wave packets in the 1-1000 kHz fre-

quency range. We describe in Chapter 4 the low-temperature magnetized RF plasma

source in which we implement the AWPI diagnostic to measure the dispersion rela-

tion of electrostatic ion-cyclotron (EIC) waves. We discuss our results in Chapter 5,

followed by concluding remarks in Chapter 6. â a∗ a[n] ã
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Chapter 2

Review of Existing Techniques

In this chapter we overview existing experimental techniques for measuring disper-

sion relations. We first discuss the difference between passive and active probing

of a plasma. We then briefly describe the physics behind three common techniques:

plasma-immersed probe interferometry, laser-induced fluorescence, and collective light

scattering. We note both strengths and weaknesses of each technique to contextualize

and motivate the development of the AWPI diagnostic. We also include a discussion

of typical procedures to numerically solve for the roots of dispersion relations and the

difficulties that arise due to the nonlinear nature of the complex functions commonly

encountered in plasma physics. This is an important task to overview as it enables the

direct comparison of theory to measurements and provides some of the background

for the PRINCE software described in the appendices.

2.1 Measuring Plasma Dispersion Relations

Various techniques exist to experimentally characterize the spatial and temporal spec-

tra of different plasms parameters. Depending on the plasma system studied, nat-

urally excited plasma waves can produce sufficiently strong signals for passive diag-

nostics to detect or ‘listen’ to. Sometimes, though, the plasma modes of interest

11



may not be naturally excited or, if they are, do not produce signals that rise above

background measurement noise, resulting in low signal-to-noise ratio (SNR) measure-

ments which require additional processing to extract meaningful information [37, 20].

In these cases, antennae of various geometries are implemented alongside the passive

diagnostics to actively inject waves into the plasma [38, 36, 39, 40] (a procedure not

unique to plasma wave investigations, but also for objectives such as discharge cre-

ation [41, 42, 6] or plasma heating [8, 43]). This active injection of waves ‘rings’ the

plasma to capture both the phase and growth components of the linear dispsersion

relation, which can be obscured once naturally excited modes reach the saturation

stage. Past active injection experiments have generally been limited to single- or

dual-frequency wave launching [44, 36, 40, 45], so the dispersion relation is measured

one frequency at a time. In the following sections we briefly review three techniques

which measure dispersion relations of naturally excited or actively injected plasma

waves.

2.1.1 Plasma-Immersed Probe Interferometry

Probe interferometry relies on the cross-correlation of the time-dependent voltage or

current traces of two or more probes physically immersed in a plasma at known loca-

tions [46, 37]. Using a single probe or probes outside the plasma usually only provides

information on the frequency spectrum of the oscillations; measuring the dispersion

relation requires insight into the spatial structure of the waves. The probes imple-

mented measure a physical quantity which the plasma wave causes to vary in time,

such as ion-saturation-current probes to measure ni [36, 40, 47, 20] or magnetic in-

duction probes (also called B-dot probes) to measure B [48, 49]. At a given frequency

ω, the real part of the wavenumber in the direction parallel to the line between the

12



p(x, t)

∆φ

d12

Figure 2.1. Two probes immersed in the plasma take time traces of the value
of the oscillating plasma parameter p(x, t) at two known spatial locations.

two probe tips is

kr =
∆φ

d12

, (2.1)

where ∆φ is the phase difference between the two probe signals and d12 is the distance

between the probes. The relative signal between the probe signals also provides

information on the growth or decay of the wave mode (i.e. ki). Though simple to

implement, the probes may alter the state of the plasma by locally cooling both

neutral and charged species in high-density discharges, leading to lower temperatures

or higher densities [50]. Even in low-density discharges, plasma sheath effects and

the electrical biasing of the probes (in the case of particle flux probes) require careful

consideration to correctly determine bulk plasma properties [9]. The physical scale of

the probes and the possibility of sheath overlap set limits on the smallest resolvable

spatial scales, which usually lie in the millimeter range (k less than ∼ 650 /m) [51, 27].

A more detailed discussion of the signal analysis involved in this technique is presented

in Section 3.1 as it serves as the basis for our AWPI diagnostic.
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2.1.2 Laser-Induced Fluorescence

The non-intrusive laser-induced fluorescence (LIF) technique measures the back-

ground (fi0) and first-order perturbed (fi1) ion velocity distribution functions (IVDFs)

by exploiting forced and spontaneous atomic electron transitions in the ion popula-

tion [9, 52, 53]. A laser excites bound electrons to a metastable state in order to

measure the intensity of the induced fluorescence from the subsequent spontaneous

relaxation. If the perturbation fi1 is due to a traveling plasma wave, measuring the

background (I0), in-phase (IIP ) w.r.t. the plasma wave’s phase, and out-of-phase

or quadrature (IQ) components of this fluorescence as a function of laser frequency

provides a way to determine the plasma wave’s dispersion relation. This technique

has been used, for example, to measure the parallel and perpendicular wavenum-

bers of electrostatic ion-cyclotron waves in linear magnetized RF plasma sources [54]

or as part of investigations concerning plasma heating through beating electrostatic

waves [55, 56].
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668.61 nm

1→ 2
442.72 nm

2→ 3

Figure 2.2. In this example Ar II scheme, the laser induces the atomic electron
transition 1→ 2 (red). The fluorescence emitted by the relaxation 2→ 3 (purple)
is measured. Diagram developed based on Refs. [57, 58, 53].
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The atomic electron transitions for the forced excitation and spontaneous re-

laxation used in gas-specific LIF schemes involve easily distinguishable light wave-

lengths so that the input laser light does not interfere with the fluorescence measure-

ment [52, 59, 53, 60, 61, 62]. Fig. 2.2 depicts one such example scheme for singly-

charged argon ions which works with radiation in the visible spectrum. Laser light

whose frequency νL matches the atomic electron transition frequency ν0 (in this case

corresponding to a wavelength of 668.61 nm) excites electrons from the stable 3d4F7/2

state (1) to the metastable 4p4D0
5/2 state (2). The excited electrons spontaneously

relax from this metastable state to the stable 4s4P3/2 state (3) by emitting fluorescent

radiation at a frequency different than ν0 (in this case corresponding to a wavelength

of 442.72 nm). However, since the ion population has a non-zero temperature that

gives the ion velocity distribution function a finite width, only a fraction of the ion

population undergoes this process. Ions with velocity vi parallel to the the laser beam

encounter a Doppler shifted laser frequency

νDS = νL

(
1 +

vi

c

)
, (2.2)

so only those with vi = 0 experience the transition 1→ 2 when the laser is tuned to

ν0. Ions with non-zero vi along the laser scanning axis require νL = νDS for excitation,

which in the non-relativistic limit |vi/c| � 1 yields the relation

vi =
c

ν0

(νL − ν0) (2.3)

between ion velocity and laser frequency. Sweeping νL about ν0 excites different

portions of the ion population, allowing the optically-measured fluorescent intensities

mentioned above to be correlated with ion velocities. Solutions to the ion Vlasov

equation perturbed with either an electrostatic wave’s potential E1 = −ikΦ1 exp(ik ·

x− iωt) or an electromagnetic wave’s fields E1 and B1 such that k×E1 = ωB1 [63]
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are fit to the fluorescent intensity measurements to calculate the wave ω and k. The

full data-reduction procedure for the case of an electrostatic wave is described in

Appendix A (see Refs. [54, 55, 63] as well); the case of an electromagnetic wave is

covered in Ref. [63].

While attractive for its non-intrusive nature, the LIF technique takes measure-

ments at a single spatial location in the plasma and uses the dispersion relation from

Eq. 1.9 or its electromagnetic equivalent to provide closure for the fitting procedure

of the data [54, 63]. These dispersion relations do not include the effects of plasma

parameter gradients, which may be relevant in real plasma devices [64, 11, 65]. Addi-

tionally, the diagnostic involves costly equipment and two optical lines-of-sight access

points to the plasma volume, making it challenging to implement. Its reliance on

fluorescence makes it incompatible with certain gases (e.g. He II) and can limit a

particular laser system’s applicability to multiple gases.

2.1.3 Collective Light Scattering

Another non-intrusive technique, collective light scattering scatters laser light off

oscillating plasma electrons to measure the frequency spectrum of electron plasma

waves with a wavenumber vector defined by the scattering geometry [66]. In addition

to dispersion relation measurements, this diagnostic can provide information on the

form factor, amplitude, and spatial distribution of electron density fluctuations [67].

This diagnostic has been used in particular to investigate the E × B electron drift

instability in Hall effect thrusters [67, 68, 25].

Free electrons undergoing oscillatory motion in the plasma scatter incident laser

light with wavenumber vector kinc. The scattered light has a wavenumber vector

ksc which, as shown in Fig. 2.3, is at an angle α with respect to kinc. The sig-

nal of this scattered light depends on α and the associated analyzing wavenumber

k = ksc − kinc; measuring this scatterred light provides information on the spatial
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ksc

kinc

k

α

Figure 2.3. Scattering by electrons of incident light with wavenumber vector
kinc produces light with wavenumber vector ksc. Measurements of the spatial
Fourier transform of electron density at different k = ksc − kinc are taken by
varying the angle α or by rotating the scattering plane. Based on Ref. [67].

Fourier transform of the electron density at that k [67, 68]. Varying α or rotating

the scattering plane as a whole allows for measurements at different values of k.

Recording the time-dependent scattered light signal using a superheterodyne optical

interference technique provides information on the temporal Fourier transform of the

electron density, yielding a measurement of the wave frequency ω as a function of the

geometry-defined k.

The full mathematical details of the collective light scattering diagnostic are pre-

sented in Ref. [67]. Similar to the LIF technique, collective light scattering requires

costly equipment and optical access to the plasma volume, also making its implemen-

tation challenging. Alignment and equipment constraints have only allowed for prob-

ing wavenumbers greater than ∼ 4000 /m at frequencies in the MHz range [67, 68, 25],

so the ability of this technique to measure low-frequency or long-wavelength wave-

modes is not certain. Moreover, since the scattering is due to fluctuations in the

electron density, only compressible electrostatic wavemodes can be detected with this

method.
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2.2 Numerically Characterizing Plasma Disper-

sion Relations

Measurements taken by the above techniques are commonly compared to numerical

solutions ω(k) or k(ω) which satisfy Eq. 1.2 to validate theoretical plasma models.

This entails finding the complex roots of an analytic (or meromorphic at worst) func-

tion over a multidimensional complex space. This task is commonly faced across

multiple disciplines, ranging from pure or applied mathematics [69, 70, 71, 72] to var-

ious engineering fields [73, 74, 75]. Since a dispersion relation fundamentally describes

oscillatory motion in a medium, numerically finding its roots in different configura-

tions of varying media has been widely researched [76, 77, 78, 79, 80]. Given that

dispersion relations many times are nonlinear functions, one strategy to simplify the

problem is to construct a complex polynomial which has the same roots as the non-

linear function and pass this to a variety of efficient polynomial-root solvers [69, 70].

Alternatively, if this is not an adequate or viable simplification to perform, a com-

mon tactic is to use root-finding algorithms that can handle nonlinear functions, such

as Newton-Raphson’s method or the secant method [81, 82]. Typically, methods

like these require the input of one or more values near the root (i.e. initial guesses)

to initiate an iterative procedure which eventually convergences to the ‘true’ value

(i.e. within numerical tolerance) of the root. While these methods generalize to

higher dimensions [82], it is nevertheless common to reduce the dimensionality of the

input variable space when searching for the roots of dispersion relations in plasma

physics. For example, k components are rewritten as functions of just one k com-

ponent (e.g. ky = ky(kx) and kz = kz(kx)), removed by considering limiting cases

(e.g. k⊥ → 0 for purely parallel propagation), or, if possible, grouped into nondi-

mensional variables (e.g. k⊥/k‖) [83, 84, 35, 31, 11, 40, 34]. Usually two independent

variables remain, one of which is iterated over N steps (e.g. kx ∈
[
k

[0]
x , k

[1]
x , . . . , k

[N−1]
x

]
)
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Stop

Yes

Is n > N?

Solve for ω[n] using Newton-Raphson

Initialize n = 0,D[0](ω, k
[0]
‖ ), and ω̃[0]

Simplify to D(ω, k‖) by evaluating k⊥ = k⊥(k‖)

Simplify to D(ω,k) by evaluating the pi

Select D(ω,k; pi)

Start

No
n+ = 1

Update D[n](ω, k
[n]
‖ )

and ω̃[n] = ω[n−1]

Figure 2.4. An example procedure for numerically characterizing a branch ω(k‖)
of the function D(ω,k; pi). There are N discrete values of k‖ for which we want
to find an ω using an initial guess ω̃ such that Eq. 1.2 is satisfied.

and the other which is the root sought (e.g. ω such that D[n](ω, k
[n]
x ) = 0), where the

superscript [n] denotes evaluation at the n-th step of the iteration. Fig. 2.4 depicts

the steps for an example procedure where the goal is to compute ω(k‖).

As intricate as finding the complex root of a single-variable nonlinear function

already is (a task “equivalent to finding the vector roots of a system of two nonlinear

equations” [85]), a further difficulty arises if multiple roots of the dispersion relation

are present in the region of (ω,k)-space studied, which is not uncommon for dispersion

relations in plasma physics [35, 31]. Determining the number and potential location
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of these roots a priori is not trivial, complicating the choice of adequate initial values

to input into root-finding algorithms. Additionally, even if the number of roots is

somehow known, which root an iterative root-finding algorithm converges to can be

a highly sensitive or even chaotic function of the input values, giving the algorithms

poor global convergence properties [82]. As Fig. 2.5 illustrates, even functions as

simple as complex polynomials exhibit undesired behavior if we feed a poor initial

guess to an algorithm like Newton-Raphson. This means that resolving the desired

branch of a dispersion relation could involve time-consuming sweeps over the input

parameter space. Previous work has tried to address this complication by plotting

the contours Re (D(ω,k)) = 0 and Im (D(ω,k)) = 0 over a region in (ω,k)-space to

identify where they intersect and thereby provide the initial guess for the root [81, 85].

A similar graphical strategy uses the argument of D(ω,k) to generate a slope field

plot in the complex plane and locate ‘vortices’ which encircle the roots [86, 87]. Both

of these methods require (1) active human input, which can become inconvenient for

investigations over larger spans of the pi and (ω,k)-space, and (2) repeated evaluation

of D at unneeded locations in the complex plane, which becomes computationally

costly for more advanced dispersion relations.

Instead, it is desirable to develop an automated procedure to numerically char-

acterize the roots of arbitrary dispersion relations. Provided a specific dispersion

relation D(ω,k; pi) along with a set of pi and the search region in (ω,k)-space, two

goals should be accomplished autonomously:

1. Global root-finding: Determine the number and initial location of all roots in

the relevant search region.

2. Local root-tracking: Track the location of each root as the specified iteration

variable varies.
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Figure 2.5. Newton fractal generated by searching for the roots of the poly-
nomial z5 − 1 using the Newton-Raphson method. The five different colors
correspond to the five different roots the iteration converges to given the initial
guess. The black dots depict the location of the five roots.
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The nonlinear nature of dispersion relations in plasma physics especially complicates

the first of these goals. Successfully accomplishing it mitigates several issues that

can arise when carrying out the second goal; the numerical algorithms and PRINCE

software described in Appendices B and C, respectively, are designed to have better

global convergence propoerties than previous techniques in order to achieve this.

2.3 Chapter Summary

The experimental techniques reviewed in this chapter showcase the trade-off between

the simplicity (both in terms of analysis and hardware implementation) and the intru-

siveness of diagnostics for measuring plasma dispersion relations. The AWPI diagnos-

tic we develop in Chapter 3 opts for simplicity but integrates waveform shaping into

the signal design to provide more expedited measurement capabilities than previous

intrusive diagnostics. We also overviewed several existing techniques for numerically

solving for the roots of dispersion relations to provide background for the PRINCE

software which we use to provide complementary numerical characterizations of the

wavemodes we measure using the AWPI diagnostic.
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Chapter 3

Active Wave Packet Injection

Diagnostic1

In this chapter we describe the Active Wave Packet Injection (AWPI) diagnostic, an

active diagnostic which emits harmonically-rich wave packets in a plasma in order to

measure dispersion relations. We overview the frequency-space interferometric signal

analysis for calculating wavenumbers as a function of wave frequency. We describe

the manufacture of an AWPI diagnostic for use in a low-temperature plasma source,

which involves the design of a harmonic comb generating circuit, an antenna, and

receiver ion-saturation-current probes. The diagnostic produces dozens of harmonics

of an input square wave’s fundamental frequency in the 1-1000 kHz range.

3.1 Overview of Methodology

Active wave injection systems for measuring plasma dispersion relations have con-

sisted of an emitter probe or antenna along with two or more receiver ion-saturation-

1This chapter is based on work being prepared to be submitted for publication and previously
presented in [88]: Rojas Mata, S. and Choueiri, E.Y., ”Plasma Dispersion Relation Measurements
through Active Injection of Wave Packets,” 36th International Electric Propulsion Conference, Vi-
enna, 2019.
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k(ω)

Compression Rarefaction

Vin(t)

I2(t)I1(t)
Emitter probe or antenna Ion-saturation-current probes

Figure 3.1. The antenna excites traveling compressions and rarefactions of
plasma density which result in time-dependent ion-saturation-current traces
recorded by the receiver probes downstream.

current probes [89, 36, 86, 40]. In Fig. 3.1 we show an example system with an

antenna and two receiver probes immersed in the plasma. The system can be gener-

alized to contain more receiver probes, so that each pair of receiver probes measures

the wavenumber along the direction parallel to the line joining their tips. Addition-

ally, as mentioned in Section 2.1.1, other kinds of probes such as B-dot probes can

be used as needed to measure the relevant plasma parameter. For the case of elec-

trostatic waves, a time-dependent voltage signal Vant(t) sent to the antenna excites

the wave and causes traveling compressions and rarefactions of plasma density to

pass by the receiver probes located downstream. Control over the harmonic con-

tent of Vant(t) allows targeting of the expected frequency range (e.g. from theory or

numerical simulation) of the plasma wave mode in question.

Analysis of the current traces I1(t) and I2(t) provides information about the

wavenumber k as a function of the wave frequency ω. Though previous work used

sinusoidal excitations and our AWPI diagnostic uses harmonically-rich excitations,

the frequency-domain analysis to measure the dispersion relation we use is applicable

to both. To identify coherent wave propagation over background random noise in

the signals recorded, we compute spectrum and correlation estimates of the digitally
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recorded I1(tn) and I2(tn). We follow a nonparametric signal processing procedure

similar to Welch’s method for estimating power spectral densities [90] to produce

estimates of auto- and crosspower spectra as well as an estimate of the coherence

spectrum between two probe signals [46, 91, 92].

3.1.1 Estimation of Power and Coherence Spectra

Assume the data sets of the recorded current traces I1(tn) and I2(tn) are of length N

points. Since we want a measure of the variance in the power spectra (i.e. provide

error bars for the measurements), we do not calculate spectra of the entire N -long

data set. Instead, we divide each set into S equal subsets of length M points to

produce the sets {I1,1, I1,2, . . . , I1,j} and {I2,1, I2,2, . . . , I2,j}, j ∈ [1, S]. Using several

shorter data sets allows us to calculate the signals’ variance and decrease the effect of

random noise, but comes at the cost of increased frequency increments ∆f = fn−fn−1

in the spectra (and thus increased spectral ‘leakage’) [92, 91]. To partially mitigate

this, we overlap successive data segments by 50% as pictured in Fig. 3.2 so that we can

construct longer subsets than if there was no overlap. Such overlap of data subsets is

the distinguishing factor of Welch’s method [90], while the specific amount of overlap

is a common recommendation in the signal processing literature [91, 92].

We then take the windowed discrete Fourier transform

Î1,j(fn) = FW{I1,j(tn)} and Î2,j(fn) = FW{I2,j(tn)} (3.1)

of each data subset. We use a Hanning window “since it provides a good compro-

mise between amplitude accuracy and frequency resolution” [92]. We calculate the

autopower spectra P11, P22 of the current traces I1 and I2 by averaging over the au-
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I1,1(tn)

I1,2(tn)

I1,3(tn)

I1,4(tn)

· · · M

Figure 3.2. For each current trace we generate overlapping data subsets of
length M whose extent is illustrated above by the red and green bars. Using
more subsets gives better error estimates but a larger frequency increment for
the spectra.

topower spectra of the data subsets, so that

P11(fn) =
A

S

S∑
j=1

Î∗1,j(fn)Î1,j(fn) and P22(fn) =
A

S

S∑
j=1

Î∗2,j(fn)Î2,j(fn), (3.2)

where

A =
1

M2P 2
W

with PW = |FW{1}| (3.3)

is an amplitude correction factor to account for the power of the window PW . Simi-

larly, we compute the crosspower spectrum

P12(fn) =
A

S

S∑
j=1

Î∗1,j(fn) Î2,j(fn) (3.4)
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and a normalized version of it called the coherence spectrum

γ12(fn) =
P12(fn)[

P11(fn)P22(fn)
]1/2 , (3.5)

both of which provide information about correlated signals present in the probes.

Specifically, the magnitude of the coherence spectrum measures how linearly related

the two probe signals are, with |γ12| = 0 denoting no relation and |γ12| = 1 denoting a

complete linear relation. We consider wave propagation to be coherent when |γ12| >

0.95 and its error is less than 0.05. Note that, if instead of using estimates of the

spectra in Eq. 3.5 we used the actual spectra of the N -long data sets, then |γ12| =

1∀ fn and we could not identify coherent wave propagation over random noise.

3.1.2 Dispersion Relation Measurement

The real wavenumber spectrum of coherently propagating waves is

kr(fn) =
Arg{P12(fn)}

d12

, (3.6)

where d12 is the distance between the two receiver probes. The imaginary wavenumber

spectrum, which represents spatial growth or decay, is given by

ki(fn) = − 1

2d12

log

[
P22(fn)

P11(fn)

]
. (3.7)

We can also calculate the phase and group velocities

vph =
ω

kr
and vg =

dω

dkr
. (3.8)
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3.2 Harmonic Comb Generating Circuit

For sinusoidal excitations in a plasma, γ12 = 1 just for one value of fn (the wave

driving frequency), so the data acquisition and analysis would have to be repeated

mutliple times for different driving frequencies to produce multiple measurements of

kr ad ki. We seek to expedite the process by sending harmonically-rich excitation

signals to the diagnostic’s antenna, which can be particularly advantageous in pulsed

plasma experiments [93, 86]. We therefore construct a circuit capable of producing

dozens of harmonics with comparable amplitudes of a fundamental frequency to excite

and record coherent wave packets (i.e. γ12 = 1 for multiple values of fn) instead of a

single coherent wave in the plasma.

We base the design of our harmonic comb generating circuit on previous work

that sought a size-, weight-, and power-constrained solution to in-situ diagnosing of

wireless devices [94]. As shown in Fig. 3.3a, the circuit contains a square wave signal

generator, a high-pass filter, and a diode, the latter two of which are depicted in

Fig. 3.3b. A square wave contains only odd-integer harmonics of its fundamental fre-

quency, which decrease in amplitude inversely proportional to harmonic number. The

high-pass filter acts as a differentiator and attenuates the lower-frequency harmonics

Square wave
signal generator

High-pass filter

Diode

(a) Schematic

High-pass filter

Diode

SG
RF Amp

(b) Hardware

Figure 3.3. The high-pass filter and diode are passive but the oscillator is a
signal generator capable of outputing square waveforms. Based on the design
in Ref. [94].
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of the square wave to decrease the disparity between amplitudes (i.e. it accentuates

the sharp edges of the square wave). The directional nature of the diode breaks the

positive-negative symmetry of the signal to generate the missing even-numbered har-

monics. We amplify this harmonically-rich signal with an E&I 1140LA broadband

power amplifier before sending it to the diagnostic’s antenna.

The expected frequency range of the plasma wavemode studied determines the

high-pass filter’s cutoff frequency fcut and the fundamental frequency for the square

wave. Since the experimental investigation described in Chapter 4 involves waves with

frequencies in the tens to hundreds of kilohertz, we build the four different high-pass

filters detailed in Table 3.1. We test the circuit’s ability to send harmonically-rich

signals to the diagnostic’s antenna by inputing square wave frequencies in the 4-

20 kHz range. We measure the antenna voltage Vant(tn) and antenna current Iant(tn)

to estimate these signals’ autopower spectra through the same procedure as that of the

probe signals in the previous section. We also calculate their linear spectra, which is

the square root of the autopower spectra and correspond to measurements of voltage

and current amplitudes at each frequency. Fig. 3.4 shows these four spectra for HPF

1 and an input 4 kHz square wave; Fig. 3.5 does the same but for HPF 4 and an input

10 kHz square wave. The comb structure of all the signals is clear, with hundreds

of harmonics present at similar power levels. This signal structure provides a means

to excite waves at multiple frequencies simultaneously and at similar power levels,

thereby creating the harmonic wave packet that will propagate through a plasma so

we can measure the dispersion relation in one shot.

Table 3.1. Component Values for High-Pass Filters

HPF 1 HPF 2 HPF 3 HPF 4
Capacitance (C) 24.6 nF 9.8 nF 16.5 nF 7.8 nF
Resistance (R) 327 Ω 328 Ω 99.2 Ω 99.1 Ω

Cutoff Frequency (fcut) 20 kHz 50 kHz 100 kHz 200 kHz
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Iant

Iant

Figure 3.4. These spectra correspond to a circuit with HPF 1 from Table 3.1
and a 4 kHz square wave input. The signal at the fundamental frequency is
used as the reference for the decibel normalization.
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Iant

Iant

Figure 3.5. These spectra correspond to a circuit with HPF 4 from Table 3.1
and a 10 kHz square wave input. The signal at the fundamental frequency is
used as the reference for the decibel normalization.
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3.3 Antenna and Probes Design and Manufacture

We build the antenna and probe system photographed in Fig. 3.6 and schematically

depicted in Fig. 3.7. Two 1.5 cm by 5 cm, 0.51 mm thick molybdenum plates resting

on alumina stand-offs which attach to a 1.27 cm diameter G-10 tube consitute the

antenna. We choose this antenna geometry as previous investigations used it to excite

electrostatic modes in magnetized plasmas [36, 40]. Tungsten wires attach each plate

to coaxial cables which connect the antenna back to the harmonic comb generating

circuit described above. The circuit does not have a tuner for matching impedance

between the antenna and the plasma load; tuners usually only achieve matching at one

or two frequencies [6, 45] and we wish to couple to the plasma at multiple frequencies

simultaneously. For our proof-of-concept investigation in the following chapters, we

instead decide to operate our plasma source (see Chapter 4) at conditions for which

we excite wave packets to validate the AWPI methodology. This tactic of matching

the plasma to the antenna has been successful in past experiments which also did not

have tuners in their antenna circuit [38, 36, 40].

The diagnostic has three receiver probes to measure wavenumbers in the directions

parallel and perpendicular to the plane of the antenna blades which, in the experi-

mental implementation discussed in Chapter 4, also correspond to k‖ and k⊥. The

perpendicular tips are 0.1 cm apart and the parallel tip is 0.5 cm away from these;

all sit ∼1 cm away from the antenna blades. As mentioned in Section 2.1.1, sheath

overlap concerns limit the physical size and separation of plasma immersed-probes.

However, even the distance between the perpendicular tips (0.1 cm) is much larger

than the electron Debye length (∼30 µm) in our plasma source, so we do not expect

sheath overlap. These probe tips are 2 mm long, 0.254 mm thick tungsten wires

housed inside alumina tubes cased in copper tubes for capacitive shielding and glass

tubes for protection from the plasma environment. We bias the tips to -27 V with

batteries to operate them as uncompensated ion-saturation-current probes. We use
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Antenna blades

k‖ tip

k⊥ tipsReceiver probes

Figure 3.6. All wiring going to the antenna and probe tips runs through G-
10 tubes to protect it against the plasma environment. Zirconia paste coats
interfaces between wires and housing to prevent damage.

the ion saturation-current Isat as a proxy for the ion density ni which, for electrostatic

modes, is related to the wave potential Φ by [20]

Φ ≈ Te

e

ni1

ni0

≈ Te

e

Isat1

Isat0
, (3.9)

where Te is the electron temperature and the 0 and 1 subscripts refer to the back-

ground and linear-perturbation values of the quantity, respectively (see Eq. 1.3).

Assuming isothermal plasma compressions, measuring the fluctuations of Isat at the

two probes then gives us insight into spatiotemporal characteristics of electrostatic
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wavemodes. The wavemodes we investigate in our plasma source are under 1 MHz

in frequency, which is well below the ion plasma frequency of 17 MHz for argon and

33 MHz for helium (see Tables 4.2 and 4.3). This ensures that the sheath can adjust

fast enough to the varying bulk plasma density and plasma potential [6] so that our

use of the ion saturation-current as a proxy for ni remains valid.

3.4 Chapter Summary

In this chapter we overviewed the signal analysis procedure to measure the disper-

sion relation of a plasma using the active injection of wave packets. We described

our design for the harmonic comb generating circuit, antenna, and probes which to-

gether constitute our AWPI diagnostic. We demonstrated the reliable generation of

harmonically-rich signals in the 1-1000 kHz range which we will use to measure the

dispersion relation of low-frequency ion waves in the experimental appartus described

in the following chapter.
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Chapter 4

Plasma Source for Low-Frequency

Ion Wave Studies

In this chapter we provide a brief technical overview of the magnetized RF plasma

source in which we use the AWPI diagnostic to measure low-frequency electrostatic

wave modes. We provide several representative plasma parameters for the source.

Based on these, we present the theory behind the electrostatic ion waves accessible

for excitation when operating with argon or helium along with illustrative numerical

characterizations obtained using the PRINCE software.

4.1 RF Plasma Source

We use the plasma source pictured in Fig. 4.2 in which previous studies explored

ion heating through beating electrostatic waves [95, 55]. Fig. 4.1 depicts a cutaway

schematic of the experiment created using the detailed design schematic found in

Ref. [55]. The vacuum vessel is a 132 cm long, 15.5 cm inner diameter quartz tube (an

upgrade from the previous pyrex tube) which is housed inside a 122 cm long, 10 ring

solenoid. A water cooled 19.1 cm outer diameter, 22 cm long saddle antenna surrounds

the quartz tube at one end of the vessel. A 1.25 kW RF source which operates at
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Probe tips

Antenna
blades

Solenoid coils

Feedthroughs

Figure 4.2. The saddle antenna sustains the 13.56 MHz argon discharge inside
the quartz vessel. Feedthroughs in the aluminum cross provide physical access
to the plasma. The AWPI diagnostic sits near the center of the discharge.

13.56 MHz powers the saddle antenna while an L network with two Jenning 1000 pF

3 kV variable vacuum capacitors matches the RF signal to the plasma discharge with

a voltage standing wave ratio (VSWR) in the range 1 − 1.4. At the other end of

the vessel, an aluminum cross connects the quartz tube to a 140 l/s turbomolecular

pump which is backed with a Varian TriScroll 300 pump. A KJLC 300 series gauge

monitors the neutral pressure in the chamber; the ultimate pressure achievable is less

than 0.1 mTorr. The solenoid comprises two klystron Varian 1955A magnets placed

end to end, which generate an axial background magnetic field. Table 4.1 presents

the source’s typical operational parameters.
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Table 4.1. Plasma Source Operational Parameters

Parameter Value Parameter Value
RF Power (PRF ) 250 W RF Frequency (fRF ) 13.56 MHz

Background Magnetic Field (B0) 526 G Neutral Pressure (Po) 0.1-5 mTorr

We operate the source with either argon or helium. Radial profiles for the electron

temperature and electron density when operating with argon reported in Ref. [55] are

reproduced in Fig. 4.3. Along with these, we also use ion temperature and background

magnetic field values reported in the same reference to construct Table 4.2 to present

representative values of various plasma parameters. These reflect the plasma state in

the near-centerline region r ≈ 0− 1.5 cm where we measure dispersion relations with

the AWPI diagnostic. We do not have corresponding measurements for these plasma

parameters when operating with helium, so we instead use a similarly-sized sized RF

plasma source operated at comparable power levels, background pressures, and RF

frequencies [96] as a reference to construct Table 4.3 with order of magnitude esti-

mates for the helium plasma parameters. Fig. 4.4 schematically depicts the electrical

diagram for the AWPI diagnostic implemented into the source as well as the data

acquisition for simultaneously measuring antenna voltage, antenna current, and the

current signals for two of the three AWPI receiver probes (so k⊥ and k‖ measurements

are not simultaneous).

Table 4.2. Representative Argon Plasma Parameters near the Centerline

Parameter Value Parameter Value
Electron Density (ne) 2.5×1017 m−3 Ion Plasma Frequency (fp,i) 17 MHz

Electron Temperature (Te) 3.5 eV Ion Sound Speed (cS) 3.2 km/s
Ion Temperature (Ti) 0.25 eV Ion Thermal Velocity (vth,i) 780 m/s

Ion Larmor radius (ρi) 6 mm Ion Cyclotron Frequency (fc,i) 20 kHz
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(a) Electron temperature radial profile

(b) Electron density radial profile

Figure 4.3. Profiles for Te and ne in our plasma source when running with argon.
The shaded region demarks the measurement region in our work. Reproduced
from Ref. [55].
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Table 4.3. Estimated Helium Plasma Parameters near the Centerline

Parameter Value Parameter Value
Electron Density (ne) 1017 m−3 Ion Plasma Frequency (fp,i) 33 MHz

Electron Temperature (Te) 4 eV Ion Sound Speed (cS) 10 km/s
Ion Temperature (Ti) 0.1 eV Ion Thermal Velocity (vth,i) 1.6 km/s

Ion Larmor radius (ρi) 1.2 mm Ion Cyclotron Frequency (fc,i) 200 kHz

4.2 Electrostatic Ion-Cyclotron Waves

For electrostatic waves in an isothermal (T⊥ = T‖ for both ions and electrons) mag-

netized plasma Eq. 1.9 takes the form [31]

D(ω,k) = k2
‖ + k2

⊥ +
∑

s

λ−2
D,s

[
1 +

∑
n

e−bsIn(bs)Z (ζn,s) ζ0

]
= 0, (4.1)

where In is the nth order modified Bessel function of the first kind, Z the plasma

dispersion function of Fried and Conte,

ζn,s =
ω − nωc,s − k‖vd,s√

2 k‖vth,s
, bs =

k2
⊥v

2
th,s

ω2
c,s

, (4.2)

λD,s the species Debye length, vth,s the species thermal velocity, vd,s the species parallel

drift velocity, and ωc,s the species cyclotron frequency. If we consider low-frequency

oscillations (ω � ωc,e) and fully magnetized electrons (be ∝ ρ2
e/λ

2
⊥ � 1), we can

re-express the above as [36, 40]

k2
‖ +

ω2
p,e

v2
th,e

[
1 +

ω√
2k‖vth,e

Z(ζ0,e)

]
+

k2
⊥

[
1 +

ω2
p,e

ω2
c,e

+
ω2
p,i e
−bi

k‖ vth,i ω bi

∑
n

n2In(bi)Z(ζn,i)

]
= 0.

(4.3)

Note that this dispersion relation has the symmetry D(ω, k⊥, k‖) = D(ω,−k⊥, k‖).
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Two wavemodes have been identified as solutions to Eq. 4.3 in the low-frequency

range (ω & ωc,i) we explore in our plasma source: the electrostatic ion-cyclotron

(EIC) wave [89, 97, 38] and the neutralized ion Bernstein (NIB) wave [98, 36]. The

EIC solution exhibits the acoustic-like relation

ω2 = ω2
c,i + k2

⊥c
2
S, (4.4)

where cS =
√

(Te + 3Ti)/mi is the ion sound speed. This expression can be obtained

by either simplifying Eq. 4.3 by assuming bi � 1 or from a simpler warm plasma

fluid model considering nearly-perpendicular propagation of ion waves [31, 32]. The

NIB solution has one branch for each interval nωc,i ≤ ω ≤ (n + 1)ωc,i, n ≥ 1, which

asymptotes to nωc,i as k → ∞. In the following section we provide an illustrative

numerical characterization of both wavemodes using the PRINCE software.

At our low-temperature plasma’s operating background neutral pressure range of

0.1− 5 mTorr, ion-neutral charge-exchange collisions can cause the NIB wavemodes

to be highly damped [99, 55]. Targeting these wavemodes for excitation has been

more difficult in past laboratory experiments [36], so we expect to primarily excite

the EIC branch, which also requires that [36]

ωc,i < ωp,i, Ti . Te, and
√

2vth,i � ω/k‖ �
√

2vth,e. (4.5)

The first two conditions are always satisfied in our experiment; the third is satisfied

when k‖ is around 0.2 − 1 cm−1 for wave frequencies in the 20 − 200 kHz range for

argon and in the 200− 1000 kHz range for helium. Adhering to this third condition

informed our design of the high-pass filters and choice for the fundamental frequency

of the square wave in the harmonic comb generating circuit presented in Section 3.2.
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4.3 Numerical Characterization with PRINCE

We input the representative argon plasma parameters from Table 4.2 for our nu-

merical characterization, however qualitatively similar results arise when using the

helium plasma parameters. Since the NIB branches of the ion-cyclotron waves have

a non-monotonic and discontinuous behavior with respect to ω [35, 40], we choose to

characterize the roots ω(k) of Eq. 4.3 for computational tractability. We also trun-

cate the biinfinite sum by setting −35 ≤ n ≤ 35 since the value of this D converges

up to numerical precision at about n ≈ 25 − 30 for the range of ω, k, and pi we

consider. We input the argon plasma parameters from Table 4.2 into PRINCE and

specify an iteration over k⊥ = kx decreasing from 1000 /m to 5 /m in steps of 5 /m

with ky = 0 /m and k‖ = kz = 25 /m. We search for damping and propagating modes

in the 15-205 kHz (0.75-10.25 ωc,i) range with damping rates no larger than 20.5 kHz

(1.025 ωc,i). Searching for the initial locations of the roots at large k⊥ allowed us to

successfully resolve multiple branches of the NIB solution.

On the other hand, searching for roots at small k⊥ yielded discontinuous solutions

which seemed to hop between different NIB branches, the EIC branch, or a linear so-

lution with the acoustic relation ωr ≈ kr⊥vth,i. This indicates that this search region

has a more intricate structure for the basins of attraction of the root-finding proce-

dure. This was also reflected by PRINCE’s much larger computation time (about

20 hours compared to 2 hours). We were thus unable to resolve the EIC branch

using PRINCE as all attempts resulted in discontinuous solutions. Searching for the

initial roots at large values of kr⊥ did not work either as PRINCE kept converging

to NIB branches. Instead, we had to solve for ω at each value of kr⊥ by providing a

Newton-Raphson solver an initial guess calculated using the fluid theory from Eq. 4.4

and multiplied by a factor of 1− 0.3i to obtain sufficiently well-behaved behavior for

both ωr and ωi. Even this process did not yield as smooth a result as the ones for

the NIB branches.
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(b) Decay of the EIC branch along with nine NIB branches. The discrepancy
reflects the sensitivity of the root-finding procedures in the complex plane.

Figure 4.5. Numerical solutions for Eq. 4.3 in our argon plasma source. The
NIB branches (shades of gray) are better numerically behaved than the EIC
branch (black).
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Fig. 4.5 shows PRINCE’s results for nine NIB branches along with our ‘hard-

coded’ result for the EIC branch. Similarly to past work, for each NIB branch ωr

asymptotes to its corresponding value of nωc,i as kr⊥ → ∞. As expected from the

fluid theory, the EIC branch exhibits the acoustic relation ωr/kr⊥ ≈ cS for large kr⊥

which approaches a cutoff at ωc,i for small kr⊥. The propagation of the EIC branch

matches that of the positive-slope portions of the NIB branches, which reflects that

the fluid EIC wave theory ‘smears’ the ion kinetic effects (i.e. finite ion Larmor radius

effects) necessary to predict the negative-slope portion of the NIB branches [35]. The

ωi are comparable for small values of kr⊥. The difference at larger values reflects the

NIB branches’ shift towards a non-propagating resonance (vg → 0 for kr⊥ 6→ 0) with

ωr → nωc,i while the propagating EIC branch experiences larger damping rates for

smaller wavelengths, possibly due to Landau damping by the electrons becoming more

significant [100, 97]. Just past kr⊥ = 3 /cm the solution for the EIC branch jumped

from negative to positive ωi (perhaps indicating a switch between complex-conjugate

roots), again showcasing the sensitivity of the root-tracking process.

Though the case presented above is for one value of k‖, similar results for ωr

arise when we vary k‖ within the range stipulated by the third condition in Eq. 4.5

for wave excitation. ωi generally remains negative and decreasing in value as shown

in Fig. 4.5b, indicating decaying propagating wavemodes which damp more strongly

at higher frequencies and shorter wavelengths. This suggests that higher-frequency

wavemodes may not be detectable with our diagnostic or give results not in line

with theory due to diminished signal strength. Abrupt jumps between positive and

negative still occur. This behavior was nevertheless better than that observed with

the ‘hard-coded’ approach, in which varying k‖ or the inital guess for the Newton-

Raphson solver had significant effects on both ωr and ωi. Even trying to resolve

the NIB branches by starting at large values of kr⊥ and iterating downward (like we

did with PRINCE) took several trials and more time, highlighting the importance
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of the initial guess fed to a root-tracking procedure and PRINCE’s ability to do so

autonomously.

4.4 Chapter Summary

In this chapter we described the linear RF plasma source in which we implement

the AWPI diagnostic to measure dispersion relations. We overviewed the relevant

kinetic wave theory which describes the EIC and NIB wavemodes that may arise in

our system given its characteristic plasma parameters. We also present illustrative

numerical characterizations of these wavemodes obtained using the PRINCE software

described in the appendices.
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Chapter 5

Results and Discussion1

In this chapter we present our measurements of the dispersion relation of electro-

static ion-cyclotron waves taken with the AWPI diagnostic both in argon and helium

plasmas. The kr⊥ measured in the argon plasma agree with fluid theory predictions

of EIC waves (unfortunately, we did not obtain accompanying k‖ measurements to

compute kinetic theory predictions) while the ki⊥ measured indicate a decaying wave

mode. The kr⊥ measured in the helium plasma coincide with predictions of the kinetic

theory that we self-consistently computed by inputing the k‖ measured into Eq. 4.3.

Both in argon and helium the AWPI diagnostic provided simultaneous measurements

of the EIC waves’ dispersion relation at dozens of frequencies spanning 2-5 harmonics

of the ion-cyclotron frequency.

5.1 Dispersion Relation Measurements in Argon

We use the AWPI diagnostic equipped with HPF 1 from Table 3.1 to measure the

dispersion relation in our plasma source while running with argon. Fig. 5.1 presents

1This chapter is based on work being prepared to be submitted for publication and previously
presented in [88]: Rojas Mata, S. and Choueiri, E.Y., ”Plasma Dispersion Relation Measurements
through Active Injection of Wave Packets,” 36th International Electric Propulsion Conference, Vi-
enna, 2019.
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the estimates of the autopower and coherence spectra of the two receiver probes which

take measurements in the direction perpendicular to the antenna blades and, hence,

the background magnetic field. The harmonic comb structure measured at the an-

tenna (see Fig. 3.4) is also present in these spectra, indicating that harmonically-rich

wave packets propagated through the plasma to reach the probes (similar structures

arising from AC coupling were barely recordable when the plasma was absent). The

measurements at the harmonics of the square wave’s fundamental frequency of 4 kHz

have a high coherence with low error, satisfying our criteria for coherent wave prop-

agation. This yielded measurements of the wavenumber at nearly three dozen fre-

quencies in one shot, a significant advance over previous procedures of using simple

monochromatic sinusoidal excitations to measure wavenumbers one at a time.

To determine which wavemode carried the signal from the antenna to the probes,

we look at the measured dispersion relation. Fig. 5.2a presents the measured kr⊥

alongside predictions to the fluid dispersion relation of EIC waves from Eq. 4.4 for

varying electron temperatures. The data begins to deviate away from the expected

dispersion relation at around 6 ion-cyclotron harmonics (120 kHz), at which point

the EIC mode does not seem to be excited. Fig. 5.2b displays corresponding mea-

surements of ki⊥ which indicate spatially decaying wave potential amplitudes over

characteristic lengthscales around 4.5 − 6 cm. The magnitude of ki⊥ is compara-

ble to that of kr⊥ as observed before [97], but appears roughly constant instead of

roughly proportional to ω. We calculate the error bars for all wavenumbers by prop-

agating through Eqs. 3.6 and 3.7 the variance in the auto- and cross-power spectra

estimates provided by Welch’s method and in the distance between the probes. We

unfortunately do not have the corresponding measurements of k‖ necessary to self-

consistently solve Eq. 4.3 and obtain kinetic theory predictions for ki⊥. However, we

took measurements of kr⊥ and ki⊥ one frequency at a time using purely sinusoidal

excitations (i.e. monochromatic instead of harmonic excitations) over a similar fre-
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Figure 5.1. We use the power of each signal at the fundamental frequency of
4 kHz as the reference for the normalization. The shaded region in the lower
plot indicates the error in |γ12|. The red line is at a coherence of 0.95.
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PRF = 250 W
Po = 0.1 mTorr
fc,i = 20 kHz

Te = 3.5 eV

(a) The gray region represents the theoretical predictions of the fluid
plasma model from Eq. 4.4 for Te = 2.5−5.5 eV, Ti = 0.25 eV, and B0 = 526 G.

PRF = 250 W
Po = 0.1 mTorr
fc,i = 20 kHz

(b) The fluid theory does not predict ki⊥ and we do not have accompanying
k‖ measurements to provide self-consistent kinetic theory predictions.

Figure 5.2. All measurements have |γ12| > 0.95 with an error less than 0.05.
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quency range and found them to agree with the measurements presented in Fig. 5.2.

This upholds our claim that the AWPI technique is an expedited version of previous

monochromatic active wave injection techniques to measure dispersion relations.

5.2 Dispersion Relation Measurements in Helium

Similar to the above, we use the AWPI diagnostic equipped with HPF 4 from Ta-

ble 3.1 to measure the dispersion relation in our plasma source while running with

helium. Fig. 5.3 presents the estimates of the autopower and coherence spectra of

the two receiver probes that take measurements in the direction perpendicular to the

antenna blades; Fig. 5.4, those in the direction parallel to the antenna blades and the

background magnetic field. The harmonic comb structure measured at the antenna

(see Fig. 3.5) is again present in these spectra only when the plasma is present, indi-

cating as before that harmonically-rich wave packets propagated through the plasma

to reach the probes. The measurements at the harmonics of the square wave’s fun-

damental frequency of 10 kHz have a high coherence with low error, again satisfying

our criteria for coherent wave propagation and yielding wavenumber measurements

at several frequencies simultaneously.

Fig. 5.5a displays the measured kr⊥ alongside solutions to the kinetic dispersion

relation from Eq. 4.3 for varying electron temperatures and using the measured k‖, the

real part of which is shown in Fig. 5.5b. The data agrees with the kinetic predictions

over the 2-4 ion-cyclotron harmonic range, in which k‖ ≈ −0.8 /cm. As before, the

deviation from theory above that frequency range indicates that the EIC wavemode

is no longer excited or too damped to be correctly detected. In the 1-2 ion-cyclotron

harmonic range, kr‖ varies beyond the values for which the third condition in Eq. 4.5

stipulates EIC waves can be excited, which might explain the deviation of kr⊥ from

theory in that range. The helium plasma was noisier than the argon plasma, which
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Figure 5.3. We use the power of each signal at the fundamental frequency of
10 kHz as the reference for the normalization. The shaded region in the lower
plot indicates the error in |γ12|. The red line is at a coherence of 0.95.
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Figure 5.4. We use the power of each signal at the fundamental frequency of
10 kHz as the reference for the normalization. The shaded region in the lower
plot indicates the error in |γ12|. The red line is at a coherence of 0.95.
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PRF = 250 W
Po = 4.5 mTorr
fc,i = 200 kHz

(a) The gray region represents the theoretical predictions of the kinetic
plasma model from Eq. 4.3 for Te = 3− 6 eV, Ti = 0.25 eV, B0 = 526 G,
and the measured k‖.

PRF = 250 W
Po = 4.5 mTorr
fc,i = 200 kHz

(b) The negative value of the kr‖ indicate that the wave travels in the
direction opposite to the background magnetic field.

Figure 5.5. All measurements have |γ12| > 0.95 with an error less than 0.05.
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did not hinder the AWPI diagnostic’s ability to measure kr, but it did cause the ki

measurements to have far too much error to provide insight into the wave physics.

5.3 Discussion

The results represent an encouraging demostration of a proof-of-concept experiment

for the AWPI technique. However, we have encountered limited repeatability with

the excitation of electrostatic modes, regardless of whether we send harmonically-

rich or sinusoidal signals to the antenna. More often than not, for experimental

reasons yet to be determined, the measured dispersion relation has (1) phase velocities

ωr/kr ≈ c� cS, which implies that the probes are AC coupled (i.e. coupling to long-

wavelength electromagnetic modes), or (2) dωr/dkr⊥ � cS with ω(k⊥) 6= ω(−k⊥)

(i.e. no excitation of electrostatic modes, see note after Eq. 4.3). This difficulty with

successfully coupling to electrostatic modes is why we do not have accompanying

measurements of k‖ in the argon plasma. However, in all cases where electrostatic

modes were detected, the dispersion relation measurements were consistent with EIC

wave modes and resemble the data of Figs. 5.2 and 5.5.

5.4 Chapter Summary

In this chapter we presented our measurements of the dispersion relation of electro-

static ion-cyclotron waves taken with the AWPI diagnostic both in argon and helium

plasmas. These measurements agree over a wide range of frequencies with fluid and

kinetic theory predictions, respectively, which we calculated using the representative

plasma parameters for our RF source. The results demonstrate the diagnostic’s ability

to take expedited measurements of dozens of wavenumbers across different frequency

ranges.
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Chapter 6

Conclusions

In this dissertation, we presented the Active Wave Packet Injection (AWPI) diagnos-

tic, a probe-based diagnostic used to measure dispersion relations in low-temperature

plasmas. This diagnostic improves past active wave injection techniques by using

harmonically-rich excitation signals to expedite the measurement of wavenumber as

a function of frequency. We showcased the diagnostic’s capabilities by manufacturing

and integrating a proof-of-concept prototype into a magnetized RF plasma source

to measure the dispersion relation of electrostatic ion-cyclotron waves in argon and

helium.

6.1 Summary of Contributions

The AWPI diagnostic, though intrusive in nature, provides a generalizable technique

to take expedited measurements of dispersion relations in plasmas. The harmonic

comb generating circuit is easily adapted to produce harmonics in a variety of fre-

quency ranges by simply changing the high-pass filter’s cutoff frequency and the

input square wave’s fundamental frequency. Different antenna and probe designs can

be implemented to excite and detect different types of wavemodes (e.g. electrostatic

vs. electromagnetic or ion vs. electron waves). The ability to measure wavenumbers
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at multiple frequencies simultaneously is particularly attractive for pulsed plasma ex-

periments or experiments in which only limited exposure to the plasma environment

is possible before damage occurs (e.g hollow cathode plasmas).

Our investigation of electrostatic ion-cylotron waves in a magnetized RF plasma

source demostrated the AWPI diagnostic’s versatile wave-shaping characteristics and

compatibility with different gases. We measured the perpendicular propagation and

decay of EIC waves in an argon plasma over six harmonics of the ion-cyclotron fre-

quency. With a simple change to the circuit design, we also measured the perpendic-

ular and parallel propagation of EIC waves in a helium plasma over two harmonics

of the ion-cyclotron frequency. These measurements not only matched fluid and ki-

netic theory predictions, respectively, but also had a higher frequency resolution than

previous work and were each obtained in a single shot.

6.2 Recommendations for Future Work

Our difficulty coupling to electrostatic modes in the RF plasma merits for a detailed

investigation of broadband antenna designs for the AWPI diagnostic. While there is

well-established RF matching theory to tune antennas to plasma loads [6, 101], the

AWPI diagnostic requires simultaneous matching at more than one [40] or two [45]

frequencies. This may be accomplished with advanced matching techniques or by

exploring the effect of antenna geometry on coupling. This is also something to

consider if the diagnostic is applied to real thruster systems in which the physical

presence of the antenna and probes should not perturb the plasma. This means

that the physical scale of the diagnostic and the frequency range probed should be

appropriately scaled with respect to plasma parameters (e.g. electron Debye length

or ion plasma frequency in our case) to ensure proper interpretation of the data.

Our two-blade antenna geometry is adequate for the scale of our RF source and
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perhaps the plume regions of plasma thrusters, but redesign would be necessary if

the diagnostic were used, for example, near the channel exit of a Hall effect thruster.
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Appendix A

LIF Data Reduction

A.1 fi0 Measurements: Ion Temperature and Drift

Using the LIF technique to resolve the background ion velocity distribution function

fi0, we can determine both ion temperature and drift velocity in the direction parallel

to the axis of the laser beam [9, 52, 43]. Consider the one-dimensional distribution

function for a Maxwellian ion population in local thermal equilibrium,

fi0(v) =
ni√

2π vth,i
e−

(v−vd,i)
2/2v2

th,i , (A.1)

where vth,i =
√
Ti/mi is the ion thermal velocity and vd,i the ion drift velocity. Sweep-

ing the laser frequency νL about the atomic electron trasnsition frequency ν0 in a

plasma with this fi0 yields a Gaussian fluorescent intensity profile described by

I0(ν) =
β√

2π vth,i
e−

(ν−ν̄)2/2σ2
, (A.2)

with peak position ν̄ = ν0 (1 + vd,i/c), width σ = ν0 vth,i/c, and β a constant that

depends on laser beam power, geometrical factors, and the attenuation of the collected
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light. We calculate the ion drift velocity and ion tempertature by fitting I0 to the

measured fluorescent signal and backing out its peak position and width, respectively.

A.2 fi1 Measurements: Plasma Dispersion Rela-

tion

If a traveling electrostatic wave with frequency ω is present in the plasma, the com-

pressions and rarefactions of plasma density produce a time-dependent perturbation

fi1 to the background distribution function [54, 63]. This perturbation causes the

fluorescent signal to have two components (in-phase IIP and out-of-phase IQ with

respect to the wave) oscillating at ω. We can use the LIF technique to resolve both f1

components to yield wave dispersion relation measurements. We first model the effect

of the electrostatic wave on the ion distribution function using the Vlasov equation

for ion motion

∂fi

∂t
+ v · ∂fi

∂x
+

e

mi

(E + v ×B) · ∂fi

∂v
= 0, (A.3)

where the electric and magnetic fields E and B have both background (0th order)

and perturbation (1st order) components. We consider the case with E0 = 0 and,

since the wave is electrostatic, E1 = −ikΦ1e
i(k·x−ωt) and B1 = 0. Substituting into

the above equation and asssuming a three-dimensional magnetized Maxwellian back-

ground distribution function

fi0(v) = ni

(
1

2πv2
th‖

)1/2

e
−(v‖−vd)2/2v2

th‖

(
1

2πv2
th⊥

)
e
−v2
⊥/2v2

th⊥ , (A.4)

we obtain the first order equation

∂f1

∂t
= i

qiφ1

mi

ei(k·x−ωt) k · ∂f0

∂v
(A.5)
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for the perturbation f1. This equation is solved through the method of characteristics

to yield an expression for f1(v) [31]. Since the LIF diagnostic only resolves velocities

in one spatial dimension (say x̂), we integrate the full expression for f1(v) over vy

and vz, giving the result f1(vx) = f̂1(vx)e
i(k·x−ωt), where

f̂1(vx) =
qiφ1

πmiv2
th⊥,i

f0(vx)
∑
n,m

(
1 + Z(ζn+m)ζ0

)
Jm

(
k⊥vx
ωc,i

)
×e−imπ/2ei(m+n)θe

ik⊥ sin θvx/ωc,ie−
a2/8e−

g2/4
∑
l

I(n+l)/2

(
a2

8

)
Il

(ag
2

)
e
ilπ/2

(A.6)

with a =
√

2k⊥vth⊥,i/ωc,i, g =
√

2k⊥ cos θ vth,i/ωc,i, θ = tan−1(ky/kx), Jm(x) the nth

order Bessel function of the first kind, and the rest of the symbols as defined in

Eq. 4.1. The real and imaginary parts of f̂1 are related to the in-phase
(
IIPmeas

)
and

out-of-phase
(
IQmeas

)
measurements of fluorescent intensity, respectively. We can fit

the analytical expression in Eq. A.6 to laser frequency sweeps of both components of

the fluorescent intensity and determine the best fit values of the free parameters k⊥

and θ, thereby measuring the dispersion relation of the electrostatic wave. Appendix

A.3 details the data reduction and error analysis we follow in the fitting procedure,

including considerations for the other free parameters φ1 and k‖, data phase correction

and normalization, and the inverse χ2 metric we use to evaluate the goodness of the

fit [54, 102].

A.3 f1 Data Reduction and Error Analysis

We follow the procedure outlined in Refs. [54, 43] to make dispersion relation measure-

ments of electrostatic plasma waves using the LIF diagnostic. The data processing for

determining k⊥ and θ involves three steps: (1) data phase correction, (2) free param-

eter reduction, and (3) goodness-of-fit evaluation. The data sets processed are the

in-phase and out-of-phase measurements of fluorescent intensity as a function of laser
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frequency. While IIPmeas and IQmeas are real quantities, we define Imeas = IIPmeas + i IQmeas

for convenience during the data processing.

Since a phase difference ϕ exists between the source signal used as the LIA’s ref-

erence and the locally measured plasma density fluctuations, the collected fluorescent

intensity profiles exhibit a phase dependence Imeas ∝ eiϕf̂1 which we must remove

before applying the theoretical model from Eq. A.6. We calculate the phase as [54]

ϕ = tan−1

∫
IQmeas dν∫
IIPmeas dν

(A.7)

and multiply Imeas by a factor of e−iϕ to produce the phase-corrected data sets Imeas,c.

The real and imaginary parts of the analytical expression for f̂1 provide a system of

two equations to which to fit our two corrected data sets IIPmeas,c and IQmeas,c. However,

the fitting is underdetermined as there are four free parameters: k⊥, k‖, θ, and φ1. To

remedy this, we first note that φ1 appears only as a multiplicative prefactor in Eq. A.6,

so normalization of the intensity data and fitting function removes its presence. We

find the largest absolute value of IIPmeas,c and the frequency νmax at which it occurs. We

choose to normalize the data by the largest absolute value of the in-phase component

so that

Imeas,c(ν) =
Imeas,c(ν)∣∣IIPmeas,c(νmax)

∣∣ . (A.8)

We correspondingly normalize our fitting function to define

f̄1(vx) =
f̂1(vx)∣∣<{f̂1(vx,max)

}∣∣ , (A.9)

where vx,max = c
ν0

(ν0 − νmax) by Eq. 2.3. To account for k‖, we note that we can

solve the electrostatic dispersion relation in Eq. 4.1 to calculate k‖ as a function of

k⊥, leaving only k⊥ and θ as free parameters for fitting f̄1 to Imeas,c.
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We search (k⊥, θ) space for the point which gives the best parameters to fit the

data. The metric we employ to find said parameters consists of a χ2 analysis that

evaluates how well f̄1(vx) matches Imeas,c(ν) given measurement error σ [102]. For

each (k⊥, θ) point considered, we calculate

χ2 =
N∑
p=1

1

σ2
(p)

∣∣∣f̄ (p)
1 (vx)− I

(p)

meas,c(ν)
∣∣∣2 (A.10)

over all collected wavelength points, with each σ(p) the sum in quadrature of the

error of the in-phase and out-of-phase components of the fluorescent intensity and N

the number of wavelengths sampled. Plotting 1/χ2 in the (k⊥, θ) space sampled we

identify the best fit parameters as the location of the peak of the distribution and

their uncertainty as the full width half maximum (FWHM) of the distribution.
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Appendix B

Numerical Algorithms for Finding

and Tracking Complex Roots

To perform the procedure outlined in Sec. 2.2, we base our method for determining

the initial locations of the roots of D(ω,k) on previous work [86, 87] which took

advantage of the analytic (or meromorphic at worst) nature of dispersion relations

commonly encountered in plasma physics. We do not use any graphical methods for

this task; instead, we devise a root-searching protocol that only requires input from a

user at the start and has the potential for improved performance if implemented with

parallel programming practices. This provides the desired versatility for numerically

characterizing plasma waves and instabilities in arbitrary parameter spaces.

B.1 Global Root-Finding

Consider the meromorphic function f(z) and the analytic function g(z) over a simply-

connected open region R ∈ C. Assuming that f(z) is non-zero on the positively-

oriented closed contour Γ which bounds R (see Fig. B.1), Cauchy’s Argument Prin-
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ciple states that [103]

1

2πi

∮
Γ

g(ζ)
f ′(ζ)

f(ζ)
dζ =

∑
k

mkg(zk)−
∑
p

dpg(zp), (B.1)

where zk and zp are the roots and poles of f(z) contained in R with multiplicities mk

and dp, respectively. If R does not contain any of the poles of f(z), then the above

summation over p disappears, which when combined with the choice g(z) = zt allows

us to define the contour integral

It =
1

2πi

∮
Γ

ζt
f ′(ζ)

f(ζ)
dζ =

∑
k

mkz
t
k. (B.2)

For the case t = 0, the integral gives the sum of the multiplicities of the roots contained

in R. If the region contains only one root, then for the case t = 1 the integral gives

the value of the root times its multiplicity. Note that if R only contains a simple root

of f(z), then I0 = 1 and I1 is the value of that root.

For our application, the function f(z) corresponds to a dispersion relation

D(ω,k; pi) after restricting it to a function of a single parameter as discussed in

Section 2.2. For example, the function

D[0](ω) = D(ω,k; pi)
∣∣∣
k[0],p

[0]
i

(B.3)

would subsitute in for f(z) above in order to search for the location of the roots

ω[0](k[0]; p
[0]
i ) in the complex ω-plane. The poles of many D(ω,k; pi) studied in

plasma physics can be analytically removed from D or located beforehand in complex

plane [104, 31], ensuring only roots contribute to It, as written in Eq. B.2. Unfor-

tunately, it is unlikely that detailed enough a priori knowledge about the possible

value of each root is at hand to choose contours Γ that enclose only one root (if it

were, this whole procedure of global root-finding would not be needed). Moreover,
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Re(z)

Im(z)

Γ

R
z1

z2

z3×z4

×z5

Figure B.1. The roots (•) and poles (×) of f(z) are located on the complex
z-plane. The contour Γ, which delimits R, encloses two roots (z1, z2) and one
pole (z4), so only these will contribute to the value of the integral in Eq. B.1.

the dispersion relations studied in plasma physics can commonly have an unknown

(possibly infinite) number of complex roots, so it is not even clear how many roots

might be present in the region of (ω,k)-space of interest.

Given these challenges, we design PRINCE to autonomously determine the num-

ber of roots in a region R and calculate initial estimates for their locations. PRINCE

conducts the search-and-refine procedure described in Section B.3 to focus down on

the location of a single root (whether simple or degenerate) by evaluating the contour

integral in Eq. B.2 and using a series of criteria to determine whether (1) a single root

has been found or (2) the region R needs to be divided into smaller subregions in

order to isolate the roots contained in it. For simplicity, we illustrate the procedure

for the specific case of Eq. B.3, though PRINCE can also handle the cases where

any one of the components of k is left as the independent variable for the dispersion
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relation (e.g. f(z) is D(ky) by simplifying D(ω,k; pi) using initial values for ω, kx, kz,

and the pi).

B.2 Specification of Initial Search Region

The choice for the initial region R over which to search for roots of a dispersion rela-

tion depends on the physics to investigate. Typically, target frequency or wavelength

ranges based on physical considerations restrict the real values of ω or k (for exam-

ple, only looking at waves with frequencies in the MHz range or with wavelengths

smaller than the system dimensions). Similarly, the types of modes to study restrict

the imaginary component of ω or k. These could be purely propgating modes (in

which no energy exchanges between the wave and the plasma), damping modes (in

which the wave deposits energy into the plasma), or growing modes (in which the

wave extracts energy from the plasma). Fig. B.2 exemplifies the different regions

over which PRINCE searches for roots in the complex ω-plane based on the type of

modes investigated. Since Eq. B.1 assumes that f(z) is non-zero on the contour Γ,

the presence of purely propagating or purely evanescent modes (which correspond to

roots located on the real axis or on the imaginary axis, respectively) precludes us

from using contours that lie on the coordinate axes. While indenting the contour Γ

about the root remedies this problem analytically [103], such a strategy is not viable

for PRINCE since we do not know beforehand whether a root lies on the contour. In-

stead, we offset the contour from the axes when necessary by 1% of the upper bound

for ω or k.

Alternatively, non-relativistic and quasi-neutrality considerations (which are com-

monly applicable to plasma thruster discharges) can determine the extent of the search

region in the real and imaginary directions if no other bounds are otherwise speci-

fied. For a search in the complex ω-plane, PRINCE bounds R above by roughly
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Re(ω)

Im(ω)

(a) Growing

Re(ω)

Im(ω)

(b) Growing and purely
propagating

Re(ω)

Im(ω)

(c) Damping

Re(ω)

Im(ω)

(d) Damping and purely
propagating

Re(ω)

Im(ω)

(e) Purely propagating

Re(ω)

Im(ω)

(f) All

Figure B.2. The different types of initial search regions correspond to searches
for different types of modes. The offsets from the axes are exaggerated for
clarity. The classification of stable or unstable for this example of roots in the
complex ω-plane corresponds to the normal mode convention from Eq. 1.3.
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non-relativistic particle motion over an electron Debye length, i.e. ωλD,e ≤ c. For a

search in the complex k-plane, PRINCE bounds R above such that the corresponding

wavelength is greater than the local Debye length, i.e. |k| = 2π/λ ≤ 2π/λD,e.

B.3 Algorithm Implementation

Once the initial search region has been defined, the algorithm to find the number and

locations of the initial roots of a dispersion relation D(ω) is as follows [86]:

1. Divide the search region R in the complex ω-plane into rectangular cells.

2. For each cell, evaluate I0 numerically along the delimiting contour.

3. For each cell, take one of three actions based on the value of I0:

(a) If Re(I0) = 1 within tolerance, a simple root was found, so calculate and

store I1 as the estimate for its location.

(b) If Re(I0) = 0 within tolerance, no roots are contained in the cell, so

disregard it.

(c) If |Re(I0)| > 0 and |1−Re(I0)| > 0 within tolerance, the cell may contain

unresolved roots, so label the cell as suspect.

4. If there are no suspect cells, all roots contained in R were found and the search

terminates. Otherwise, for each suspect cell there are two options:

(a) If D (I1/Re(I0)) = 0 within tolerance, the cell contains a single degenerate

root with multiplicity Re(I0), so store I1/Re(I0) as the estimate for its

location.

(b) If D (I1/Re(I0)) 6= 0 within tolerance, the suspect cell contains unresolved

roots, so recursively apply the algorithm to the cell.
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Re(ω)

Im(ω)

A B

C D

ω1

ω4

ω2

ω3

Re(ω)

Im(ω)

ω1

ω4

ω2

ω3

0th Recursion Step 1st Recursion Step

Figure B.3. PRINCE determines in the 0th Recursion Step that cells C and D
contain no roots while cell A only contains root ω1. Cell B is suspect, so it is
subdivided into smaller cells in the 1st Recursion Step to resolve roots ω2 and
ω3. As root ω4 is not inside any of the search cells, it is ignored.

All tolerances are set to 0.01, i.e. Re(I0) = 1 is within tolerance if |Re(I0)− 1| < 0.01.

Figure B.3 illustrates this procedure for the example of four zeros, three of which

correspond to physically-relevant linearly unstable wavemodes. The sign of the real

part of the root indicates whether the wave’s phase velocity is parallel or anti-parallel

to k. The initial search region R is the union of the four disjoint rectangular regions,

one in each quadrant of the complex plane and each off-set from the real and imaginary

axes by the predefined distances discussed in Section B.2. PRINCE recursively applies

the search algorithm only to the suspect cells containing unresolved roots (Cell B in

this example). The other cells are discarded once the number and locations of any

resolved roots are stored.
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B.4 Iterative Local Root-Tracking

The global root-finding algorithm determines the number of roots contained in R

and estimates their values for the initial set of conditions k[0] and p[0]. With this

information, a more efficient root-finding algorithm (the Newton-Raphson method in

PRINCE) can now be used to calculate the value of the roots as we iteratively vary

one of the wave parameters away from these initial conditions. For example, once

the roots ω
[0]
j of D[0](ω) = D(ω,k[0]; p

[0]
i ) are located, we can track their location in

the complex ω-plane as we vary kx away from k
[0]
x . At the nth step of the iteration,

we first re-evaluate the dispersion relation for the new value k
[n]
x to obtain D[n](ω).

To find the new locations ω
[n]
j of each root, we use ω

[n−1]
j as the initial guess for

the root-finding algorithm. The procedure based on complex integration described

in the previous section could be applied again, but its computation is significantly

more costly, particularly compared to the Newton-Raphson method. This iteration

produces a numerical characterization of each wavemode ωj(kx) that was initially

found.
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Appendix C

Plasma Rocket Instability

Characterizer1

In this appendix we describe the initial implementation of the Plasma Rocket

Instability Characterizer (PRINCE), an interactive software tool which enables the

numerical characterization of plasma waves’ and instabilities’ dependence on plasma

parameters across relevant frequency or wavenumber domains. We describe the

frontend graphical user interface (GUI) which allows for versatile data input and

parametric control of the search parameters. We also present a proof-of-concept

reproduction of previous work which studied unstable Esipchuk-Tilinin wavemodes

present in Hall effect thrusters to validate the performance of PRINCE.

C.1 Frontend Graphical User Interface

We integrate the procedures described in the previous appendix into a software pro-

gram written in Wolfram’s Mathematica 10.4. While other platforms or coding lan-

1This chapter is based on work previously presented in [105]: Rojas Mata, S., Choueiri, E. Y.,
Jorns, B. A., and Spektor, R., ”PRINCE: A Software Tool for Characterizing Waves and Instabilities
in Plasma Thrusters,” 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT,
2016.
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guages provide better computational performance, we made a trade-off between op-

timal computational power and the built-in ease for GUI design and analytical ma-

nipulations which Mathematica provides. The resulting 3-panel interactive interface

controls the input of the specific dispersion relation D to study, the region in (ω,k)-

space to search for roots, and the plasma parameters pi.

C.1.1 Plasma Parameters Panel

The import of the plasma parameters pi is done through the panel shown in Fig. C.1.

Each plasma parameter available has a small unfolding menu for specifying spatial

dependencies and the filepath to access the data files. If the plasma parameter does

not have a spatial dependence (0D), then just a value input box appears. Whether

the input of a particular parameter is necessary or optional depends on the dispersion

relation chosen (see Section C.1.2). Fig. C.2 shows the different levels of the parameter

menus for one- or two-dimensional spatial dependencies. Checking a parameter’s box

will select the parameter for import. The information requested in the menu must

be specified for proper import of the data (see below for formatting notes); if not,

an error dialog will appear when the ‘Import’ button is pressed. Each ‘Clear’ button

clears all import information for that parameter. Unchecking the check box removes

the parameter from import but does not clear any specified information.

For each plasma parameter checked, the following must be specified:

� Dimensionality: what the spatial dimensionality of the data is

� Variable dependence: on which Cartesian variables does the data depend

� Filepath: where in the computer is the data stored

In addition to the plasma parameters, the gas and the units of the spatial coordi-

nates are selected in this panel. If all necessary information is specified, pressing the

‘Import’ button on the bottom right will read the data into PRINCE and display
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Figure C.1. PRINCE offers several dimensionality and Cartesian-coordinate-
dependence options for fourteen different input plasma parameters. The user
also specifies the units of the input spatial discretization as well as the gas.

Dimensionality

Variables File path

Figure C.2. The user must specify all fields in order to import the file.

a success dialog. Otherwise, an error dialog detailing the missing information will

appear.

If the plasma parameter has no spatial dependence (0D dimensionality), only

a scalar value needs to be provided in the input value field.2 If there is a spatial

dependence, then the data file must be a CSV text file where the last column is the

parameter values and the preceding columns (one for a 1D dependence or two for

a 2D dependence) are the spatial coordinate values. For 2D data, the order of the

variables in the columns of the data file must match the order of the variables selected

in the variable dependence section of the menu. So, if the variable dependence chosen

is “x, z”, the first column in the data file should be the x-coordinate values and the

2Note that Mathematica does not recognize “E” notation for order of magnitude. Instead a
number like 5× 1018 needs to be input as 5*10ˆ18, not 5E18.
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second the z-coordinate values. The number of coordinates and their values in any

one direction must be the same for all parameters which depend on that direction;

PRINCE is not designed to interpolate or extrapolate values for missing coordinate

points. The units of the parameter must match those displayed in the header of the

parameter’s menu (e.g. eV for ion or electron temperature).

C.1.2 Solver Settings Panel

The dispersion relation to study is selected in the panel shown in Fig. C.3. The

dropdown menu contains the following pre-programmed dispersion relations:

� Simplified Esipchuk-Tilinin waves

� Long wavelength gradient drift waves

� High-frequency E×B drift waves

� Damped warm Langmuir waves

� (Simplified) Magnetized electrostatic waves in a warm plasma

� Low-frequency MHD waves

� Forward electrostatic ion-cyclotron waves

� Electrostatic ion acousitc modes

There is also an option for a user-specified dispersion relation which is easily defined

in an auxiliary file (see Appendix D). Each pre-programmed dispersion relation dis-

plays in red until all the necessary plasma parameters are checked in the ‘Plasma

Parameters’ panel. The necessary and optional parameters or gradients of parame-

ters display in the box to the right of the dispersion relation. To the left is a graphical

depiction of the coordinate geometry and vector fields selected which provides a check

that the spatial configuration of the system is set up correctly.
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In the bottom half of the panel, the bounds for the search region in the complex

plane and details of the iteration process are specified. PRINCE can either solve

for complex values of ω over an iteration of real values of one of the k components

or for complex values of one of the k components over an iteration of real values

of ω. The iteration variable as well as its range and resolution should be specified

first. An iteration over ω requires specification of which component of k to solve for;

similarly, an iteration over a k component requires specification of which component

to iterate over. Both options leave two of the three k components as free parameters,

so their values must be specified either as constant or propotional to the third solved

for/iterated over component. The labels in the panel dynamically update as the

choices are made to provide clarity in the process. In the bottom left corner, the

bounds for the real and imaginary parts of the solved for variable are specified to define

Reference coordinate system D(ω,k; pi) selection Parameter requirements

Search region bounds
Iteration variable, free k-component
values, and mode types specification

Figure C.3. The user specifies the dispersion relation to study from the drop-
down menu and the details of the (ω,k)-space sweep in the various fields.
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the initial search region. Alternatively, automatic limits based on quasineutrality and

relativistic considerations can be used (see Section B.2).

The final step is to choose which types of modes to search for: purely propagating,

growing, damping, or a combination of these. The sign convention used to define

whether wavemodes are growing or damping is that of Fourier modes of the form

exp[i(k ·x−ωt)] (see Eq. 1.3). This means that modes with a positive ωi are growing

modes while damping modes have the opposite signature. Analogously, modes with

a negative ki are growing modes while damping modes have the opposite signature.

Purely propagating modes have ωi = ki = 0. The signature of either ωr or kr indicate

the direction of propagation relative to the coordinate system used.

Once all the necessary information in this panel is set, pressing the ‘Solve’ but-

ton starts the search for all the roots of the dispersion relation located inside the

specified complex-plane region at each spatial coordinate point. If there is an error

with the input information an error dialog will appear detailing the problem. Once

the global root-finding procedure resolves all the roots in the search region, the local

root-tracking routine characterizes each one of them as a function of the iteration

variable. Progress dialogs continuously display as PRINCE computes until a final

completion dialog appears.

C.1.3 Data Visualization Panel

This bottom panel provides some simple plotting routines to study results. In the

‘Heat Maps’ section, the ‘Binary Instability Spatializer’ button brings up a spatial

heat map that indicates at which grid points instabilites were found i.e. coordinate

points where Im(ω) > 0 or Im(k) < 0. The ‘Dominant Unstable Mode’ buttons bring

up spatial heat maps of the real part of either the wavenumber or frequency of the

unstable mode with biggest growth rate at each coordinate point.
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In the ‘Single Branch Options’ section, pressing the ‘Output Results’ button cre-

ates a new subdirectory to export the results of the characterization for each root.

The data file names begin with the spatial coordinates where the root was found fol-

lowed by a “ BX” suffix where the X denotes the branch number of the root. The files

are CSV text files where the first column contains the values of the iteration variable,

the second column contains the real part of the root, and the third column contains

the imaginary part of the root. Once the raw data has been output, the ‘Plots’ button

in the ‘Single Branch’ section allows the user to plot the real and imaginary parts of

a root as a function of the iteration variable.

C.2 Validation of PRINCE

C.2.1 Esipchuk-Tilinin Dispersion Relation Study

We validate PRINCE by reproducing previous work [11] which investigated instabil-

ities arising in a Hall effect thruster channel from solutions to the Esipchuk-Tilinin

dispersion relation [106]

1

ω2
p,i

− 1

(ω − kxvd,i)2
+

1

ωc,eωc,i
+

1

k2
⊥v

2
A

− ky(ude − uB)

k2
⊥v

2
d,i(ω − kyude)

= 0. (C.1)

Here ωp,i is the ion plasma frequency, vd,i the axial ion drift velocity, ωc,e and ωc,i

the electron and ion cyclotron frequencies, vA the Alfvén velocity, ude the azimuthal

E×B electron drift velocity, and uB the magnetic drift velocity. Ref. [11] restricted the

frequency range considered such that (ω−kxvd,i)2 � ωc,eωc,i � ω2
p,i and (ω−kxvd,i)2 �

k2
⊥v

2
A to simplify the dispersion relation to

1

(ω − kxvd,i)2
+

ky(ude − uB)

k2
⊥v

2
d,i(ω − kyude)

= 0, (C.2)
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so this is the version we analyze with PRINCE. Extracted experimental data sets

with xenon as propellant [107] with a spatial resolution of 1 mm for electron density,

electric potential, and radial magnetic field, reproduced in Fig. C.4(a)-(c), served as

the input to calculate vd,i, ude = −Ex/Bz, ωc,i = eBz/mi, and uB = ∂Bz
∂x
vd,i/ωc,i in

both the previous work and our reproduction.

C.2.2 Procedure and Results

Ref. [11] characterized instabilities arising in the mostly azimuthal propagation (ky =

10kx) of the mode with k⊥ =
√
k2
x + k2

y = 1/z, where z is the local radius of curvature

of the channel (refer to Fig. 1.2). The results comprise computations of the complex

roots ω(kx, ky) using the analytical solution of Eq. C.2. Fig. 9(f) in Ref. [11] plots the

real part of the roots at the locations where the root has a positive imaginary part,

signifying that the mode is unstable. To reproduce this analysis, we use PRINCE to

numerically characterize the zeros ω(k) of Eq. C.2. We set kz = 0 and ky = 10kx

and vary kx between 2 /m and 4 /m at a resolution of 0.05/m. We extract the

value of ω corresponding to the mode k⊥ = 1/z for each spatial point from the raw

output data to produce Fig. C.4(d), our reproduction of Fig. 9(f) from Ref. [11]. The

locations where instabilities arise match well, corresponding as expected to the region

in the channel where the radial magnetic field gradient is negative with respect to

the axial variable (∂Bz/∂x < 0). The frequency range (20-50 kHz) is also comparable,

differences no larger than 10 kHz potentially due to different interpolation schemes

used to calculate the gradients and secondary plasma quantities.
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Appendix D

PRINCE Examples

In this appendix we provide two examples of using PRINCE to characterize a pre-

programmed or custom dispersion relation with sample data sets. These data ex-

tracted from Ref. [107] are axial profiles at constant radius of xenon plasma properties

inside the channel of a Hall thruster.

D.1 Pre-Programmed Dispersion Relation: Esipchuk-

Tilinin

Equation in red until necessary
parameters are selected

Figure D.1. Esipchuk-Tilinin Dispersion Relation Display
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Figure D.2. Data Import for Esipchuk-Tilinin Example

In this example we will characterize wave modes arising as solutions to a simplified

version of the Esipchuk-Tilinin dispersion relation [106, 11]. Instead of considering

the cylindrical geometry of the thruster, this model uses a Cartesian system with

r̂ → ẑ, θ̂ → −ŷ, ẑ → x̂. Choosing this dispersion relation from the drop down menu

indicates that the necessary parameters are plasma density, electric potential (and its

gradient in x̂), ion drift velocity in x̂, and magnetic field in ẑ, as seen in Fig. D.1. A

gradient in x̂ for the magnetic field is an optional parameter which will change the

form of the dispersion relation. We input the sample data files through the “Plasma

Parameter” panel as seen in Fig. D.2. Note that the electron temperature data is not

necessary for this dispersion relation but may be input anyway. The propellant gas

is xenon and the grid units are millimeters.

Following the analysis of Ref. [11], we will solve for ω as a function of kx for

primarily azimuthal modes with ky = 10kx and kz = 0. We iterate kx over the range

1-100 m-1 with a resolution of 0.1 m-1. For this example we want to characterize

growing wave modes in the low kHz range, so we set the search domain limits between

1 kHz and 100 kHz. Fig. D.3 shows these settings input into PRINCE.
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Figure D.3. Solver Settings for Esipchuk-Tilinin Example

The results of this analysis are displayed in the figures below. The “Binary In-

stability Spatializer” shows that unstable modes were found around x = 44 mm (see

Fig. D.4). Clicking on the “Dominant Unstable Mode” buttons indicates that there

are three grid points with unstable branches. Outputting the results and using the

“Single Branch” plotter for the first (and only) branch of point x = 44 mm gives the

dispersion relation shown in Fig. D.5.

Figure D.4. Locations of Unstable Modes
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Figure D.5. Example Dispersion Relation for Branch at x = 44 mm.

D.2 User-Specified Dispersion Relation

Custom dispersion relations can be input using the template found in the “Cus-

tom Relation.nb” file. This notebook should be edited and ran after the main

“PRINCE.nb” notebook has been run. The “Custom Dispersion Relation” option in

the drop down menu will use the function coded in the template notebook (though

it will not display the function input by the user).

At the top of the document are the physical constants coded in PRINCE. Any

other constants needed should be declared there with their values in SI units. Then

there are three editing steps for the contents of the Block:

1. Store any input plasma parameter or gradient used in a local variable inside the

function

2. Define additional local variables for calculated plasma parameters

3. Write the dispersion relation function
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Any local variables used must first be declared inside the curly braces at the beginning

of the Block. All lines of code must end with a semi-colon except the expression

defining the dispersion relation, which must be at the very end of the Block.

The template file comes with example local variables and an arbitrary function

declared. Note the format to access plasma parameters and gradient values, which

uses the string aliases listed at the end of the template file for reference. The pa-

rameter values are accessed through the params structure while gradients are accesed

through the gradMat structure. For example, to use the electron drift velocity in x̂ we

would set a local variable equal to params[“udex”]. Similarly, if we wanted to use the

gradient of neutral density in ẑ we would set a local variable equal to gradMat[“n0”,

“z”]. Note that the quotes around the arguments passed to params and gradMat are

necessary since the aliases should be strings.

For help implementing any mathematical functions in the expression for the dis-

persion relation please refer to the Mathematica documentation. Note that while

PRINCE provides a framework to numerically investigate arbitrary functions, there

is no guarantee that function evaluations will be quick or well-behaved numerically

in the region of (ω,k)-space surveyed.
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