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SUMMARY

For numerical simulations to be e;ective tools in plasma propulsion research, a high-order accurate
solver that captures MHD shocks monotonically and works reliably for strong magnetic =elds is needed.
For this purpose, a characteristics-based scheme for the MHD equations, with "ux limiters to improve
spatial accuracy, has been developed. In this method, the symmetric form of the MHD equations,
accounting for waves propagating in all directions, are solved. The required eigensystem of axisymmetric
MHD equations, with appropriate normalization, is presented. This scheme was validated with unsteady
(Riemann problem) and force-free equilibrium (Taylor state) test cases, as well as with measured current
density patterns in a magnetoplasmadynamic thruster. Copyright ? 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

1.1. Motivation

Electromagnetic plasma propulsion systems o;er signi=cantly higher exhaust velocities than
chemical propulsion systems, and process more power and produce higher thrust densities
than space-charge limited electric propulsion systems. The fundamental acceleration process
involves converting electrical energy into kinetic energy of the propellant, by the application
of electromagnetic body forces. However, this simple explanation belies the complexity of the
electromagnetic acceleration process, which embodies interlocking aspects of compressible
gasdynamics, ionized gas physics, electromagnetic =eld theory, particle electrodynamics (as
explained in Reference [1]) and plasma–surface interactions (as explained in Reference [2]).
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The resulting theoretical complexity makes realistic description of the "ow analytically
intractable.

The electrical power deposited into the plasma can be expended into many sinks, only two
of which, directed electromagnetic kinetic power and directed electrothermal kinetic power,
are useful for propulsion. Understanding and quantifying these disparate processes are essential
to improving the eHciency of these devices. Since an empirical approach alone is not gener-
ally conducive to obtaining such detailed information on these physical processes, numerical
simulations are valuable tools in plasma thruster research. Given the dearth of high-power test
facilities, simulations can be valuable aides to research for high-power plasma propulsion, by
reducing the need for expensive, and sometimes unviable, experimental parametric studies.

The goal of this work is to develop a robust numerical solver for the simulation of plasma
devices in which the "ows can be treated as a "uid, such as magnetoplasmadynamic thrusters
(MPDT) described in References [1; 4; 5], and apply it to investigate the role of physical
processes in these devices.

1.2. Existing work

The importance of numerical simulations in advancing plasma thruster research was realized
early in its history. Some notable e;orts in propulsive plasma "ow simulation are summarized
here.

Kimura et al. [9] and Fujiwara [10], started developing single-temperature, 2-D models
on simple geometries, and have continued to make improvements to their models. Currently,
the e;orts of Fujiwara et al. [11] are directed at studying critical phenomena in magneto-
plasmadynamic thrusters (MPDT), using multitemperature models. Caldo and Choueiri [12]
developed a two-temperature model to study the e;ects of anomalous transport, described in
Reference [13], on MPDT "ows. The e;ort by LaPointe [14] focused on studying the e;ects of
geometry on performance. Martinez-Sanchez et al. [15; 16] have developed multi-temperature
axisymmetric numerical models to study various aspects of the "ow such as anode voltage
drops and the role of viscous e;ects. Turchi et al. [17] use MACH2, an unsteady MHD
solver developed for high-power plasma gun simulation, to model pulsed plasma thrusters
(PPTs) and MPDTs in many geometries. MACH3 [18], the next generation of MACH2, is
also used to simulate possible 3-D e;ects in speci=c situations. The most persistent e;ort
so far has been that of Auweter-Kurtz et al. [20; 21] at University of Stuttgart, who have
been developing numerical models for MPDTs for almost two decades. Detailed models for
many transport processes and multiple levels of ionization have been incorporated into their
governing equations, which are solved on unstructured adaptive grids.

1.3. Current approach

Despite the e;orts described above, there remains a need for accurate and robust numerical
schemes to simulate propulsive plasma "ows. In particular, improvements are required in three
aspects:

1. Some of the above-mentioned codes exhibit numerical instabilities at high current levels.
Many electromagnetic thrusters, especially MPDTs, perform better at higher currents, and
many of the important research questions, such as performance limiting phenomena, tend to
also occur at higher current levels, or more speci=cally at J 2=ṁ¿40:0kA2=g=s, where J is the
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FLUX-LIMITED NUMERICAL METHOD 1417

total current, and ṁ is the mass "ow rate. Therefore, it is important to be able to simulate at
the required values of J 2=ṁ.

A probable explanation for these instabilities is the failure to solve the magnetic =eld
evolution self-consistently with the "ow (since separate solvers for the "uid and =eld equations
were used). For highly resistive "ows, the time scale for resistive di;usion of the magnetic
=eld is orders of magnitude smaller than that of convection. However, in MPD "ows it
is common to have resistivities of O(10−4) N m. In such situations, these time scales are
not very disparate, and there is a strong coupling between the "ow and the magnetic =eld.
The corresponding magnetic Reynolds’ numbers indicate that both convective and resistive
di;usion of the magnetic =eld are important. Therefore, the full set of equations describing
the "ow =eld and magnetic =eld evolution has to be computed self-consistently, by including
both the magnetic =eld and the conserved "uid quantities together, in the vector of quantities
to be computed, by the same solver, as in Equation (1).

An important feature of the MHD formalism is the multitude of waves it permits to exist.
The non-linear coupling of these waves play an important role in determining physical phe-
nomena and in computing the solution, as explained in Reference [22]. Solving Maxwell’s
equations consistently with the equations of compressible gasdynamics naturally produces
waves physically associated with the problem, such as AlfvOen and magnetosonic waves, as
eigenvalues. Such a formulation is thus suitable for handling MHD waves and shocks.

2. Some of the earlier e;orts [12; 19] have experienced problems conserving mass, mo-
mentum and energy. A conservative formulation of the governing equations ensures that these
quantities are indeed conserved. Such a formulation also facilitates the application of boundary
conditions, since the "uxes are the only quantities to be speci=ed at the boundaries. From the
perspective of numerical solution, it can be shown that conservative formulation is necessary
for accurately capturing discontinuities.

3. As also noted in Reference [16], none of the existing models (with the exception of
the recent work in Reference [21]) take advantage of the developments in the techniques for
numerical solution of Euler and Navier–Stokes equations.

Each of the problems mentioned above can be overcome, respectively, by adapting the
following approach:

1. Treat the "ow and magnetic =eld equations in a self-consistent manner.
2. Formulate the governing equations in a conservative form.
3. Use characteristics-splitting techniques satisfying Rankine–Hugoniot relations, combined

with anti-di;usion to increase accuracy. These techniques can capture shocks and other strong
gradients in a non-oscillatory manner, and can have good spatial accuracy in smooth regions
of the "ow.

The solver developed based on these principles will be described in the following sections.

1.4. Outline

The MHD equations, which this scheme attempts to solve, are described in Section 2. The
issues in obtaining a numerical solution are discussed in Section 3. A new characteristics-
splitting technique for the solution of the ideal MHD equations is described and validated
in Section 4. The capability of this scheme to simulate real magnetoplasmadynamic "ows
is brie"y demonstrated in Section 5.3. Details of the physical results from the simulation
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of MPDT "ow will be the subject of a future paper, and we will focus here on the solver
only.

2. MHD EQUATIONS

The solver developed in this work can be illustrated with the simple "ow problem of a fully
ionized, quasi-neutral plasma in thermal equilibrium under conditions for which the continuum
treatment is valid. Subsequent physical models can be added as deemed appropriate, without
signi=cant changes to the underlying numerical building blocks of the solver. The governing
equations for this problem can be written in the form

@
@t
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The continuity equation does not have any source or sink terms because this model assumes
complete ionization and no recombination.

The momentum equation contains the electromagnetic body force per unit volume, j×B,
written as the divergence of the Maxwell stress tensor RRBM, as described in Reference [1]. Here,
RRp is the isotropic thermodynamic pressure tensor. Currently, viscous e;ects are neglected in
this work.

In Faraday’s law, the convective di;usion of the magnetic =eld, which is the contribution
of the back EMF, is written as a divergence of the antisymmetric tensor uB−Bu. The resistive
di;usion appears as divergence of the resistive di;usion tensor, RREres, de=ned such that [23],

∇ · RREres =−∇× [ RR� · j] (2)

where RR� is the full resistivity tensor, which includes the Hall e;ect.
The energy equation is written in terms of the energy density (energy per unit volume), E,

whose components are the internal energy, kinetic energy and the energy in the magnetic =eld

E=
p

�− 1
+

1
2
�u · u+ B ·B

2
0
(3)

Here, the e;ects of deposition of energy into internal modes, and thus of a real caloric equation
of state, enter through the variation of �.

Apart from the familiar convective "ux of energy, (E+p)u, the other terms are the energy
invested in electromagnetic acceleration, RRBM · u, and the energy sources=sinks due to viscous
heating, Ohmic heating, and thermal conduction,

∇ · q=∇ ·
[
RR�vis · u+ B×E′


0
+ RRk th · ∇T

]
(4)

where E′ =E + u×B, is the electric =eld in the plasma reference frame, and RRk th is the
coeHcient of thermal conduction.
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Under some physical conditions, when the magnetic pressure is several orders of magnitude
larger than thermodynamic pressure, the conservation form of the energy equation may not
be suitable. In these cases, since the thermodynamic pressure, p, is calculated by subtracting
one large number (B2=2
0) from another (E), the associated errors could be large. However,
for the conditions that are of interest to plasma propulsion, the magnetic pressure is seldom
two orders of magnitude greater than thermodynamic pressure. Thus, the conservation form
of the energy equation is numerically suitable here.

Since the physical dissipation is written in the divergence form, the entire set of equations
can be written in the form

@U
@t

+∇ ·Fconv =∇ ·Fdi; (5)

where Fconv is the convective "ux tensor and represents the hyperbolic part of the problem
and Fdi; , the dissipative "ux tensor, represents the parabolic part of the problem.

Though Maxwell’s equations prescribe that ∇ ·B≡ 0, it is often not true numerically.
Strictly, these terms containing ∇ ·B appear on the right-hand side of Equation (1) as

S∇·B=(∇ ·B)
[
0;
B

0
; u;

B

0

· u
]T

(6)

The treatment of the ∇ ·B terms are important, since they could be a cause of numeri-
cal instabilities, as explained in Reference [24]. The present work uses the technique of
Powell [25] to absorb these terms into the eigensystem, without a;ecting the conservation
form of equation (5). Then, any arti=cial source is convected away as

@
@t

(∇ ·B) +∇ · (u∇ ·B)=0 (7)

Moreover, for self-induced =eld MPDTs in a coaxial geometry, the magnetic =eld is purely
azimuthal (Br =Bz =0). Thus, under the assumption of axial symmetry,

∇ ·B=
1
r
@B�
@�

≡ 0 (8)

Therefore, the zero divergence of magnetic =eld in the solution is always ensured in the
simulation of MPDT "ows.

3. NUMERICAL SOLUTION

The emphasis of this paper is on the numerical techniques for the hyperbolic nature of the
convective part of the problem. This is because the goal of this work is to simulate problems
in plasma propulsion, consequently computing the "ow is the most important part. More
importantly, it is this part of the problem that has required improvements. The dissipative
part of the problem, which is responsible for adding a parabolic nature to the governing
equations, is relatively well understood. However, as explained in Section 1.2, there is strong
coupling between the hyperbolic and the parabolic parts of the problem. This coupling raises
important issues in spatial as well as temporal discretization, which will be discussed in this
section.
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3.1. Mesh system

Before delving into the details of numerical solution, a choice of mesh system has to be made.
For the cylindrical co-ordinate system that is most suitable for the study of many plasma
thrusters, the easiest choice is to use structured orthogonal grids where the =nite volumes
are concentric shells. Apart from their simplicity, they are also computationally inexpensive.
However, they impose a limitation on the variety and complexity of geometries that can be
modeled.

The use of unstructured grids to simulate plasma thrusters has gained some popularity
[20; 21]. Though the obvious advantage is the freedom to specify an arbitrary geometry,
there are some disadvantages that may not be immediately apparent. Unstructured grids are
computationally expensive and there are problems in extending higher order accurate schemes
to them. Since precise control of geometry may not be as critical to the design of plasma
thrusters as it is to, say aircraft design, the use of unstructured grids may not be as crucial.
A good settlement of this issue would be to use body-=tted meshes, and maintain the use of
higher order accurate schemes. Since the focus of this paper is on the solver and its validation,
and not on the details of the simulation of complex "ows, we adopt a standard structured
orthogonal grid system.

The variables to be computed, given by U in Equation (5), can be stored either in the
vertices of the cells, or in the centre of the cells [29]. In the former, the variables will
coincide with the boundary, and they will be speci=ed as boundary conditions. In the latter,
the faces of the cells will be aligned with the walls, and the "uxes of these variables will be
speci=ed as boundary conditions. While solving the conservative formulation, it is preferable
to choose the cell-centred scheme since specifying the "uxes is more compatible with the
governing equations.

3.2. Spatial discretization

The numerical solution of the set of hyperbolic equations is based on techniques that are
extensively used in computational "uid dynamics. The principles underlying the design of
non-oscillatory discretization schemes for compressible "ows have been well established over
the past decade. There are two important issues in the design of discretization schemes:

• estimating the numerical "ux through cell boundaries, and accounting for waves propagating
at di;erent speeds, and possibly in di;erent directions,

• obtaining non-oscillatory solutions and capturing discontinuities with suHcient accuracy.

The numerical scheme used in this work is derived from research based on the pioneering
work of Godunov [30; 31]. The characteristics-splitting technique, which will be described
later, was =rst developed [33; 34] to solve problems in compressible "uid dynamics, and has
been proven to work reliably in the solution of Euler equations.

The most popular check for the stability and convergence of a nonlinear set of equations
is the total variation diminishing (TVD) principle [35]. A practical limitation of the TVD
condition is that its extension to multidimensional problems does not provide a satisfactory
measure of numerical oscillations [36]. The concept of local extremum diminishing (LED)
schemes, developed by Jameson [36], can be extended to multiple dimensions, and ensures
that there are no unbounded local oscillations. It has been shown [36] that TVD is in fact a
1-D special case of the LED framework. These schemes can be combined with "ux limited

Copyright ? 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:1415–1432



FLUX-LIMITED NUMERICAL METHOD 1421

anti-di;usion to provide higher-order accuracy in smooth regions of the "ow. These concepts
are explained in Section 4.

Numerical methods for parabolic problems are relatively commonplace. The equations dic-
tate that the numerical scheme should be second-order accurate in space. In the framework
used here, this implies that the =rst derivatives of variables are to be known across the cell
faces. Standard explicit centered spatial di;erences for the parabolic terms is used in this
work.

3.3. Temporal discretization

Unlike in "uid mechanics, the equations of MHD allow many di;erent types of waves to exist.
Even though physically the "ow velocity is one of the sought quantities of most interest
to propulsion, numerically the velocity of the fastest wave is what determines the time-
step constraints. In plasmas of propulsion interest, the "uid velocity is O(104) m=s. For a
quasineutral plasma in which the number density of charged particles is O(1021) =m3 and
thermodynamic pressures of O(10−1) Torr and magnetic pressure of O(101) Torr, the fast
magnetosonic wave speed is typically of the same order of magnitude as the "ow velocity.
This indicates that an explicit time marching scheme is suitable for the ideal MHD case. For
dissipative MHD the choice of time step depends on the relative magnitude of dissipative
time scales and convective time scales, as explained further down in this section. From the
Courant–Friedrichs–Lewyor (CFL) criterion [35], the time step for the ideal MHD problem
would be O(10−8–10−9) s.

A multistage scheme can be chosen to march forward in time. Writing Equation (1) as

dU
dt

+F(U)=0 (9)

where F(U) represents the sum of all the "uxes, the multistage scheme can be written as

U1 = Un − �1VtF(Un)

U2 = Un − �2VtF(U1)

U3 = Un − �3VtF(U2)

U4 = Un − �4VtF(U3)

Un+1 = U4

(10)

The values of �1; �2; �3 and �4 correspond to maximum time accuracy, and were obtained
from Reference [28] to be �1 = 0:1084; �2 = 0:2602; �3 = 0:5052 and �4 = 1:0.

Physical dissipation brings in di;erent characteristic time scales into the problem. They are
(for a typical mesh dimension of ∼1 mm):

Viscous di0usion: =�Vr2=
visc ∼ 10−9–10−10 s

Magnetic di0usion: =
0Vr2=�∼ 10−10–10−11 s

Heat conduction: = nekBVr2=�th ∼ 10−9–10−11 s

A suitable choice of time-marching scheme can be made depending upon where the time scales
lie in the particular case of interest. If the disparity between the convective and dissipative time
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scales is ∼O(10–100), then evaluating the convective "uxes at the time scales of dissipative
"uxes would be prohibitively expensive. In order to side step this diHculty, a fractional time-
stepping scheme may be useful. In this method, the convective "uxes are updated only after
N dissipative time steps, such that NVt is still less than the convective time scale. We have
worked with values of N ranging from 10 to 50, depending on the plasma conditions.

4. SOLUTION OF THE IDEAL MHD EQUATIONS

4.1. Characteristics-splitting method

Any time-dependent conservation law, such as Equation (1), can be written in a general form

dUj

dt
=

∑
j �=k

Cj; k(Uk −Uj) (11)

If the numerical scheme has a compact stencil in which the value of U at a point is directly
dependent only on its nearest neighbours, and if the coeHcients are all non-negative, then

Cj; k =

{
¿0; k= j±1
=0; else

(12)

If Uj is a local maximum, then, (Uk − Uj)60, causing dUj=dt60. Conversely, if Uj is a
local minimum, then, (Uk −Uj)¿0, causing dUj=dt¿0. In other words, this scheme is local
extremum diminishing. Apart from ensuring that there are no local numerical oscillations, a
scheme built on these conditions can be easily extended to multi dimensions, unlike the case
of the TVD concept.

It has been shown [36] that schemes built on obtaining information from the upwind part
of a characteristic satisfy positivity constraints (Equation (12)) and are thus stable for solving
equations of hyperbolic nature, such as the ideal MHD equations. This concept is used in
developing the numerical scheme used in this work.

The method can be explained using Equation (1) in one-spatial dimension,

dUj

dt
+
Hzj+1=2 −Hzj−1=2

Vz
=0 (13)

where U is the vector of conserved variables, Hz is the approximation of "ux in the ẑ
direction.

The true "ux, obtained from equation (1), in the ẑ direction can be split as

Fz(U)=Fz(U)+ + Fz(U)− (14)

where the eigenvalues of dFz+=dU are all positive or zero, and the eigenvalues of dFz−=dU
are all negative or zero. Then, the approximation of "ux is estimated as

Hzj+1=2 =Fz
+
j + Fz−j+1

This method of splitting "uxes was originally developed by Boris and Book [32] for the
solution of Euler equations. Using Equation (14), this can be rewritten as

Hzj+1=2 = 1
2(Fzj + Fzj+1)−Dzj+1=2
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where

Dzj+1=2 = 1
2 [{Fz+j+1 − Fz+j } − {Fz−j+1 − Fz−j }] (15)

There still remains a question of how Fz+ and Fz− can be evaluated. This evaluation is
possible if there is a matrix A, such that

Fzj+1 − Fzj =A · (Uj+1 −Uj) (16)

Note that, in the case the points j+1 and j are on opposite sides of a discontinuity,
Equation (16) indicates that this scheme satis=es the Rankine–Hugoniot jump conditions
exactly, if such a matrix A exists.

For a hyperbolic system of equations, A can be diagonalized as

A≡R�R−1 (17)

where R (given in the appendix) contains the right eigenvectors of A as its columns, and
R−1 (also given in the appendix) contains the left eigenvectors of A as its rows. � is the
diagonal matrix of eigenvalues of A (given in the appendix). Since � can be easily split
as, �=�++�−, using Equation (17), A can be split. Thus if there exists an A such that
Equation (16) is true, then F can be split. For the Euler equations, this matrix was derived by
Roe [33; 34]. There have been e;orts by Cargo [37] and Powell [26] to derive such matrices
for MHD equations. The literature [38] suggests that various forms of averaged matrices work
satisfactorily.

From Godunov’s theorem [30], it is evident that the scheme can only be =rst order accurate.
However, away from the discontinuities, the spatial accuracy of the scheme can be improved
by including "ux-limited anti-di;usion, Lz, as described in Reference [36]:

Dzj+1=2 = 1
2 |A|[VUj+1=2 − Lz(VUj+3=2;VUj−1=2)] (18)

Similar equations can be written for the corresponding terms in the r̂ direction.
An alternative to characteristics splitting for solving conservation form of the equations is

to use scalar di;usion. In this formalism, the numerical di;usion is

Dzj+1=2 = 1
2 |�|max VUj+1=2 (19)

Because of their low computational cost, schemes such as Equation (19) have been success-
fully adapted for many applications such as aircraft design. However, since these schemes
tend to arti=cially smooth out the solution [36], Equation (19) was only used in our work for
comparison with Equation (18).

5. VERIFICATION OF THE SCHEME

5.1. Unsteady case

The test problem chosen to validate the characteristics-splitting scheme for the ideal MHD
solver was of the classical Riemann type, which consists of a single jump discontinuity in an
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Figure 1. Exact and numerical solutions of the magnetic =eld and pressure
pro=les for the Riemann problem.

otherwise smooth initial condition. In 1-D the problem is

U(x; 0)=

{
UL if x¡L

2

UR if x¿ L
2

(20)

The Riemann problem was chosen because it is one of the very few that have an analytical
solution. This problem provides an excellent illustration of the wave solution to the problem
inherent to the equations. The solution to the Riemann problem is useful to verify the capturing
of both smooth waves (characteristics) as well as non-smooth waves (shocks).

The initial states used were very similar to the Sod problem [39] for the Euler equations,
and were =rst used by Brio and Wu [40] for the validation of MHD solvers. They were

Left:
[
� = 1:0; Vx = 0:0; Vy = 0:0; Vz = 0:0; Bx = 3

4 ; By = 1:0; Bz = 0:0; p = 1:0
]T

Right:
[
� = 1

8 ; Vx = 0:0; Vy = 0:0; Vz = 0:0; Bx = 3
4 ; By = −1:0; Bz = 0:0; p = 1

10

]T (21)

The solution was computed at a dimensionless time (de=ned in Reference [40], based on
the fast magnetosonic speed and the grid dimension) of �=0:1, with the initial conditions
described above. The solutions for the magnetic =eld and pressure pro=les, with 400 points
in the spatial dimension, are presented in Figure 1. The number of points in the domain, and
the time � were chosen to allow comparisons to other works, such as Reference [25].

In these =gures, the fast rarefaction (FR) wave can be seen on the far right and the far
left, as it is the fastest of wave in the problem. The slow shock (SS) and the compound wave
(SM) have speeds less than that of the FR wave.

As shown in these =gures, the scheme successfully captures the time-dependent disconti-
nuities.
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5.2. Steady-state case

In order to simulate steady-state MHD "ows, this solver can be used to solve the unsteady
equation to steady state. Then, an important question is whether it remains in that steady
state. To answer this question, a test problem was chosen, whose equilibrium solution is
known analytically. This equilibrium solution is given as the initial condition for the solver.
After marching several hundreds or thousands of time steps, a check is performed to see if
the variables have changed from the initial conditions.

The test problem chosen for this simulation was the Taylor State [41] con=guration. Under
certain conditions, described in Reference [41], when a bounded ideal plasma is allowed to
evolve, it will move quickly and dissipate energy before coming to rest. This stable equilibrium
con=guration can be analytically found using the minimum energy principle, and is of the form

∇×B= �B (22)

where � is an eigenvalue.
Since the current is parallel to the magnetic =eld, the j×B body force is identically zero.

Furthermore, if there are no thermodynamic pressure gradients, the plasma is in a state of
force-free equilibrium. For an axisymmetric geometry, the resulting magnetic =eld pro=le is

B� =B0J1(�r); Bz =B0J0(�r) (23)

where B0 is a constant amplitude, J0 and J1 are Bessel functions of the =rst kind, of orders
0 and 1, respectively.

For a Cartesian grid of dimensions Lx ×Lz, with symmetry along the ŷ direction, the mag-
netic =eld distribution satisfying Equation (22) is

Bx =− B0√
2

sin
(
m%x
Lx

)
cos

(
n%z
Lz

)

By =B0 sin
(
m%x
Lx

)
sin

(
n%z
Lz

)

Bz =
B0√
2

cos
(
m%x
Lx

)
sin

(
n%z
Lz

) (24)

where m and n are eigenvalues. The boundary conditions for this test case were: all com-
ponents of velocity are set to zero at the boundaries, the pressure is maintained to be the
same uniform value speci=ed for the entire domain, and the magnetic =eld components at the
boundary were kept unchanged from the initial distribution.

With the initial conditions speci=ed above, the code was run for 104 time steps on a
100× 100 grid. At the end, the solution had deviated from equilibrium by less than
0.5 per cent. The results from the code for Bx given in Equation (24) are compared with
the exact solution in Figure 2. Thus the property of linearity preservation has been success-
fully veri=ed for this solver.

5.3. Current density pattern in a MPDT

The test cases described above were intended to validate the new characteristics splitting
scheme, which was developed to calculate the convective part of the MHD equations. There-
fore, a vastly simpli=ed ideal MHD system was considered. Speci=cally, the equations
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Figure 2. Exact and numerical solution of magnetic =eld in the Taylor con=guration.

described above assume a fully ionized plasma, with ideal equation of state, in thermal equi-
librium, with no dissipative e;ects. However, the physical processes in propulsive plasmas
are far more complex.

As a =rst improvement, the e;ects of resistive di;usion, Hall e;ect, and gradient drifts
along with electron and ion thermal conduction, described in Section 2, had to be included.
Furthermore, the thermal non-equilibrium between the electrons and the ions had to be
accounted for. This required additional species energy equations to be solved concurrently
with Equation (1). For the conditions of interest to propulsion, the deviation from the ideal
equation of state is strong, and therefore the ratio of speci=c heats, and the nonlinear rela-
tionship between density pressure and temperature had to be computed. Anomalous transport
e;ects, described in Reference [13], due to the momentum exchange between particles and
waves, also had to be accounted for. Furthermore, a multilevel equilibrium ionization model
[21] to compute the densities of electrons and ions of various stages of ionization was incor-
porated into the code. It is important to note that all these e;ects were included without any
changes to the underlying scheme. Since the focus of the present paper is on the numerical
scheme only, we refer the interested reader to Reference [8] for all the details regarding the
physical models, transport coeHcients, initial and boundary conditions.

To illustrate the utility of this solver, the "ow =eld of a real MPDT, operating under
nominal conditions, was simulated. In the case chosen, argon plasma at a mass "ow rate of
6:0g=s was "owing in the channel, with 15:0kA of discharge current. The calculated contours
of enclosed current at steady state are shown in Figure 3. All the current is downstream of
the backplate, and there is 2500 A of current "owing between each contour. In ideal MHD,
magnetic =eld and therefore current lines, which are lines of constant rB�, would be convected
to the exit. However, due to the presence of resistivity, the current lines remain in the channel.
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Figure 3. Measured (top) and calculated (bottom) enclosed current contours.

It is also apparent that many current lines inside the thruster are not vertical. This is due to
a combination of the Hall e;ect that causes current conduction in the axial direction, and
convective e;ects.

On comparison with experimental data, it was found that the results of the simulation
yielded realistic values and pro=les for the plasma parameters of interest [8].

6. CONCLUDING REMARKS

A new solver to accurately compute plasma "ows of interest to propulsion has been developed
and validated. The characteristics-splitting technique is used to capture discontinuities mono-
tonically. Flux-limited anti-di;usion to improve spatial accuracy away from discontinuities,
and a multistage time-stepping scheme to improve temporal accuracy are used in this numer-
ical method. Further improvements to the physical model were added without any changes
to the underlying scheme. This solver has demonstrated the capability to produce realistic
simulation of thruster "ow =elds for the operating conditions considered.

APPENDIX A. EIGENSYSTEM OF MHD

Alfv4en speeds

CA; r; �; z =
Br; �; z√

0�

Sonic speed

a=
√
�p
�
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Normalization coeHcients (based on the work in References [26; 27])

'r;�; z =
CA;�; z√

C 2
A;� + C 2

A; z

; �r;f; s =

√
± a2C 2

S;F; r

C 2
F; r − C 2

S; r

'z; r; � =
CA;r;�√

C 2
A;r + C 2

A;�

; �z;f; s =

√
± a2C 2

S;F; z

C 2
F; z − C 2

S; z

Fast and slow magnetosonic waves

C 2
F;S; r =

1
2


(B ·B


0�
+ a2

)
±
√(

B ·B

0�

+ a2
)2

− (4a2C 2
A; r)




C 2
F;S; z =

1
2


(B ·B


0�
+ a2

)
±
√(

B ·B

0�

+ a2
)2

− (4a2C 2
A; z)




The Jacobian of transformation between primitive and conservation variables

dU
dW

=




1 0 0 0 0 0 0
u � 0 0 0 0 0 0
v 0 � 0 0 0 0 0
w 0 0 � 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
u · u
2

�u �v �w
Bx

0

By

0

Bz

0

1
�− 1




A.1. r̂ direction

A.1.1. Eigenvalues (in non-decreasing order)

[u− CF; r ; u− CA; r ; u− CS; r ; u; u; u+ CS; r ; u+ CA; r ; u+ CF; r] (A1)

A.1.2. Ortho-normalized eigenvectors

L1r =
[
0;

−�r;fCF; r

2a2
;
� r; sCS; r'r;� Sgn[Br]

2a2
;
� r; sCS; r'r; z Sgn[Br]

2a2
; 0;

� r; s'r;�
2a

√

0�

;
�r; s'r; z
2a

√

0�

;
�r;f
2�a2

]
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L2r =

[
0; 0;−'r; z√

2
;
'r;�√

2
; 0;− 'r; z√

2
0�
;

'r;�√
2
0�

; 0

]

L3r =
[
0;

−�r; sCS; r

2a2
;
−�r;fCF; r'r;� Sgn[Br]

2a2
;
−�r;fCF; r'r; z Sgn[Br]

2a2
; 0;

−�r;f'r;�
2a

√

0�

;
−�r;f'r; z
2a

√

0�

;
�r;f
2�a2

]

L4r = [1; 0; 0; 0; 0; 0; 0;−1=a2]

L5r = [0; 0; 0; 0; 1; 0; 0; 0]

L6r =
[
0;
� r; sCS; r

2a2
;
� r;fCF; r'r;� Sgn[Br]

2a2
;
� r;fCF; r'r; z Sgn[Br]

2a2
; 0;

−�r;f'r;�
2a

√

0�

;
−�r;f'r; z
2a

√

0�

;
�r;f
2�a2

]

L7r =

[
0; 0;−'r; z√

2
;
'r;�√

2
; 0;

'r; z√
2
0�

;− 'r;�√
2
0�

; 0

]

L8r =
[
0;
� r;fCF; r

2a2
;
−�r; sCS; r'r;� Sgn[Br]

2a2
;
−�r; sCS; r'r; z Sgn[Br]

2a2
; 0;

� r; s'r;�
2a

√

0�

;
�r; s'r; z
2a

√

0�

;
�r;f
2�a2

]

R1r = �
[
�r;f;

−�r;fCF; r

�
;
�r; sCS; r'r;� Sgn [Br]

�
;
�r; sCS; r'r; z Sgn[Br]

�
; 0;

� r; sa'r;�

√

0

�
; �r; sa'r; z

√

0

�
; a2�r;f

]

R2r =
[
0; 0;

−'r; z√
2
;
'r;�√

2
; 0;

−'r; z√
0�√
2

;
'r;�

√

0�√
2

; 0
]

R3r = �
[
�r; s;

−�r; sCS; r

�
;
−�r;fCF; r'r;� Sgn[Br]

�
;
−�r;fCF; r'r; z Sgn[Br]

�
; 0;

−�r;fa'r;�
√

0

�
;−�r;fa'r; z

√

0

�
; a2�r;f

]

R4r = [1; 0; 0; 0; 0; 0; 0; 0]

R5r = [0; 0; 0; 0; 1; 0; 0; 0]
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R6r = �
[
�r; s;

� r; sCS; r

�
;
�r;fCF; r'r;� Sgn[Br]

�
;
�r;fCF; r'r; z Sgn[Br]

�
; 0;

− �r;fa'r;�

√

0

�
;−�r;fa'r; z

√

0

�
; a2�r;f

]

R7r =
[
0; 0;

−'r; z√
2
;
'r;�√

2
; 0;

'r; z
√

0�√
2

;
−'r;�√
0�√

2
; 0
]

R8r = �
[
�r;f;

�r;fCF; r

�
;
−�r; sCS; r'r;� Sgn[Br]

�
;
−�r; sCS; r'r; z Sgn[Br]

�
; 0;

� r; sa'r;�

√

0

�
; �r; sa'r; z

√

0

�
; a2�r;f

]

A.2. ẑ direction

A.2.1. Eigenvalues (in non-decreasing order)

[w − CF; z; w − CA; z; w − CS; z; w; w; w + CS; z; w + CA; z; w + CF; z] (A2)

A.2.2. Ortho-normalized eigenvectors

L1z =
[
0;
�z; sCS; z'z; r Sgn[Bz]

2a2
;
�z; sCS; z'z;� Sgn[Bz]

2a2
;
−�z;fCF; z

2a2
;
�z; s'z; r
2a

√

0�

;
�z; s'z; �
2a

√

0�

; 0;
�z;f
2�a2

]

L2z =

[
0;

−'z;�√
2
;
'z; r√
2
; 0;

−'z;�√
2
0�

;
'z; r√
2
0�

; 0; 0

]

L3z =
[
0;

−�z;fCF; z'z; r Sgn[Bz]
2a2

;
−�z;fCF; z'z;� Sgn[Bz]

2a2
;
−�z; sCS; z

2a2
;

−�z;f'z; r
2a

√

0�

;
−�z;f'z; �
2a

√

0�

; 0;
�z; s
2�a2

]

L4z = [0; 0; 0; 0; 0; 0; 1; 0]

L5z = [1; 0; 0; 0; 0; 0; 0;
−1
a2

]

L6z =
[
0;
�z;fCF; z'z; r Sgn[Bz]

2a2
;
�z;fCF; z'z;� Sgn[Bz]

2a2
;
�z; sCS; z

2a2
;
−�z;f'z; r
2a

√

0�

;
−�z;f'z; �
2a

√

0�

; 0;
�z; s
2�a2

]

L7z =

[
0;

−'z;�√
2
;
'z; r√
2
; 0;

'z;�√
2
0�

;
−'z; r√
2
0�

; 0; 0

]

L8z =
[
0;

−�z; sCS; z'z; r Sgn[Bz]
2a2

;
−�z; sCS; z'z;� Sgn[Bz]

2a2
;
�z;fCF; z

2a2
;
�z; s'z; r
2a

√

0�

;
�z; s'z; �
2a

√

0�

; 0;
�z;f
2�a2

]
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R1z = �
[
�z;f;

�z; sCS; z'z; r Sgn[Bz]
�

;
�z; sCS; z'z;� Sgn[Bz]

�
;
−�z;fCF; z

�
;

�z; sa'z; r
√

0

�
; �z; sa'z;�

√

0

�
; 0; a2�z;f

]

R2z =
[
0;

−'z;�√
2
;
'z; r√
2
; 0;

−'z;�√
0�√
2

;
'z; r

√

0�√
2

; 0; 0
]

R3z = �
[
�z; s;

−�z;fCF; z'z; r Sgn[Bz]
�

;
−�z;fCF; z'z;� Sgn[Bz]

�
;
−�z; sCS; z

�
;

− �z;fa'z; r
√

0

�
;−�z;fa'z;�

√

0

�
; 0; a2�z; s

]

R4z = [0; 0; 0; 0; 0; 0; 1; 0]

R5z = [1; 0; 0; 0; 0; 0; 0; 0]

R6z = �
[
�z; s;

�z;fCF; z'z; r Sgn[Bz]
�

;
�z;fCF; z'z;� Sgn[Bz]

�
;
�z; sCS; z

�
;

−�z;fa'z; r
√

0

�
;−�z;fa'z;�

√

0

�
; 0; a2�z; s

]

R7z =
[
0;

−'z;�√
2
;
'z; r√
2
; 0;

'z;�
√

0�√
2

;
−'z; r√
0�√

2
; 0; 0

]

R8z = �
[
�z;f;

−�z; sCS; z'z; r Sgn[Bz]
�

;
−�z; sCS; z'z;� Sgn[Bz]

�
;
�z;fCF; z

�
;

�z; sa'z; r
√

0

�
; �z; sa'z;�

√

0

�
; 0; a2�z;f

]
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