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Abstract

A new approach to accurately simulate plasma flows
is presented. The approach has three notable fea-
tures: self-consistent treatment of flow and mag-
netic field equations, conservation formulation of
the problem, and a characteristics-splitting scheme.
Characteristics-splitting has been proven to work re-
liably for Navier-Stokes equations, and is shown here
to be well suited for MHD problems. Since the
Rankine-Hugoniot jump conditions are exactly satis-
fied by characteristics-splitting, this allows for mono-
tonic capturing of discontinuities. Shocks and MHD
waves are therefore readily handled by this scheme.
This approach has been validated against a Riemann
type problem for the unsteady case, and the Taylor
state problem for the steady state. It provides a ro-
bust numerical framework for accurate simulation of
plasma thruster flows.

1 Introduction

In the continuing effort to numerically simulate con-
tinuum plasma flow for propulsion problems, there
remains a need for robust and accurate numerical
methods.

Kimura[1] et al. and Fujiwara[2] started develop-
ing single-fluid 2-D models on simple geometries, and
have continued to make improvements to their mod-
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els. Currently, the efforts of Fujiwara[3] et al. are di-
rected at studying the onset phenomenon using multi-
fluid models. Caldo and Choueiri[4] have developed
a multi-fluid model to study the effects of anoma-
lous transport, described in ref. [5], on MPD flows.
The effort by LaPointe[6] focused on studying the ef-
fect of geometry on performance. Sleziona[7] et al.
have developed a numerical model for MPD thrusters
and have refined it over a decade. This numerical
model now works on an unstructured adaptive grid,
and contains detailed models for many transport pro-
cesses and multiple levels of ionization. Martinez-
Sanchez[8],[9] et al. have developed multi-fluid 2-
D/axisymmetric numerical models to study various
aspects of the flow. Turchi[10] et al. use MACH2,
an unsteady MHD solver developed for high power
plasma gun simulation, to model PPTs and MPD
thrusters in many geometries. MACH3[11], the next
generation of MACH2, is also used to simulate possi-
ble 3-D effects in specific situations.

With the exception of refs. [9], [12] and [11], the
codes described above solve the flow and magnetic
field equations separately. Moreover, none of these
codes solve all the equations in conservation form.
Using conservation form, however, allows accurate
capturing of any discontinuities, such as shocks and
MHD waves, that may be of interest in many MHD
flows.

The approach presented in this paper has three im-
portant features:

1. Self-consistent treatment of flow and magnetic
field equations,

2. Conservative formulation of the problem,

3. Characteristics-splitting.
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These features will be described in the ensuing sec-
tions. The advantages of these three features is de-
scribed in Section 2. The implementation methodol-
ogy is described in Section 3 using a simple plasma
flow model. Section 4 describes the tests that were
performed to validate the scheme. The steps involved
in applying the scheme to simulate propulsive plasma
flows are described in Section 5.

2 Guiding Principles

The approach presented here is based on both
physical and numerical considerations. Magnetic
Reynolds’ numbers in typical plasma thruster flows
indicate that both convective and resistive diffusion
of the magnetic field are important. The Alfvèn and
fluid time scales are not very disparate. This im-
plies that the full set of equations describing the flow
field and magnetic field evolution have to be com-
puted self consistently. Moreover, solving Maxwell’s
equations consistently with compressible gasdynam-
ics equations naturally produces waves physically as-
sociated with the problem, such as Alfvèn and mag-
netosonic waves, as eigenvalues. Not doing so could
lead to misleading conclusions about time step con-
straints.

Whenever possible, these equations should be
solved in their conservation form. Apart from its
physical meaning of global conservation of mass, mo-
mentum, magnetic flux, and energy, the conservation
form possesses certain numerical advantages. Specif-
ically, the treatment of boundaries is more transpar-
ent. More importantly, conservative formulation is
necessary for accurately capturing discontinuities.

Conservative formulation, however, carries a
penalty in cases where magnetic pressure is several
orders of magnitude larger than thermodynamic pres-
sure. Fortunately, it is not the case in most plasmas
of interest to propulsion.

Furthermore, the conservation formulation allows
the use of characteristics-splitting techniques for cap-
turing discontinuities, without excessive numerical
dissipation.

The resulting scheme would be time dependent,
and can be used as a basis to simulate unsteady elec-
tromagnetic acceleration or, to simulate steady state
MHD flows by solving unsteady equations to march
towards steady state.

A scheme based on the principles described above
is expected to be robust and can accommodate the
addition of more complex physics. However, a sim-
ple plasma flow model will be used to illustrate the

scheme.

3 Methodology of the New
Solver

A sample MHD flow problem of a fully ionized, quasi-
neutral plasma in thermal equilibrium and satisfying
the validity of continuum approximation is used to il-
lustrate the scheme. Subsequent physical models can
be added as deemed appropriate, without significant
changes to the underlying numerical building blocks
of the solver. The governing equations for this prob-
lem can be written in the form:

∂

∂t




ρ
ρu
B
ε


 + ∇ ·




ρu
ρuu + ¯̄p − ¯̄BM

uB − Bu
(ε + P )u − B

µo (u · B)


 = S, (1)

where, ¯̄p is the pressure tensor, ¯̄BM is the Maxwell
stress tensor, ε is the energy density, P is the total
pressure, and S the vector of source terms. Other
symbols have their usual MHD meaning. The source
terms are due to round-off errors (∇·B) and physical
dissipative effects:

S∇·B = (∇ · B)




0
B
µo

u
B
µo

·u


 and Sdis = ∇ ·




0
¯̄τ vis
¯̄E res

q


 . (2)

Here, ¯̄τ vis is the viscous stress tensor, and ¯̄E res the
resistive diffusion tensor.

The momentum equation contains the body force
per unit volume, j × B, written as the divergence of
the Maxwell stress tensor ¯̄BM , as described in ref.
[13].

The convective diffusion of the magnetic field is
written as a divergence of the antisymmetric tensor
uB−Bu. The resistive diffusion appears in the source
term, also as divergence of a tensor, as in ref. [14],

∇ · ¯̄Eres = − 1
µo

∇ × [¯̄η · (∇ × B)] ,

in which ¯̄η is the full resistivity tensor.
The energy equation is written in terms of the en-

ergy density, whose parts are the internal energy, ki-
netic energy and the energy in magnetic field (per
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unit volume):

ε =
p

γ − 1
+

1
2
ρu · u +

B · B
µo

,

with the definitions:

P = p +
B · B
2µo

,

q = (¯̄τ vis · u) − (¯̄η · (j × B)) + (¯̄κth · ∇T ).

Under some physical conditions, when the magnetic
pressure is several orders of magnitude larger than
thermodynamic pressure, the conservation form of
the energy equation may not be suitable. In these
cases, since p is calculated from subtraction of one
large number (B2/2µo) from another (ε), the asso-
ciated errors could be large. However, for the con-
ditions that are of interest to plasma propulsion,
the magnetic pressure is seldom two to three orders
of magnitude greater than thermodynamic pressure.
Thus the conservation form of the energy equation is,
in general, numerically suitable here.

The treatment of the ∇ · B terms are important,
since they could be a cause of numerical instabilities,
as explained in ref. [15]. The technique of Powell[16]
to absorb this into the Jacobian ensures that any ar-
tificial source is convected away as,

∂

∂t
(∇ · B) + ∇ · (u∇ · B) = 0. (3)

Since the physical dissipation is written in the di-
vergence form, the entire set of equations can be writ-
ten in the form,

∂U
∂t

+ ∇ ·
[
¯̄F conv − ¯̄F dis

]
= 0, (4)

where, ¯̄F conv is the convective flux tensor, and ¯̄F dis

the dissipative flux tensor.

3.1 Spatial Discretization

The numerical solution to this set of hyperbolic equa-
tions is based on techniques that are extensively used
in computational fluid dynamics. In particular, the
non-oscillatory scheme developed in terms of local ex-
tremum diminishing (LED) principle by Jameson[17]
is used. In 2-D, the conservation law given by Eqn.
(1) is expressed as,

dUj,k

dt
+ [

Hrj+ 1
2 ,k − Hrj− 1

2 ,k

∆r
+

Hzj,k+ 1
2
− Hzj,k− 1

2

∆z
] = 0, (5)

where,U is the vector of conserved variables, Hr is
the approximation of flux in the r̂ direction, and Hz
the approximation of flux in the ẑ direction.

The true flux, obtained from Eqn. (4), in the r̂
direction can be split as,

Fr(U) = Fr(U)+ + Fr(U)−, (6)

where the eigenvalues of dFr+/dU are all non-
negative, and the eigenvalues of dFr−/dU are all
non-positive. Then, the approximation of flux is es-
timated as,

Hrj+ 1
2 ,k = Fr+

j,k + Fr−
j+1,k.

Using Eqn. (6), this can be rewritten as,

Hrj+ 1
2 ,k =

1
2

(Frj,k + Frj+1,k) − Drj+ 1
2 ,k,

where

Drj+ 1
2 ,k =

1
2
[
(
Fr+

j+1,k − Fr+
j,k

)
+

(
Fr−

j+1,k − Fr−
j,k

)
]. (7)

There still remains a question of how Fr+ and Fr−

can be evaluated. This evaluation is possible if there
is a matrix A, such that

Frj+1,k − Frj,k = A · (Uj+1,k − Uj,k) . (8)

Note that, in the case the points j + 1 and j are on
opposite sides of a discontinuity, Eqn. (8) indicates
that this scheme satisfies the Rankine-Hugoniot jump
conditions exactly.

For a hyperbolic system of equations, A can be
diagonalized as:

A ≡ RΛR−1, (9)

where R contains the right eigenvectors of A as its
columns, and R−1 contains the left eigenvectors of A
as its rows. Λ is the diagonal matrix of eigenvalues
of A. Since Λ can be easily split into,

Λ = Λ+ + Λ−,

using Eqn. (9), A can be split. Thus if there ex-
ists an A such that Eqn. (8) is true, then F can
be split. For the Euler equations, this matrix was
derived by Roe[18]. However, this is not necessarily
applicable to MHD equations. There have been ef-
forts by Cargo[19] to derive such matrices for MHD
equations. The literature[20] suggests that various
forms of averaged matrices work satisfactorily.
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Away from the discontinuities, the spatial accuracy
of the scheme can be improved by including limiters,
described in ref. [17]:

Drj+ 1
2 ,k =

1
2

|A| [∆Uj+ 1
2 ,k −

Lr
(
∆Uj+ 3

2 ,k,∆Uj− 1
2 ,k

)
]. (10)

Similar equations can be written for the correspond-
ing terms in the ẑ direction.

An alternative to characteristics-splitting for solv-
ing conservation form of the equations is to use ar-
tificial viscosity. In this formalism, the equivalent
expression for Eqn. (7) is,

Drj+ 1
2 ,k =

1
2

|λ|max

(
∆Uj+ 1

2 ,k

)
. (11)

However, as described in ref. [17], this tends to arti-
ficially smooth out the solution.

3.2 Temporal Discretization

Unlike in fluid mechanics, the equations of MHD al-
low many different types of waves to exist. Even
though physically the flow velocity is the sought
quantity of most interest to propulsion, numerically
the velocity of the fastest wave is what determines the
time-step constraints. In plasmas of propulsion inter-
est, the fluid velocity is O(104) m/s. For a plasma
with charge density O(1019)/m3 and thermodynamic
pressures of O(10−1) Torr and magnetic pressure of
O(101) Torr, the fast magnetosonic wave speed is typ-
ically of the same order of magnitude as the flow ve-
locity. This indicates that an explicit time marching
scheme is suitable. From the CFL criterion, the time
step for such a problem would be O(10−8) s.

The physical dissipation, given by Eqn. (2), brings
in a parabolic nature to the equations. It also bring in
different characteristic time scales into the problem.
They are:

Viscous diffusion: = ρ∆r2

ηvisc
∼ 10−8 s

Magnetic diffusion: = µoσ∆r2 ∼ 10−9 s

Heat conduction: = ρkB∆r2

mκth
∼ 10−9 s

If these were vastly different, that would call for an
implicit treatment of time stepping. That is not the
case here, and an explicit time-stepping scheme was
chosen.

4 Validation of the Scheme

4.1 Unsteady Case

Riemann problem The test problem chosen was of the
classical Riemann problem type, which consists of a
single jump discontinuity in an otherwise smooth ini-
tial conditions. In 1-D the problem is:

U (x, 0) =
{

UL if x < L
2

UR if x ≥ L
2

. (12)

The Riemann problem was chosen because it is one
of the very few that have an analytical solution. This
problem provides an excellent illustration of the wave
nature of the equations. The solution to the Rie-
mann problem is useful to verify the capturing of both
smooth waves (characteristics) as well as non-smooth
waves (shocks).

The initial states used were very similar to the
Sod’s[21] problem for Euler equations. They were:

Left :





ρ = 1.0
Vx = 0.0
Vy = 0.0
Vz = 0.0
Bx = 3

4
By = 1.0
Bz = 0.0
p = 1.0

Right :





ρ = 1
8

Vx = 0.0
Vy = 0.0
Vz = 0.0
Bx = 3

4
By = −1.0
Bz = 0.0
p = 1

10

. (13)

Some sample results are shown in Fig. (1).
Results from characteristics-splitting and the arti-

ficial viscosity method are seen in Fig. (1). It is clear
the characteristics-splitting captures the discontinu-
ities more accurately.

In these figures, the fast rarefaction (FR) wave can
be seen on the far right and the far left, as it is the
fastest of the waves present in the problem. The slow
shock (SS) and the compound wave (SM) have speeds
less than that of the FR wave.

As shown in these figures, the scheme successfully
captures the time-dependent discontinuities. A 2-D
extension of this problem was tested, and the solver
worked satisfactorily.

4.2 Steady State Case

Taylor state In order to simulate steady state MHD
flows, this solver can be used to solve the unsteady
equation to steady state. Then, an important ques-
tion is whether it remains in that steady state. To an-
swer this question, a test problem was chosen, whose
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Figure 1: Comparison of exact magnetic field and
pressure profiles with numerical solutions.

equilibrium solution is known analytically. This equi-
librium solution is given as the initial condition for
the solver. After marching several hundreds or thou-
sands of time steps, a check is performed if the vari-
ables have changed from the initial conditions.

The test problem chosen for this simulation was
the Taylor State[22] configuration. When a perfectly
conducting plasma in an arbitrary initial condition is
allowed to evolve, it will move quickly and dissipate
energy before coming to rest. This stable equilib-
rium configuration can be analytically found using
the minimum energy principle, and is of the form:

∇ × B = λB, (14)

where λ is an eigenvalue.
Since the current is parallel to the magnetic field,

the j×B body force is identically zero. Furthermore,
if there are no thermodynamic pressure gradients, the
plasma is in a state of force-free equilibrium. For an

axisymmetric geometry, the resulting magnetic field
profile is:

Bθ = B0J1(λr); Bz = B0J0(λr), (15)

where Bo is a constant amplitude, J0 and J1 are
Bessel functions of the first kind, of orders 0 and 1
respectively.

For a Cartesian grid of dimensions Lx × Lz , with
symmetry along the ŷ direction, the magnetic field
distribution satisfying Eqn. (14) is:

Bx = −B0 sin
(

mπx
Lx

)
cos

(
nπz
Lz

)
,

By = B0 sin
(

mπx
Lx

)
sin

(
nπz
Lz

)
,

Bz = B0 sin
(

mπx
Lx

)
sin

(
nπz
Lz

)
,

(16)

where m and n are eigenvalues.
The code was run for several thousand time steps

with this B profile and uniform pressure and density
as initial conditions. The maximum local deviation
from the equilibrium solution, for any of the variables,
was less than 0.5% on a 50×50 grid, and even better
on a finer grid.

5 Application to MHD
Propulsion Flows

As already mentioned, the physical model adapted
to illustrate the scheme is simplistic. Specifically,
the equations described above assume a fully ionized
plasma, with ideal equation of state, in thermal equi-
librium, and with simplistic form of transport coeffi-
cients, and lack the description of many energy sinks.
Furthermore no sheath models are included. How-
ever, as stated above, such physical effects can be
added without affecting the numerical foundation.

The extension to include the effect of two temper-
atures and finite ionization can be done in two steps:

1. Adding a continuity equation for electrons:

∂ρe

∂t
+ ∇ · (ρeue) = meṅe, (17)

where ṅe is the net ionization/recombination
rate, and ue = u − j/ene,

2. Adding a separate energy equation for electrons.

Including ionization reactions will bring in a differ-
ent time scale to the problem, and the time-stepping
scheme has to be implicit. However, this does not
conflict with the characteristics-splitting scheme.
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Another improvement that could be implemented
easily is to include a realistic equation of state, as
there is no fundamental change in the scheme to have
p/ρ = f(T ).

On the numerical side, it would be helpful to imple-
ment this scheme on an unstructured adaptive grid,
as done in ref. [7], to make this applicable to an ar-
bitrary geometry.

Accurate expressions for classical transport coef-
ficients, such as thermal conductivity and viscosity,
obtained from ref. [23], and anomalous coefficients,
obtained from ref. [5], can easily be introduced. This
is presently being implemented in a code to simulate
self-field MPD thrusters.

6 Conclusion

An accurate numerical method for solving the MHD
system has been validated against test problems. The
scheme exhibits good accuracy in smooth regions and
captures discontinuities monotonically. The scheme
can be extended to include complicated physical mod-
els without affecting the underlying numerical foun-
dation. This method is currently being implemented
in a code to simulate plasma propulsion problems.
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