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Abstract

This paper describes the application of a new
scheme, that was developed for the solution of
the MHD equations, to simulate magnetoplasma-
dynamic thruster (MPDT) flows. In this scheme,
the entire set of flow and field equations are solved
in a self-consistent conservation form, using accu-
rate characteristics-splitting techniques which have
been proven to be effective in computational fluid
dynamics. Further improvements to the physical
model, such as the inclusion of real equation of state,
anomalous transport and multi-temperature effects,
are essential for the realistic simulation magneto-
plasmadynamic flows, and are implemented without
affecting the underlying scheme. The solver, includ-
ing the improved physical model, is then used to
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simulate plasma flow in a real MPDT configuration.
The results of the simulation were found to to be in
general agreement with experimental observations.
They illustrate the need for using a real equation of
state, instead of the ideal one, to enhance the realism
and stability of the simulation.

1 Introduction

1.1 Motivation

The electrical power deposited into the plasma can
be expended into many sinks, but as shown in
Fig.(1), only two of which, directed electromag-
netic kinetic power and directed electrothermal ki-
netic power, are useful for propulsion. Understand-
ing and quantifying these disparate processes is es-
sential to improving the efficiency of these devices.
Since an empirical approach alone is not generally
conducive to obtaining such detailed information on
these physical processes, numerical simulations are
valuable tools in plasma thruster research. Given the
dearth of high power test facilities, simulations can
be valuable aides to research by reducing the need
for expensive, and sometimes unviable, experimen-
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Figure 1: Expenditure of input power in an electro-
magnetic accelerator (not to scale, from ref.[1]).

tal parametric studies.
The goal of this work is to develop a robust nu-

merical solver for the simulation of plasma flows in
MPD thrusters, and apply it to investigate the role of
physical processes in these devices.

1.2 Existing Work

There have been several notable efforts to develop
numerical models for plasma flows in MPDTs,
which will be summarized here.

Kimura et al:[2], and Fujiwara[3] started de-
veloping single-temperature, 2-D models on sim-
ple geometries, and have continued to make im-
provements to their models. Currently, the efforts
of Fujiwara et al:[4] are directed at studying criti-
cal phenomena in magnetoplasmadynamic thrusters
(MPDT), using multi-temperature models. Caldo
and Choueiri[5] have developed a two-temperature
model to study the effects of anomalous transport,
described in ref.[6], on MPD flows. The effort by
LaPointe[7] focused on studying the effect of geom-
etry on performance. Martinez-Sanchezet al:[8],[9]
have developed multi-temperature axisymmetric nu-
merical models to study various aspects of the flow.
Turchi[10] et al: use MACH2, an unsteady MHD

solver developed for high power plasma gun simu-
lation, to model PPTs and MPD thrusters in many
geometries. MACH3[11], the next generation of
MACH2, is also used to simulate possible 3-D ef-
fects in specific situations. The most persistent effort
so far has been that of Auweter-Kurtzet al:[12],[13],
who have been developing numerical models for
MPD thrusters for almost two decades. Detailed
models for many transport processes and multiple
levels of ionization have been incorporated into their
governing equations, which are solved on unstruc-
tured adaptive grids for various geometries.

1.3 Current Approach

Despite these efforts, there remains a need for ac-
curate and robust numerical schemes to simulate
propulsive plasma flows. In particular, improve-
ments are required in three aspects:

1. Some of the above mentioned codes exhibit nu-
merical instabilities at high current levels. Since
MPD thrusters perform better at higher cur-
rents, and many of the important research ques-
tions, such as performance limiting phenomena,
tend to also occur at higher currents, it is im-
portant to be able to simulate at high values of
J2= _m.

A probable explanation for these numerical in-
stabilities is the failure to solve the magnetic
field evolution self-consistently with the flow.
The magnetic Reynolds’ numbers in typical
MPD plasmas indicate that both convective and
resistive diffusion of the magnetic field are im-
portant, and the corresponding time scales are
not very far off.

Solving Maxwell’s equations consistently with
compressible gasdynamics equations produces
waves physically associated with the problem,
such as Alfvèn and magnetosonic waves, as
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eigenvalues. Such a formulation is thus suitable
for handling MHD waves and shocks.

2. Some of the earlier efforts have experienced
problems conserving mass, momentum, and en-
ergy. The conservative formulation of the gov-
erning equations, used in this work, ensures that
these quantities are indeed conserved. From
the perspective of numerical solution, it can be
shown that conservative formulation is neces-
sary for accurately capturing discontinuities.

3. Though noted earlier[9], none of the existing
models (with the exception of recent work of
Heiermann[13]) take advantage of the develop-
ments in the techniques for numerical solution
of Euler and Navier-Stokes equations.

A new solver, developed based on principles men-
tioned above, was introduced by the authors in
ref.[14], and validated in ref.[15]. The focus of this
paper is to demonstrate the utility of this solver to
investigate plasma flows in MPD thrusters.

1.4 Outline

The underlying scheme is briefly explained using
a simplified flow problem inx2. Subsequent im-
provements to the physical models, that did not re-
quire significant changes to the underlying numeri-
cal building blocks of the solver, were implemented
and are described inx3. The results from the com-
putation of plasma flows in an MPD thruster, using
the models described, are presented inx4.1. The ef-
fects of some aspects of the model, specifically the
equation of state, is investigated inx4.2.

2 MHD Simulations

The solver developed in this work can be illus-
trated with the simple flow problem of a fully ion-

ized, quasi-neutral plasma in thermal equilibrium un-
der conditions for which the continuum treatment is
valid.

2.1 Governing Equations

The governing equations for this problem can be
written in the form:

@
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The right hand side of the equation,S, contains the
dissipative effects that are physical in nature,
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In the total continuity relation, any possible diffu-
sion effects are neglected.

The momentum equation contains the electromag-
netic body force per unit volume,j � B, written as
the divergence of the Maxwell stress tensor��BM , as
described in ref.[16]. Here,��p is the isotropic thermo-
dynamic pressure tensor. The viscous stress tensor,
���vis, can also be included in this formulation, though
it is neglected in the results shown in this paper.

In Faraday’s law, the convective diffusion of the
magnetic field, which is the contribution of the back
EMF, is written as a divergence of the antisymmetric
tensoruB �Bu. The resistive diffusion appears as
divergence of the resistive diffusion tensor,��Eres, as
in done ref.[17], which includes the dispersive Hall
effect.

The energy equation is written in terms of the en-
ergy density (energy per unit volume),E , which in-
cludes the internal energy, kinetic energy and the en-
ergy in the magnetic field.
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Apart from the familiar convective flux of energy,
(E + p)u, the other terms are the energy expended
in electromagnetic acceleration,��BM �u, and the dis-
sipative flux of energy,r�q, due to viscous heating,
Ohmic heating, and thermal conduction,

r � q = r �

�
���vis � u+

B�E0

�0
+ ���th � rT

�
;

whereE0 is the effective electric field on the plasma.
Under some physical conditions, when the mag-

netic pressure is several orders of magnitude larger
than thermodynamic pressure, the conservation form
of the energy equation may not be suitable. In these
cases, since the thermodynamic pressure,p, is cal-
culated by subtracting one large number (B2=2�o)
from another (E), the associated errors could be
large. However, for the conditions that are of interest
to plasma propulsion, the magnetic pressure is sel-
dom two orders of magnitude greater than thermo-
dynamic pressure. Thus the conservation form of the
energy equation is numerically suitable here.

Thus, the entire set of equations can be written in
the conservation form,

@U

@t
+r � [Fconv �Fdiss] ; (3)

whereFconv is the convective flux tensor, andFdiss

is the dissipative flux tensor.

2.2 Numerical Solution

The equations described inx2 contain hyperbolic and
parabolic PDEs. Much of the discussion in this sec-
tion will be on the techniques for solving the con-
vective part of the problem. One reason for this is
that the goal of this work is to simulate problems in
propulsion and therefore computing the flow is the
most important part. More importantly, it is this part
of the problem that has required improvements. The
dissipative part of the problem, which brings in a

parabolic nature to the governing equations, is rel-
atively well understood.

2.2.1 Spatial Discretization

There are two important issues in the design of dis-
cretization schemes:

� Estimating the numerical flux through cell
boundaries, by accounting for waves propagat-
ing at different speeds, and possibly in different
directions,

� Obtaining non-oscillatory solutions and captur-
ing discontinuities with sufficient accuracy.

The numerical scheme used in this work is de-
rived from research based on the pioneering work
of Godunov [18], [19]. The characteristics-splitting
technique, which will be described later, was first
developed[20], [21] to solve problems in com-
pressible fluid dynamics. It satisfies the Rankine-
Hugoniot jump conditions exactly, and has been
proven to work reliably for solving the Navier-Stokes
equations. Jameson[22] has shown that this scheme
can be combined with flux limited anti-diffusion to
provide higher order accuracy in smooth regions of
the flow, and ensure that there are no unbounded lo-
cal oscillations.

The essence of this scheme is to split the char-
acteristics based on their direction of propagation.
Then, the flux across a cell face, for example whose
normal is in thêz direction, can be split as,

Fz(U) = Fz(U)+ + Fz(U)�; (4)

where the eigenvalues ofdFz+=dU are all non-
negative, and the eigenvalues ofdFz�=dU are all
non-positive.

Godunov’s theorem[18] assures that no scheme
can be better than first order accurate near discon-
tinuities. However, away from the discontinuities,



SANKARAN, et al:: NUMERICAL SIMULATION OF MPD FLOWS 5

the spatial accuracy of this scheme can be improved
by including flux-limited anti-diffusion, as described
in ref.[22]. Details of this implementation, along
with test cases for its validation, are documented in
ref.[15].

Numerical methods for diffusion type problems
are relatively commonplace. Explicit centered spa-
tial differences for the parabolic terms is used in
this work, with a sub-stepping method discussed in
x2.2.2.

2.2.2 Temporal Discretization

Unlike in fluid mechanics, the equations of MHD al-
low many different types of waves to exist. Even
though physically the flow velocity is the sought
quantity of most interest to propulsion, numeri-
cally the velocity of the fastest wave is what de-
termines the time-step constraints. In plasmas of
propulsion interest, the fluid velocity isO(104)
m/s. For a quasineutral plasma with charge den-
sity ofO(1021)=m3 and thermodynamic pressures of
O(10�1) Torr and magnetic pressure ofO(101) Torr,
the fast magnetosonic wave speed is typically of the
same order of magnitude as the flow velocity. This
indicates that an explicit time marching scheme is
suitable. From the CFL criterion, the time step for
such a problem would beO(10�8 � 10�9) s.

Physical dissipation brings in different character-
istic time scales into the problem. They are:

Magnetic diffusion: =�o�r2=� � 10�10 s
Heat conduction: =nekB�r2=�th� 10�10 s
Viscous diffusion: =��r2=�visc � 10�9 s .

If these were vastly different, that would call for an
implicit treatment of time stepping. That is not the
case here, and an explicit time-stepping scheme was
chosen.

Depending upon the particular case being simu-
lated, the difference between convective and dissipa-

tive time scales could be more severe. Then, evaluat-
ing the convective fluxes at the time scales of dissipa-
tive fluxes would be prohibitively expensive. In or-
der to sidestep this difficulty, a sub-stepping scheme
can be chosen. In this method, the convective fluxes
are updated only afterN dissipative time steps, such
thatN�t is still less than the convective time scale.

2.3 Boundary Conditions

The boundaries in the computation of MPD flows are
of various types. This section will discuss the estima-
tion of the convective and dissipative terms at each
type of boundary.

2.3.1 Flow Properties

The computational domain is assumed to be large
enough such that there are no normal gradients in any
of the flow properties at the free stream boundaries.

At solid boundaries, convective flux of all con-
served variables, given by eqn.(1), is zero. For es-
timating the thermal conduction, either the tempera-
ture of the wall, or the heat flux to the wall has to be
specified. A judicious estimate can be made for this,
possibly from experimental data.

At the axis of symmetry, there are no radial con-
vective fluxes. Moreover, there are no radial gra-
dients. Therefore, there is no thermal conduction
across the centerline.

At the inlet, a specified mass flow rate of the pro-
pellant enters at a specified temperature at sonic con-
ditions. In reality, the propellant is injected as neu-
tral gas at room temperature, and it gets almost fully
ionized within a few millimeters from the inlet[23].
However, it is believed[24] that this ionization pro-
cess cannot be modeled by fluid theory. Therefore,
in this model, the inlet temperature is chosen to be
high enough such that the propellant is sufficiently
ionized. Effectively, the backplate of the numerical
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model is not the true backplate, but a region few mil-
limeters downstream of it.

2.3.2 Field Properties

The computational domain is chosen to be large
enough such that all the current is enclosed within
the domain. Thus, from Amp`ere’s law, the magnetic
field at free stream boundaries is zero. Note that if
the domain is too small to make this assumption un-
reasonable, it will cause spurious jumps in flow vari-
ables, most notably in pressure.

At all other boundaries, the magnetic field is com-
puted purely from Faraday’s law. Using Stokes’ the-
orem it can be written as,Z

A

@B

@t
� dA = �

I
C
E � dl : (5)

In the cell-centered scheme used in this work,
eqn.(5) implies that the evolution of the magnetic
flux is specified by the contour integral of electric
field around the cell. Therefore, the only information
required is the electric field drop along the bound-
aries.

At the axis of symmetry, the inductive component
of the electric field is zero because there is no flow
across it. The resistive component can be related
to the magnetic field from the point next tor = 0,
through a simple Taylor series expansion,

E0
z

��
r=0 = �jz jr=0 =

4 B�j�r=2

�r
: (6)

From classical electromagnetic theory[25], the
jump in the magnetic field,H2 �H1, across an in-
terface between two media has to satisfy the relation,

n̂� (H2 �H1) = Js ; (7)

whereJs is the surface current per unit length. Due
to the no mass flux condition, the potential drop at a

wall is entirely resistive, and is given by,

Ew = �wjw : (8)

At conducting boundaries, all the current entering
the discharge flows at the surface, at least in the tran-
sient case. Therefore, even though resistivity,�w, for
most conductors is very small, the electric field can
be significant due to the large current density, in the
transient case. In a true steady state, after the mag-
netic field has diffused into the conductor, the surface
potential drop decreases to zero.

At insulated boundaries, the magnetic field dif-
fuses into the wall instantaneously. Therefore, the
jump in the the magnetic field, and subsequently the
surface current is zero.

At the backplate, which also serves as the inlet, the
total voltage drop is set as the boundary condition.
Emulating a true constant current circuit, this applied
voltage is adjusted every time step to maintain the
specified amount of current to flow in the channel.

3 Improved Physical Model

3.1 Thermal Non-Equilibrium

For the conditions of interest, there is sufficient ev-
idence (for instance, refs. [26], [27]) that electron
and ion temperatures are different. Then, the dispar-
ity can be accounted for by using separate species
energy equations. The conservation relation for the
total internal energy,Eint, of the fluid can be written
as,

@Eint
@t

+r� [Eintu]+pr�u = j �E+r� (kthrT ) :

(9)
The internal energy of the fluid can be further split

into those pertaining to electrons,Ee, and ions,Ei, as

Eint = Ei + Ee : (10)
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The electrical power input to the plasma,j � E,
can be split into the part that is expended in Ohmic
heating,�j2, and the part that is used for accelerating
the plasma,(j�B) � u.

The thermal conductivity in the total energy equa-
tion is the sum of the contributions from both elec-
trons and ions,

kthrT = (kerTe) + (kirTi) ; (11)

whereke andki are the coefficients of thermal con-
duction for the electrons and ions, respectively. With
these assumptions, the conservation relations for the
internal energy of electrons can be written as,

@Ee
@t

+r�[Eeu]+per�u = �j2�� _Eie+r�(kerTe) ;

(12)
and that of ions as,

@Ei
@t

+r� [Eiu] + pir�u = � _Eie+r� (kth;irTi) :

(13)
In the above expressions,pe andpi are the pres-

sures of the electron and heavy species respectively,
and�j2 is the Ohmic heating term, and� _Eie is the
energy exchange term to be discussed later.

Since experimental data suggest that the dispar-
ity between the two temperatures is less than an or-
der of magnitude, only one of eqns.(12) and (13) is
needed, and the internal energy of the other species
can be obtained, without significant error, by sub-
traction from the total energy. Note that the energy
expended in acceleration,(j�B)�u, does not appear
in equations (12) and (13) because they are relations
for the internalenergy only. The acceleration energy
would appear if the kinetic energy were also included
in the definition of energy density.

It can be shown[28] that the ratio of thermal con-
ductivities of electrons and ions depends upon the
sqaure root of ratio of the masses of ions and elec-

trons,

ke
ki
'

s
Mi

me
� 1 : (14)

Since the temperatures of electrons and ions are not
very disparate, one could make the assumption that
thermal conduction of the ions is negligible com-
pared to that of the electrons. However, there may
be some regions, such as stagnation points, where
thermal conduction may be an important energy dis-
sipation mechanism for the ions. Therefore it is ad-
visable to retain this term.

In eqns.(12) and (13), the rate of exchange of en-
ergy per unit volume between the electrons and the
ions, through collisions, can be estimated as,

� _Eie =
3�e�ei
Mi

kB (Te � Ti) ; (15)

where�e is the electron mass density, and�ei is the
average collision frequency between electrons and
ions. Energy losses due to radiation are important
in many types of plasmas. However, earlier work by
Boyle[26], Villani[29], and Bruckner[27] suggests
that the relative magnitude of this sink is not signifi-
cant. Consequently, radiation losses will be ignored
in the current model.

3.2 Equation of State

Real molecules possess internal energy in modes
other than the translational. In these situations, the
relationship between pressure, density and tempera-
ture is of the form

p = NkBT
@ lnQ

@V
: (16)

Ignoring nuclear contributions, the total partition
function,Q can be written as,

Q = QrotQvibQtrQel ; (17)
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whereQrot is the contribution of rotational energy
levels,Qvib that of the vibrational energy levels, and
Qel that of the electronic energy levels.

Fortunately, most of the propellants of interest
to plasma propulsion are monatomic in nature, and
therefore, the rotational and vibrational contributions
are absent. Thus the problem of finding the equa-
tion of state of a real gas reduces to the problem
of estimating the electronic excitation partition func-
tion Qel. These partition functions, for many ele-
ments of interest, can be found in references such as
ref.[30]. Based on this work, Choueiri[31] derived
expressions to obtain the temperature from pressure
and density, for argon. As shown in Fig.(2), it is clear
that at temperatures above104K, the deviations from
the ideal gas model are significant.

Figure 2: Deviation from ideal gas behavior for ar-
gon (calculated from data in ref.[30])

As energy is deposited into the internal modes, the
ratio of specific heats also changes. Once again, this
can be calculated from the data of partition functions.
As seen in Fig.(3), the deviation from the ideal value
of 5=3 is severe at temperatures above104K, which
is consistent with Fig.(2).

Figure 3: Variation of the ratio of specific heats for
argon (calculated from data in ref.[30])

3.3 Anomalous Transport

It is known that the current can drive microinsta-
bilities in the thruster plasma which may, through
induced microturbulence, substantially increase dis-
sipation and adversely impact the efficiency. The
presence of microinstabilities in such accelerator
plasmas has been established experimentally in the
plasma of the MPDT at both low and high power
levels[32], [33]. Choueiri[6] has developed a model
to estimate the resulting anomalous transport and
heating in terms of macroscopic parameters. Un-
der this formulation, apart from the classical col-
lision frequency of the particles, there exists addi-
tional momentum and energy transferring collisions
between particles and waves. The resulting anoma-
lous collision frequency is important whenever the
ratio of electron drift velocity to ion thermal veloc-
ity, ude=vti � 1:5 . Above this threshold, the ratio of
anomalous collision frequency to classical collision
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frequency was found to depend on the classical elec-
tron Hall parameter,
e, and the ratio of ion to elec-
tron temperatures,Ti=Te. Polynomials giving these
relations are in ref.[6] and are shown in Fig.(4).

Figure 4: Ratio of anomalous to classical resistivity
in argon plasmas (from ref.[6])

4 Results

4.1 Results from MPD Simulation

Due to the simple grid generation techniques used
in this work, a constant area channel is a more
amenable choice for study. The thruster chosen for
simulation was a design used by Villani[29]. There
exists sufficient data on the current and potential con-
tours at various values ofJ2= _m for this geometry.
The results shown are for argon mass flow rate of
6.0g/s and 15.0kA of discharge current, since these
are common operating conditions for many MPDTs,
for which experimental data exist.

The calculated and measured contours of enclosed
current are shown in Fig.(5). They indicate the blow-
ing of the current lines at the exit, due to convection,
and also the canting of the current lines inside the

channel due to Hall effect. While the calculated val-
ues are in similar to the measured values withint the
channel, the simulation does not predict the attach-
ment pattern at electrode tips accurately. This can
possibly be attributed to the unrealistic sharp corners
of the electrodes in the simulation.

Figure 5: Contours of constant current (1000A be-
tween lines)

The current distribution on the surface of the cath-
ode, shown in Fig.(6), shows peaks at the inlet
(z=0), the anode length (z=0.20) and the cathode tip
(z=0.264). This result is qualitatively in accordance
with experimental observations.

The calculated contours of density are shown in
Fig.(8). Within the channel, the axial component
of the current produces a radial pumping force that
pushes the plasma towards the cathode.

The calculated contours of axial velocity are
shown in Fig.(7). The profile at the exit shows axial
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velocities in the range of about 8.0 km/s to 14.0 km/s.
This is in general agreement with range of measured
values for this operating condition.

The profiles of heavy species temperature, shown
in Fig.(8), indicate that it varies from about 1eV to
about 3.5eV. These values are roughly in the range of
experimental measurements in refs.[26], [27]. The
stagnation point at the cathode tip is the region of
highest temperature in the simulation.

Figure 6: Current density distribution on cathode
surface

4.2 Effect of Physical Models

To estimate the importance of the real equation of
state model, described inx3.2, this part of the model
was turned off and the code was run for the same
operating conditions as inx4.1. The difference was
very significant, not only in the values, but in the
convergence itself. Without the real equation of
state, the solution did not reach a steady state, as
the heavy species temperature increased monotoni-
cally with time. An intermediate solution is shown
in Fig.(8), and it can be seen that temperature ex-
ceeds 6.5eV. The explanation for the high tempera-
ture is simply, without energy expenditure into inter-

nal modes, namely electronic excitation and ioniza-
tion, there are no sufficient energy sinks in the model.

Moreover, the density contours obtained with the
ideal equation of state, shown in Fig.(8), are drasti-
cally different from the more realistic contours ob-
tained with the real equation of state.

The effects of anomalous transport were not pro-
nounced at these conditions, due to the correspond-
ingly low values of the electron Hall parameter and
ude=vti. It is, however, interesting to note that
anomalous transport effects appeared to be more im-
portant when the ideal equation of state was used in-
stead of the real equation of state.

5 Concluding Remarks

The development and validation of a new solver
to accurately compute plasma flows of interest to
propulsion has been documented in earlier works
by the authors (refs.[14] and [15]). In this paper,
the utility of this solver to simulate plasma flows in
magnetoplasmadynamic thrusters has been demon-
strated. The calculated contours of velocity, den-
sity, enclosed current and temperature are in general
agreement with measured values.

The robustness of this solver is evident from its
ability to handle changes in the physical model, with-
out requiring changes to the underlying scheme. In
this paper, the effects of the real equation of state and
anomalous transport models were included.

The effect of anomalous transport was found to
have no major effect on the solution at this condi-
tions. This can be explained to the lack of occurence
of high electron Hall parameters for this geometry at
this operating condition.

Though other researchers (ref.[13]) have found the
ideal equation of state suitable to simulate MPDTs at
lower current levels, for the chosen operating condi-
tion, J = 15.0kA, and _m = 6.0g/s, the real equation
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of state was crucial to obtaining a realistic and stable
solution.
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Figure 7: Axial velocity contours for 6.0g/s of argon and J=15.0kA

Figure 8: (a) Density profile with real equation of state; (b) Density profile with ideal equation of state; (c)
Ion temperature with real equation of state; (d) Ion temperature with ideal equation of state


