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Abstract

The flowfield of a magnetoplasmadynamic thruster was simulated numerically and the results compared
to experimental measurements, in order to validate the code and obtain insight into underlying physical
processes. The thruster chosen was the full-scale benchmark thruster, because it has been the subject of
many experimental studies. The parallelized axi-symmetric code featured detailed physical models and
a finite volume formulation that allowed for non-orthogonal grids. Flowfield properties, such as electron
density, velocity, current density, electron temperature, ionization fraction, mass and momentum flux,
as well as thrust, compared favorably with existing data. The simulation provided insight into some
aspects of thruster operation, such as the weak role of the anode geometry in affecting the thrust, the
predominantly electromagnetic nature of the thrust at nominal operating conditions, and the importance
of the near cathode region in energy dissipation.

Nomenclature
ρ Total mass density
u Fluid velocity
B Magnetic induction
p, ¯̄p Gas pressure, isotropic pressure tensor
E Electric field strength
E′ Electric field seen by the plasma
E Energy density of the plasma
j Current per unit area
kB Boltzmann’s constant
ke,i Electron/ion thermal conduction coefficient
me Mass of an electron
ph, pe Heavy species/electron pressure
Th, Te Heavy species/electron temperature
η Resistivity

1 Introduction
The Princeton full-scale benchmark thruster (FSBT)
is a magnetoplasmadynamic thruster (MPDT) that
has been the subject of many experimental investi-
gations [1, 2, 3, 4, 5, 6, 7, 8, 9] over the past three
decades. Yet, there has not been a detailed numerical
simulation of this device. Now, with the improve-
ments in numerical methods[10, 11] and computing
capability[12], it is insightful to revisit this device,
by comparing experimental measurements to results
from a recently developed code[12].

Another goal of this comparison is to validate
this code for future use with thrusters for which ex-
perimental data are not yet widely available, such as
the lithium Lorentz force accelerator (LiLFA)[13].
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In §2, we describe the governing equations and
the physical models used in this simulation. Then,
in §3 we describe how these equations were formu-
lated to be solved in a non-orthogonal coordinate
system in a conservative fashion. In §4 we discuss
the discretization method and the boundary condi-
tions imposed on the solver to calculate the flow-
field in self-field magnetoplasmadynamic thrusters
(MPDTs). In §5 we present the results from the sim-
ulation of plasma flows in the FSBT, and compare
the results to experimental measurements. In §6 we
use these aforementioned results to investigate some
underlying physical processes in the FSBT.

2 Physical Model

The governing equations for a MHD flow problem
can be written in the form [10]:

∂

∂t



ρ
ρu
B
E


 + ∇ ·




ρu
ρuu + ¯̄p− ¯̄BM

uB − Bu
(E + p)u− ¯̄BM · u


 = D. (1)

The right hand side of the equation, D, contains the
dissipative effects that are physical in nature, and
they too are written as divergence of fluxes, as seen
in appendix A.

In the momentum equation, ¯̄BM = 1
µo

[
BB − B2

2 I
]

is the magnetic part of the Maxwell stress tensor, and
it satisfies the relation,

∇ · ¯̄BM = j × B . (2)

In Faraday’s law, the contribution of back EMF
to the change in magnetic field is written as a diver-
gence of a flux,

−∇× (u× B) = ∇ · (uB −Bu) . (3)

The energy equation is written in terms of the
energy density (energy per unit volume), E , which
includes the internal energy, kinetic energy and the
energy in the magnetic field. The dissipative flux of
energy, ∇ ·q, contains the Ohmic heating (written in
terms of divergence of the Poynting flux), and ther-

mal conduction,

∇ · q = ∇ ·
[
B × E′

µ0
+ ¯̄kth · ∇T

]
.

In addition to the total energy equation, we
needed to account for the disparity between electron
and ion temperatures. The conservation relations for
the internal energy density of electrons, Ee, can be
written as

∂Ee

∂t
+∇·[Eeu]+pe∇·u = ηj2−∆Ėie+∇·(ke∇Te) .

(4)
In the above expression, ηj2 is the Ohmic heat-

ing term. The rate of exchange of energy per unit
volume between the electrons and the ions, through
collisions, ∆Ėie, is

∆Ėie =
3ρeνei

Mi
kB (Te − Ti) , (5)

where ρe is the electron mass density, and νei is the
average collision frequency between electrons and
ions.

The internal energy of ions can be obtained by
subtracting electron internal energy from the total in-
ternal energy.

2.1 Transport Phenomena

The transport phenomena included in our model are
electron and ion thermal conduction, classical elec-
trical resistivity with Hall effect, and anomalous
transport[14] due to momentum exchange between
particles in the plasma and waves induced by current-
driven microinstabilities in a collisional and finite-
β magnetized plasma[15]. Details of incorporating
these phenomena into this code are given in ref.[12].

2.2 Equation of State

For argon, the ideal gas model is not accurate for
temperatures greater than 0.5 eV. As energy is de-
posited into internal modes, the ratio of specific
heats deviates significantly from the ideal value of
5/3. Moreover, the relationship between pressure
and temperature is nonlinear. Our equation-of-state
model uses the partition function to compute the ratio
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of specific heats, and the relationship between pres-
sure and temperature. Details of this are provided in
ref.[12].

2.3 Ionization

The plasma in a self-field, quasi-steady MPDT is
generally in a state of ionizational nonequilibrium
[16]. Though some numerical simulations (such
as refs.[17]) have used finite-rate ionization models,
they do not include higher levels of ionization that
have been observed experimentally [18, 19]. In the
present work, like in refs.[20, 21], we use a multi-
level equilibrium ionization model. The details of
the ionization model, including the energy levels, are
provided in ref.[12].

3 Finite Volume Formulation

The MHD equations in eqn.(1) are conservation re-
lations for mass density, momentum density, mag-
netic flux, and energy density. However, in reality,
the conserved quantities are, mass, momentum, mag-
netic flux, and energy. Therefore, the first, second,
and the fourth equations in the set eqn.(1) need to be
multiplied by the volume of the cell.
Equations of the form

∂U

∂t
=
∂f

∂r
+
∂g

∂z
+ S, (6)

upon multiplication by the cell volume (2πrdrdz)
take the form,

∂ (rU)
∂t

=
∂ (rf)
∂r

+
∂ (rg)
∂z

+ (S − f) . (7)

The expanded form of these equations is given in the
appendix A.

3.1 Integral Form

Equations of the type eqn.(7) can be written in their
integral form. Every one of these conservation laws
(for mass, radial momentum, axial momentum, mag-
netic flux, and total energy) can be individually writ-

ten as:∫∫
A

[
∂U

∂t
=

(
∂Fr

∂r
+
∂Fz

∂z

)
+ Source

]
dA . (8)

The first term on the R.H.S. can be expressed as the
curl of a vector, F̂ = [Fz,−Fr], because,

∇× F̂|θ =
∂F̂r

∂z
− ∂F̂z

∂r
=
∂Fr

∂r
+
∂Fz

∂z
. (9)

Using Stokes’ theorem, this curl over the cell area
can be expressed as the line integral around the edges
of the cell,
∫∫
A

∂U

∂t
dA =

∮
F̂ · dl +

∫∫
A

(Source) dA . (10)

Since this equation is true irrespective of the shape of
the control volume, the fluxes, Fr and Fz, can be writ-
ten in the (r,z) coordinate system, as in the appendix
A, regardless of the shape of the cell. This is a fun-
damental advantage of the finite-volume formulation
over the finite-difference formulation, in addition to
maintaining conservation.

4 Numerical Solution

The techniques for the numerical solution of eqns.(1-
4) are described in ref.[10], and in this section we
will only discuss how they are used to obtain solution
for the flowfield in a self-field MPDT.

4.1 Spatial Discretization

Mathematically, the governing equations (eqns.(1-
4)) are mixed hyperbolic and parabolic partial differ-
ential equations. The discretization scheme for the
hyperbolic (convective) part of the problem involves
using the characteristics to estimate fluxes through
the cell surfaces, and is described in [10].

Unlike convective fluxes, dissipative fluxes de-
pend upon gradients, and we need to compute deriva-
tives across the surfaces for estimating jr, jz , ∂T/∂r,
and ∂T/∂z. In an orthogonal grid system, we can es-
timate gradients by simply differencing the values in
adjacent cells. However, in a non-orthogonal grid,
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the adjacent cells/points are not along the lines of
constant “r”, or “z”. So, here we have to estimate
gradients in a different manner. This involves using
the Stokes’ theorem, and this method is described in
appendix B.

4.2 Boundary Conditions

The method used for estimation of the convective
and dissipative terms at various boundaries has re-
mained the same as in ref.[12], where the details are
found. Here, we will focus on the boundary between
the plasma and the insulator.

Since all the enclosed current is downstream
of the insulator (backplate, plus chamber inner in
Fig.1), the stream function, ψ = rBθ = µoJtot/2π
is a constant at any given time at this boundary, and
it depends only on the total current.

The electric field along the backplate, required
for Faraday’s law, is then

Er(r, 0) = Er(r,∆z) + ∆z
(

1
r

∂ψ

∂t
− ∂Ez

∂r

)
,

(11)
and the electric field along the chamber inner wall is

Ez(Rch, z) = Ez(Rch−∆r, z)+∆r
(

1
r

∂ψ

∂t
+
∂Er

∂z

)
.

(12)

At the inlet, a specified mass flow rate of propel-
lant enters at a specified temperature at sonic con-
ditions. In reality, the propellant is injected as neu-
tral gas at room temperature, and it gets almost fully
ionized within a few millimeters from the inlet[19].
However, it is believed[22] that this ionization pro-
cess cannot be modeled by fluid theory. Therefore,
in this model, the inlet temperature is chosen to be
high enough such that the propellant is sufficiently
ionized near the backplate.

5 MPDT Simulation Results

Figure 1: Princeton full-scale benchmark thruster,
where rc= 0.95 cm, ra= 5.1 cm, rao=10.2 cm, rch=
6.4 cm, ta= 0.95 cm, and lc= 10.0 cm.

The geometry chosen for this simulation was the
Princeton full-scale benchmark thruster[9]. It was
chosen because of extensive experimental work that
has been done on it[1, 5]. The relevant dimensions
are given in Fig.1. In this paper, we only consider
a propellant mass flow rate of 6.0 g/s of argon, and
a total current of 16.0 kA, which corresponds to the
nominal operating condition of ξ=1.0[23].

Note that in the simulation the thruster contains
four mass injection ports - one at the base of the cath-
ode (as in Fig.1) at a 45o angle, and three others r =
2cm, 3 cm, and 4 cm through the backplate directed
normally into the chamber. The version in Fig.1 has
only one port through the backplate. For simplicity,
the rounded corners of the anode lip and the cathode
were truncated in the simulation.

The code described in this article solves the gov-
erning equations in a time-dependent manner. There-
fore, in order to verify convergence, we monitored
the time-dependent change (see eqn.(1)). The crite-
ria we used was ∆t(∇ · F ) ≤ 10−7 (see Fig.2), and
it was reached roughly at 300µs. The sudden change
around t=50µs is because we changed the dJ/dt value
at that point.
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Figure 2: Convergence history: change in magnetic
field vs. time.

We now present some of the results of the sim-
ulation. Unless explicitly stated otherwise, compar-
isons are made with measurements on a FSBT at J =
16 kA, and argon ṁ = 6.0 g/s.

5.1 Density

The electron number density contours within the
chamber are shown in Fig.11, where we note that, in-
side the chamber, ne increases towards the cathode.
This is attributed to the action of the radial pump-
ing force, jzBθ, which pushes the plasma towards
the cathode. This trend has been observed in exper-
iments and in previous simulations[17]. The density
in the thruster chamber ranges from 
 2.0×1020m−3

near the chamber wall to 
 5.0 × 1021m−3 near the
cathode. Outside the chamber, on the centerline near
the cathode, one also finds a region of high density
(
 5.0 × 1021m−3), which is often termed as “cath-
ode jet”[24]. In this simulation, the highest density,

 2.0 × 1022m−3, is found near the injection port
on the base of the cathode. While there exist no de-
tailed measurements of electron density in the FSBT,
Turchi[24] measured them for a similar geometry
(dubbed as “Configuration A”) with a shorter cath-
ode. As reported in ref.[24], electron number den-
sities near the cathode in the chamber, and on the

centerline in front of the cathode are indeed around

 5.0 × 1021m−3 and are in accordance with the re-
sults of the simulation.

5.2 Velocities

The contours of axial velocity are shown in Fig.12.
The range of values (8.0 to 13.0 km/s) is in the
range of measured values of local velocities reported
in ref.[25] for these conditions. On the centerline,
Boyle[26] measured axial velocity increasing from
10 km/s to 13 km/s, with distance from 2 cm to 15
cm in front of the cathode. It can be seen that this
simulation also predicts a similar pattern and values.

5.3 Current

The calculated contours of enclosed current are
shown in Fig.13. Unfortunately, the closest con-
dition for which current contours are available for
the FSBT is for J = 23.5 kA[3], and those contours
are shown in Fig.4. In Fig.3, the calculated values
are scaled to facilitate comparison to the measure-
ment. Within the chamber, the 90%, 70% and the
50% contours are in agreement with the measure-
ment. Outside the chamber, however, the convection
of the current lines in the simulation is less than the
measurement. This discrepancy could be due to the
relatively higher magnetic Reynolds’ number of the
experimental case, or due to limitations of the con-
tinuum assumption (inherent in eqn.(1)) in the low
collisionality region of the plume.

Figure 3: Calculated current contours for J = 16 kA.
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Figure 4: Measured current contours for J = 23.5
kA.

5.4 Temperatures

The calculated values of electron temperature are
shown in Fig.14. In the bulk of the chamber, Te
ranges from 1.0 to 1.75 eV, which is in the range of
measurements in ref.[27]. The rear top end of the
chamber has lowest values (0.75 eV), because it has
the lowest Ohmic-heating rate. The highest values of

 3.5 eV are found on the inner and outer faces of
the anode. This can be explained by the large Ohmic
heating caused by the high current density observed
in that region. Diamant[8] measured temperatures
around 2.5 eV near the anode, those measurements
are in general agreement with the simulation, in that
region. Temperatures of 
 3.0 eV are seen in the
simulation in front of the cathode on the centerline.

5.5 Thrust and Voltage

By definition, the thrust is computed using the fol-
lowing relation,

T =
∫
A

uz (ρu · dA) . (13)

Using eqn.(13), the code predicts a thrust of 51.2
N. For the FSBT at this operating condition (with a
slightly different mass injection), the measured value
of thrust was 50.4 N [9].

This simulation predicts a plasma voltage drop of

36 V, as shown in Fig.5. Because the simulation did
not include fall voltages, we cannot compare to the
measured total voltage drop[9] directly.

Figure 5: Calculated potential contours.

6 Insight into MPDT Physical Pro-
cesses

As evident from the preceding section, this simula-
tion has predicted many of the salient features of the
flowfield, and the results are in general agreement
with measurements for many quantities. Therefore,
we can now use this simulation to delve into some of
the physical mechanisms of the MPDT.

6.1 Effect of the Anode Lip

The velocity streamlines in the FSBT are shown in
Fig.6. The expansion of the streamlines past the an-
ode lip, and hence plume divergence, is evident from
the figure. It is clear that the anode lip is an obstruc-
tion to the streamlines, and its stagnation effect can
be seen in the increased density (Fig.11) and temper-
ature (Fig.14) in that region.
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Figure 6: Calculated velocity streamlines.

In order to ascertain the effect of the anode lip
on thrust, we need to look at the mass flux, and the
momentum flux in this thruster.

Cory[28] measured the mass flux at this operat-
ing condition for the “Configuration A” thruster. The
results of this simulation are compared to those mea-
surements in Fig.7. Generally, the agreement be-
tween the simulation and the data is very good. Ex-
cept for the point on the centerline, the agreement is
within 20%. Near the centerline, the data predicts a
higher mass flux than the simulation. This may be
attributed to the difference in the cathode lengths in
the experiment and the simulation.

Figure 7: Mass flux at a distance of 12.5 cm from the
anode plane. No error bars on the measurements were
provided in the original work[28].

The flux of momentum was also calculated, and

is shown in Fig.8.

Figure 8: Calculated momentum flux at the cathode
tip plane.

As seen in Fig.7, the flux of mass near the an-
ode is relatively small. More importantly, as seen
in Fig.8, the flux of momentum in the anode region
is small compared to the cathode region. Due to a
combination of the pumping force (jzBθ) pushing
the plasma towards the cathode, and the 1/r2 vari-
ation of the axial Lorentz force density (jrBθ), the
high speed jet is confined to the cathode region of
the thruster, and the anode region does not play a
significant role in the momentum flux. Therefore,
the anode lip is not a significant impediment to the
production of thrust.

6.2 Ionization Levels

The effective ionization fraction is shown in Fig.15.
It is important to bear in mind that this simula-
tion uses an equilibrium ionization model, and hence
Z = Z(n, Te), and therefore an understanding of
Te distribution is important to understand the dis-
tribution of ionization levels. In the rear top end
of the chamber, where the current density is low
(
 5.0 × 104A/m2), we find that the ionization level
is low (Z 
 0.25), as expected. In the bulk of the
chamber, Z 
 1.0. Near the inner face of the anode
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and the anode lip, where the current density is high,
the effective ionization level ranges from 1.5 to 2.5.
In the outer edge of the anode, current density is also
very high, the ionization level is 
 3.0. The presence
of these higher states of ionization (Ar-III and Ar-IV)
has been shown by Bruckner[18] in the anode plane
of the “Configuration A” thruster, for these operating
conditions (argon at 6.0 g/s, J=16.0 kA).

6.3 Cathode Barrel

In many experimental observations[1, 29] at nomi-
nal operating conditions, the luminous structure of
the discharge was observed to have some invariant
features, such as a “cathode jet”, a luminous barrel
which is larger at the base of the cathode and con-
stricts towards the middle and expands again at the
cathode tip. All of these features can be seen in
Fig.16. On the left panel of Fig.16 are the calcu-
lated values electron density, which can be qualita-
tively related to the light emission from the discharge
shown on the right panel.

6.4 Current on the Cathode

The current distribution on the cathode is shown in
Fig.9. Near the inlet, the surface current density
has a value of 
 550A/cm2, and quickly decreases
to 
 200A/cm2 along most of the cathode, only to
rise again near its tip. This is compared with the
measurements by Boyle[26] who measured similar
values along the cathode, in Fig.9. However, while
ref.[26] reports that the current density at the cathode
tip is in excess of 1000A/cm2, the simulation only
predicts 
 550A/cm2. This difference could be be-
cause the cathode in ref.[26] was shorter than that
of the FSBT, and had a conical tip, as opposed to
the hemispherical tip of the FSBT. As seen in Fig.9,
the longer cathode (simulation) has a greater surface
area, and hence lesser current density. This may play
a role in reducing erosion, as well as in decreasing
Ohmic dissipation (to be discussed below).

Figure 9: Surface current density on the cathode. Er-
ror bars on the measurement are not available in the
original source[26].

6.5 Thrust Composition

As mentioned earlier, the simulation predicted a
thrust of 51.2 N, compared to the measured value of
50.4 N. We can compute the electromagnetic contri-
bution to the thrust to be

TEM =
∫

(j × B)dV . (14)

For the case under consideration, the electromagnetic
component was 38.0 N, which is 75% of the total
thrust. This implies that at this regime of operation
(argon at 6.0 g/s, J = 16.0 kA), the FSBT is predom-
inantly an electromagnetic accelerator.

6.6 Energy Deposition

The total power deposited into the MPDT plasma can
be split into kinetic power and dissipation,
∫

j · EdV =
∫

(j × B) · udV +
∫
ηj2dV . (15)

The second term on the right hand side is often
termed the “dissipation integral”[30, 31], and under-
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standing and quantifying it is essential to improving
the efficiency of the MPDT. We have calculated all
the three terms in eqn.(15) for the FSBT, and the re-
sults are shown in Fig.10.

In a coaxial configuration, the current density is
inversely proportional to the radius, and therefore
the power deposition, and the dissipation, are large
near the cathode. This is evident in Fig.10, where
almost 45% of the dissipation occurs in the “inner
flow” region[26] which is restricted to 1 cm around
the cathode. As with thrust production (cf. §6.1), this
near cathode region is an important one in energetics
as well. For consistency, one can verify that the sum
of all the input power in all the zones in Fig.10 add
up to VJ (571 kW).

Figure 10: Power expenditure in various regions
(kW). The values of each of the terms in eqn.(15) are
shown in various regions.

It is worth noting that the shell near the cathode
is the only region where the kinetic power exceeds
the Ohmic heating, which is largely unrecovered.

7 Concluding Remarks

We have described the reformulation of our MHD
code that was developed for the simulation of propul-
sive plasma flows. We presented the physical mod-
els: the two-temperature MHD equations with suit-
able transport properties, ionization and equation
of state models. We also discussed the techniques
for obtaining a numerical solution of the governing
equations.

The code was used to simulate plasma flows in
the Princeton full-scale benchmark thruster. The cal-

culated contours of density, ionization levels, ve-
locity, mass flux patterns, enclosed current con-
tours, cathode surface current density, and temper-
ature compared well with measurements at similar
operating conditions. The calculated value of thrust
matched with the measured value within 2%.

The code was then used to provide insight into
some physical mechanisms. Among the important
observations are:

• Despite being a cause of stagnation in a part of
the flow, the anode lip does not have a serious
adverse effect on the thrust.

• The FSBT is predominantly an electromag-
netic accelerator at its nominal operating con-
dition (J=16 kA, ṁ = 6.0 g/s of argon).

• The “inner flow” region 1 cm around the cath-
ode plays an important role in the energetics.

Currently, this code is being utilized to simulate
the operation of the FSBT at other regimes of opera-
tion. Convergence problems at higher current levels
are being addressed. The next goal of this effort is to
simulate the performance of other thrusters, such as
the LiLFA, for which there is a dearth of data.
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Figure 11: Calculated electron number density (m−3)

Figure 12: Calculated axial velocity (m/s)
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Figure 13: Calculated enclosed current contours (1000 A between each)

Figure 14: Calculated electron temperature (eV)
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Figure 15: Calculated effective ionization fraction

Figure 16: Left: Calculated electron number density (m−3); Right: Photographs of light emission from FSBT
discharge with transparent walls[29]
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A Governing Equations

So, the finite volume formulation of eqn.(1) is,

∂
∂t




rρ
rρu
rρw
Bθ

rE


 = ∂

∂r




−rρu
−r

(
ρu2 + p+ B2

2µo

)
−rρuw
E′

z − uBθ

−r
(
u

(
E + p+ B2

2µo

)
− qr

)




+ ∂
∂z




−rρw
−rρuw

−r
(
ρw2 + p+ B2

2µo

)
− (E′

r + wBθ)
−r

(
w

(
E + p+ B2

2µo

)
− qz

)




+




0
p−B2/(2µo)

0
0
0


 .

(16)

B Derivatives in Non-orthogonal Coordinates

J,K

J-1/2

J+1/2

K+1/2K-1/2

dlL

dlB

dlR

dlT

J,K+1

J+1,K

1

23

4

5 6

78

Figure 17: A general non-orthogonal control volume.

Recall that, if some vector B̂ = [0,−rB], then,

∇× B̂ =
∂(rB)
∂r

. (17)

Using Stokes’ theorem, this becomes,

jz =
1
µo

1
r

∂(rB)
∂r

=
1
µo

1
r

1
A[J + 1

2 ][K]

∮
[0,−rB] · dl . (18)

Similarly, if B̂ = [B, 0], then,

∇× B̂ =
∂B

∂z
, (19)



which becomes,

jr = − 1
µo

∂B

∂z
= − 1

µo

1
A[J ][K + 1

2 ]

∮
[B, 0] · dl . (20)

Here, A[J ][K + 1
2 ] and A[J + 1

2 ][K] refer to the areas of the dotted cells in Fig.17 to the right and top,
respectively. They can be estimated a simple averages of the control volumes.

The contour integrals in eqns.(20,18) require estimation of B along dl, which is the dotted line in Fig.17.
First, the line element vectors, dl, themselves have to be computed from the coordinates of the vertices and
the center of the cell. Then, B along this line element can be obtained by averaging from the nearby cell
centers.
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