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Comparison of Simulated Magnetoplasmadynamic Thruster
Flowfields to Experimental Measurements

K. Sankaran,∗ E. Y. Choueiri,† and S. C. Jardin‡

Princeton University, Princeton, New Jersey 08544

The flowfield of a magnetoplasmadynamic thruster was simulated numerically using an advanced code specif-
ically developed for this purpose, and the results were compared to experimental measurements, to validate the
code and obtain insight into underlying physical processes. The thruster chosen was the full-scale benchmark
thruster because it has been the subject of many experimental studies. The parallelized axisymmetric code fea-
tured detailed physical models and a finite volume formulation that allowed for nonorthogonal grids. Flowfield
properties, such as electron density, velocity, current density, electron temperature, ionization fraction, and mass
and momentum flux, as well as thrust, compared favorably with existing data. The simulation provided insight
into some aspects of thruster operation, such as the weak role of the anode geometry in affecting the thrust, the
predominantly electromagnetic nature of the thrust at nominal operating conditions, and the importance of the
near-cathode region in energy dissipation. The simulated structure of the flow was found to embody a number of
photographically recorded features of the actual discharge.

Nomenclature
B = magnetic induction¯̄BM = Maxwell stress tensor
E = electric field strength
E ′ = electric field seen by the plasma
E = energy density of the plasma
e = charge of an electron
h = Planck’s constant
g = statistical weight of an energy level
J = current
j = current per unit area
k = coefficient thermal conduction
kB = Boltzmann’s constant
m = mass of a particle
n = number density of a species
p = pressure
Q = collision cross section; partition function
q = energy flux
T = temperature; thrust
u = fluid velocity
Z = effective ionization level

ne

/∑
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ε = electronic energy level
ε0 = permittivity of free space
η = resistivity
µ0 = permeability of free space
ν = collision frequency
ξ = dimensionless current
ρ = mass density
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Subscripts

EM = electromagnetic
e = electrons
ex = exhaust
h = heavy species, Ar I, Ar II, Ar III, Ar IV
i = ions
w = wall
ψ = stream function, r Bθ

I. Introduction

T HE Princeton full-scale benchmark thruster (FSBT) is a mag-
netoplasmadynamic thruster (MPDT) that has been the subject

of many experimental investigations1−9 over the past three decades.
Yet, there has not been a detailed numerical simulation of this de-
vice. Now, with the improvements in numerical methods10,11 and
computing capability,12 it is worthwhile to revisit this device, by
comparing experimental measurements to results from a recently
developed code.12 Another goal of this comparison is to validate
this code for future use with thrusters for which experimental data
are not yet widely available, such as the lithium Lorentz force ac-
celerator (LiLFA).13

The underlying numerical schemes of this code are based on
the principles of conservation formulation, characteristics splitting,
and flux-limited antidiffusion to solve the governing equations. This
code was introduced by the authors in Ref. 14 and is described in
detail in Ref. 10. This code also contains models for various classical
and anomalous transport phenomena and a real equation of state,
for a realistic description of the MPDT plasma. The use of this
code to simulate the flowfield in a constant-area channel MPDT15

is described in Ref. 10.
In Sec. II, we describe the governing equations and the physical

models used in this simulation. Then, in Sec. III, we describe how
these equations were formulated to be solved in a nonorthogonal
coordinate system in a conservative fashion. In Sec. IV, we discuss
the discretization method and the boundary conditions imposed on
the solver to calculate the flowfield in self-field MPDT. In Sec. V,
we present the results from the simulation of plasma flows in the
FSBT and compare the results to experimental measurements. In
Sec. VI, we use these aforementioned results to investigate some
underlying physical processes in the FSBT.

II. Physical Model
The governing equations for a MHD flow problem are the con-

servation relations for mass, momentum, magnetic flux, and energy.
129
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The conservation relations for mass density, momentum density,
magnetic flux, and energy density can be written in the form (cf.,
Ref. 10)

∂
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

ρ

ρu

B

E


 + ∇ ·


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ρuu + ¯̄p − ¯̄BM

uB − Bu

(E + p)u − ¯̄BM · u


 = D (1)

The right-hand side (RHS) of Eq. (1), D, contains the dissipative
effects that are physical in nature, and they, too, are written as di-
vergence of fluxes, as seen in Appendix A.

In the momentum equation, ¯̄BM = (1/µ0)[ BB − (B2/2)I ] is the
magnetic part of the Maxwell stress tensor, and it satisfies the
relation

∇ · ¯̄BM = j × B (2)

In Faraday’s law, the contribution of back emf to the change in
magnetic field is written as a divergence of a flux,

−∇ × (u × B) = ∇ · (uB − Bu) (3)

The energy equation is written in terms of the energy density
(energy per unit volume) E , which includes the internal energy,
kinetic energy, and the energy in the magnetic field. The dissipative
flux of energy, ∇ · q, contains the ohmic heating (written in terms
of divergence of the Poynting flux) and thermal conduction,

∇ · q = ∇ · [(B × E′)/µ0 + ¯̄k · ∇T ]

In addition to the total energy equation, we needed to account for
the disparity between electron and ion temperatures. The conserva-
tion relations for the internal energy density of electrons Ee can be
written as

∂Ee

∂t
+ ∇ · [Eeu] + pe∇ · u = η j2 − 	Ėie + ∇ · (ke∇Te) (4)

In expression (4), η j2 is the ohmic heating term. The rate of
exchange of energy per unit volume between the electrons and the
ions, through collisions 	Ėie is

	Ėie = 3ρeνei

Mi
kB(Te − Ti ) (5)

where ρe is the electron mass density and νei is the average collision
frequency between electrons and ions.

The internal energy of ions can be obtained by subtracting electron
internal energy from the total internal energy.

A. Transport Phenomena
The transport phenomena included in our model are electron and

ion thermal conduction, classical electrical resistivity with Hall ef-
fect, and anomalous transport (see Ref. 16).

Our method for the calculation of classical transport coefficients
relies on momentum transfer during elastic collisions. The energy-
weighted average of the momentum transfer collision frequency
between the electrons and species s is given by (cf., Refs. 17 and
18)

νes = ns Qes

√
8kB Te/πme (6)

If the species in consideration is an ion of charge q, then

Qeq = π

4

(
Zq e2

4πε0kB Te

)2

ln

[
1 + 144π2(ε0kB Te)

3

nee6 Z 2(Z + 1)

]
(7)

The electron–neutral collision cross section for argon is Qe0 � 4.0 ×
10−20 m2, and the ion–neutral collision cross section is Qi0 � 1.4 ×
10−18 m2. The ion–ion collision frequency is estimated by17

Qii = [
(5.845 × 10−10)

/
T 2

h

]
ln 1.239 × 107

√
T 3

h

/
ne (8)

From the mentioned relations for collision frequencies, the coef-
ficient for the electron thermal conductivity can be estimated as

ke = 3.20
k2

BneTe

me

∑
s νes

(9)

whereas that of the ions is

ki =
√

πk3
B Th

8Mi

(
ni

ni Qii + n0 Qi0

)
(10)

The electrical resistivity is defined as

η0 ≡ me

∑
s νes

nee2
(11)

and the electron Hall parameter is

�e = ωc,e∑
s νes

= eB/me∑
s νes

(12)

The anomalous transport model takes into account the enhanced
transport due to momentum exchange between particles in the
plasma and waves induced by current-driven microinstabilities in
a collisional and finite-β magnetized plasma.19 As a result, the ef-
fective resistivity of the plasma can be expressed as

ηeff = me

(
νecl + νean

)
e2ne

(13)

Details for calculating νean are given in Ref. 16, and Ref. 12, the
details of how they are incorporated into this code are given.

B. Equation of State
For argon, the ideal gas model is not accurate for temperatures

greater than 0.5 eV. The relationship between pressure and temper-
ature is nonlinear and has to be computed using the relation

p = nkB T
∂ ln Q

∂V
(14)

and is shown in Fig. 1. The partition function Q was obtained from
Ref. 20. Because energy is deposited into internal modes, the ratio
of specific heats deviates significantly from the ideal value of 5

3 . In
our model, the ratio of specific heats, shown in Fig. 2, was computed
from the partition function obtained from Ref. 2.

C. Ionization
The plasma in a self-field, quasi-steady MPDT is generally in

a state of ionizational nonequilibrium.21 Although some numerical
simulations (such as in Ref. 22) have used finite-rate ionization

Fig. 1 Deviation from ideal-gas behavior for argon (calculated from
data in Ref. 20).
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Fig. 2 Variation of the ratio of specific heats for argon (calculated from
data in Ref. 20).

models, they do not include higher levels of ionization that have
been observed experimentally.23,24 In the present work, as in Refs. 25
and 26, we use a multilevel equilibrium ionization model, where the
densities of electrons, ne, ions, ni , and neutrals, n0, are related by
the Saha equation,

ni ne

ni − 1
= 2(2πmekB Te)

3
2

h3

∑
l gi

l exp
(−εi

l

/
kB Te

)
∑

l gi − 1
l exp

( − εi − 1
l

/
kB Te

) (15)

in which εi
l is the lth energy level of the species of ionization level i ,

and gi
l is the corresponding statistical weight. The relevant energy

levels of argon atom and its ions, and their statistical weights were
obtained from Refs. 27 and 28.

III. Finite Volume Formulation
Equation (1) describes conservation relations for mass density,

momentum density, magnetic flux, and energy density. However,
in reality, the conserved quantities are mass, momentum, magnetic
flux, and energy. Therefore, the first, second, and the fourth equa-
tions in the set Eq. (1) need to be multiplied by the volume of the
cell.

Equations of the form

∂U

∂t
= ∂ f

∂r
+ ∂g

∂z
+ S (16)

on multiplication by the cell volume (2πr dr dz) take the form

∂(rU )

∂t
= ∂(r f )

∂r
+ ∂(rg)

∂z
+ (S − f ) (17)

The expanded form of these equations is given in Appendix A.
Equations such as Eq. (17) can be written in their integral form.

Every one of these conservation laws (for mass, radial momentum,
axial momentum, magnetic flux, and total energy) can be individu-
ally written as

∫
A

∫ [
∂U

∂t
=

(
∂ Fr

∂r
+ ∂ Fz

∂z

)
+ source

]
dA (18)

The first term on the RHS can be expressed as the curl of a vector
F̂ = [Fz, −Fr ] because

∇ × F̂|θ = ∂ F̂r

∂z
− ∂ F̂z

∂r
= ∂ Fr

∂r
+ ∂ Fz

∂z
(19)

Using the Stokes theorem, this curl over the cell area can be ex-
pressed as the line integral around the edges of the cell,∫

A

∫
∂U

∂t
dA =

∮
F̂ · dl +

∫
A

∫
(source) dA (20)

Because this equation is true irrespective of the shape of the control
volume, the fluxes Fr and Fz, can be written in the (r, z) coordi-
nate system, as in Appendix A, regardless of the shape of the cell.
This is a fundamental advantage of the finite volume formulation
over the finite difference formulation, in addition to maintaining
conservation.

IV. Numerical Solution
The techniques for the numerical solution of Eqs. (1–4) are de-

scribed in Ref. 10, and in this section we will only discuss how they
are used to obtain solution for the flowfield in a self-field MPDT.

A. Spatial Discretization
Mathematically, the governing equations (1–4) are mixed hyper-

bolic and parabolic partial differential equations. The discretization
scheme for the hyperbolic (convective) part of the problem involves
using the characteristics to estimate fluxes through the cell surfaces
and is described in Ref. 10.

Unlike convective fluxes, dissipative fluxes depend on gradients,
and we need to compute derivatives across the surfaces for esti-
mating jr , jz, ∂T/∂r , and ∂T/∂z. In an orthogonal grid system, we
can estimate gradients by simply differencing the values in adjacent
cells. However, in a nonorthogonal grid, the adjacent cells/points
are not along the lines of constant r or z. Therefore, here we have
to estimate gradients in a different manner. This involves using the
Stokes theorem, and this method is described in Appendix B.

B. Boundary Conditions
In this section, we will discuss the estimation of the convective

and dissipative terms at various boundaries.

1. Flow Properties
Freestream. The computational domain is taken to be large

enough (four anode radii downstream of anode tip) so that there are
no normal gradients in any of the flow properties at the freestream
boundaries.

Solid walls. The governing equations require the value of ther-
mal conduction between the wall and the plasma to be specified.
This can either be given explicitly (as in the case of adiabatic walls,
such as the insulated inner side of the chamber, where the thermal
conduction is zero), or can be computed by fixing the temperature of
the wall. In this simulation, the wall temperature is set to 2500 K at
metallic boundaries, consistent with experimental data (cf., Ref. 29),
as well as other simulations (cf., Ref. 26).

Centerline. At the axis of symmetry, there are no radial convec-
tive fluxes. Moreover, there are no radial gradients. Therefore, there
is no thermal conduction across the centerline.

Inlet. At the inlet, a specified mass flow rate of the propellant
enters at a specified temperature at sonic conditions. In reality, the
propellant is injected as neutral gas at room temperature, and it gets
almost fully ionized within a few millimeters from the inlet.24 Clas-
sical theory cannot explain this high rate of ionization, and it has
been proposed30 that a non-Maxwellian electron energy distribu-
tion, resulting from plasma microturbulence, is the cause for this.
Because this process cannot be modeled by fluid theory, the inlet
temperature in our simulation is chosen to be high enough (1.0 eV)
such that the propellant is sufficiently ionized. Effectively, the back-
plate of the numerical model is not the true backplate, but a region
located few millimeters downstream of it.

On this issue, our simulation distinctly differs from that of
Refs. 26 and 31. In both these simulations, the propellant is injected
at close to room temperatures, and ionization is allowed to develop
in a classical fashion. Therefore, in both Refs. 26 and 31, the plasma
is only weakly ionized through most of the thruster channel. How-
ever, experimental measurements24,32 show that the propellant is
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fully ionized upstream in the channel. Therefore, in our simulation,
the plasma is set to be fully ionized at the inlet.

2. Field Properties
Freestream. The computational domain is chosen to be large

enough such that all of the current is enclosed within the domain.
Thus, from Ampère’s law, the magnetic field at the freestream
boundaries is zero.

Solid walls. At all other boundaries, the magnetic field is com-
puted from Faraday’s law, which through Stokes theorem can be
written as ∫

A

∂B
∂t

· dA = −
∮

C

E · dl (21)

In the cell-centered scheme used in this work, Eq. (21) implies that
the evolution of the magnetic flux is specified by the contour integral
of the electric field around a cell. Therefore, the only information
required is the electric field drop along the boundaries. Because of
the no mass flux condition, the electric field is entirely resistive and
is given by

Ew = ηw jw (22)

The surface current jw is computed from Ampère’s law in the usual
manner. At conducting boundaries, all of the current entering the
discharge flows at the surface, at least in the transient case. There-
fore, even though resistivity ηw for most conductors is very small
(e.g., ηw = 5.6 × 10−8 � · m for tungsten) compared to the plasma
resistivity [typically, O(10−3 − 10−4) � · m], the surface electric
field is significant, due to the large current density in the transient
case. In a true steady state, after the magnetic field has diffused into
the conductor, the surface potential drop decreases to zero.

At insulated boundaries, the magnetic field diffuses into the wall
instantaneously. Therefore, the jump in the magnetic field, and sub-
sequently the surface current, is zero.

Centerline. As a result of symmetry, the inductive component of
the electric field is zero because there is no flow across it. However,
the resistive component is finite. This can be obtained from the value
of the magnetic field at a point close to r = 0, through a simple Taylor
series expansion (see Ref. 33),

Ez |r = 0 = E ′
z |r = 0 = η jz |r = 0 = η

4Bθ |	r/2

µ0	r
(23)

Inlet. Because all of the enclosed current is downstream of
the inlet (the backplate shown in Fig. 3), the stream function ψ =
r Bθ = µ0 Jtot/2π is a constant at any given time, inasmuch as it de-
pends only on the total current. The electric field along the backplate,
required for Faraday’s law, is then

Er (r, 0) = Er (r, 	z) + 	z

(
1

r

∂ψ

∂t
− ∂ Ez

∂r

)
(24)

Fig. 3 Princeton FSBT, where rc = 0.95, ra = 5.1, ra0 = 10.2, rch = 6.4,
ta = 0.95, and lc = 10.0 cm.

Insulator. Similarly, all of the current is also downstream of the
insulator on the inner wall of the chamber (Fig. 3) where the electric
field is

Ez(Rch, z) = Ez(Rch − 	r, z) + 	r

(
1

r

∂ψ

∂t
+ ∂ Er

∂z

)
(25)

V. MPDT Simulation Results
The geometry chosen for this simulation was the Princeton

FSBT.9 It was chosen because of extensive experimental work that
has been done on it.1−9 The relevant dimensions are given in Fig. 3.
In this paper, we only consider a propellant mass flow rate of 6.0 g/s
of argon and vary the current from 12.0 to 20.0 kA (Table 1).

The dimensionless current ξ represents the discharge current nor-
malized by the critical ionization current Jci at which an equipartition
of energy (or power) between the acceleration and ionization sinks
is reached. At that condition, we can write

ṁu2
ex

/
2 = T 2/2ṁ = ṁεi/M (26)

which, along with the Maecker thrust law (see Ref. 34) T = bJ 2,
where

b = (µ0/4π)[ln (ra/rc)] (27)

is a geometrical constant, leads to the definition

ξ = J/Jci = (uci/b)
1
2 (28)

where uci ≡ √
(2εi/M) is the so-called critical ionization velocity.

A number of experimental studies35 have shown that many aspects of
MPDT performance and operation scale with ξ (or ξ 2) irrespective
of power level.

The case with a total current of 16.0 kA (at ṁ = 6.0 g/s) corre-
sponds to the nominal operating condition of ξ � 1.0 (Ref. 35) and,
therefore, will be of special interest to us.

For simplicity, the rounded corners of the anode lip and the cath-
ode were truncated in the simulation. Note that in the simulation the
thruster contains four mass injection ports: One at the base of the
cathode (as in Fig. 3) at a 45-deg angle, and three others at r = 2, 3,
and 4 cm through the backplate directed normally into the chamber.
In reality, several mass injections schemes were tested in experi-
mental studies, and the version shown in Fig. 3 has only one port
through the backplate.

The code described in this paper solves the governing equations
in a time-dependent manner. Therefore, to verify convergence, we
monitored the time-dependent change; see Eq. (1). The criterion we
used was 	t (∇ · F) ≤ 10−7 (Fig. 4), and it was reached roughly at
300 µs. The sudden change around t = 50 µs is because we changed
the dJ/dt value at that point.

We now present some of the results of the simulation. A sum-
mary of some of them are presented in Table 1. In Table 1, the first
column contains the current level (in kiloamphere), the second the

Fig. 4 Convergence history: change in magnetic field vs time.
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Table 1 FSBT simulation summary

Current, kA ξ Tcalc, N Texp, N TEM/Ttot, % Vplasma, V Pin, kW

12.0 0.82 33.3 30.8 60 28.0 336.0
16.0 1.09 51.2 50.4 75 36.0 576.0
17.5 1.19 59.3 61.5 78 49.4 864.5
20.0 1.36 77.0 82.7 80 62.4 1248.0

a)

b)

Fig. 5 Current contours for J = 20.0 kA and ṁ = 6.0 g/s: a) calculated
and b) measured (obtained from Ref. 36).

corresponding nondimensional value of the current, the third the cal-
culated value of thrust (in newton), the fourth the measured value of
thrust (in newton), the fifth the calculated ratio of electromagnetic
thrust to total thrust. The sixth column contains the calculated val-
ues of voltage drop in the plasma (in volt), and the seventh contains
the calculated value of power input to the plasma (in kilowatt).

A. Current
The calculated contours of enclosed current are shown in Fig. 5,

in comparison with experimental measurements.36 For the sake of
brevity, we only show the comparison at the most challenging of the
operating conditions listed in Table 1 (J = 20 kA). As evident from
Fig. 5, the simulation predicts the attachment locations of the 80, 60,
and the 40% contours accurately on both the cathode and the anode.
For the 20 and the 10% lines, the attachment on the cathode is also
predicted accurately. In the front face of the anode (in the plume),
however, we are unable to make a comparison because of the lack of
data at that location. In any case, the continuum assumption [inherent
in Eq. (1)] would limit the validity of the simulations in the low
collisionality region of the plume.

B. Thrust and Voltage
By definition, the thrust is computed using the following relation:

T =
∫

A

uz(ρu · dA) (29)

The calculated values of thrust are compared to measurements,9 and
the results are presented in Table 1. At the lowest current (12.0 kA,
ξ = 0.82), the code overpredicts thrust by 8%, and at the highest
current (20.0 kA, ξ = 1.36), the code underpredicts by 7%. At the
nominal operating condition (16.0 kA, ξ = 1.09), the agreement is
within 2%.

The plasma voltage drop is presented for various current lev-
els in Table 1. For the nominal operating condition (J = 16.0 kA,

Fig. 6 Calculated potential contours (in volts).

ṁ = 6.0 g/s), this simulation predicts a plasma voltage drop of
36 V, as shown in Fig. 6. Note that the simulation did not in-
clude electrode fall voltages, and therefore, we cannot compare the
calculated plasma voltage to the measured total voltage9 directly.
Measurements8 have shown repeatedly that the anode fall can be
�50 V at ξ � 1.0, and this is a major energy sink in an MPDT. Note
that the monotonic increase of voltage with current is consistent
with measurements.9

C. Density
The electron number density contours within the chamber are

shown in Fig. 7a, for the ξ = 1.09 case. Note that, inside the chamber,
ne increases toward the cathode. This is attributed to the action of
the radial pumping force, jz Bθ , which pushes the plasma toward
the cathode. This trend has been observed in experiments and in
previous simulations.22 The density in the thruster chamber ranges
from �2.0 × 1020m−3 near the chamber wall to �5.0 × 1021 m−3

near the cathode. Outside the chamber, on the centerline near the
cathode, one also finds a region of high density (�5.0 × 1021 m−3),
which is often termed the cathode jet.37 In this simulation, the highest
density, �2.0 × 1022 m−3, is found near the injection port on the base
of the cathode. Although there exist no detailed measurements of
electron density in the FSBT, Turchi and Jahn37 measured them
for a similar geometry (dubbed as configuration A) with a shorter
cathode. As reported in Ref. 37, electron number densities near the
cathode in the chamber and on the centerline in front of the cathode
are, indeed, around �5.0 × 1021 m−3 and are in accordance with the
results of the simulation.

It is well known from experimental measurements7,8 that the an-
ode region of the FSBT gets starved of charge carriers as the current
is increased. Our simulations show this trend clearly. In Figs. 7e–7g,
we show the calculated values of electron number density (per cu-
bic meter) near the anode for J = 12.0 kA (panel e), J = 16.0 kA
(panel f), and J = 20.0 kA (panel g). This starvation could play an
important role in understanding the performance-limiting onset of
instabilities in the FSBT.7,8

D. Velocities
The contours of axial velocity are shown in Fig. 7b. The range of

values (8.0–13.0 km/s) is in the range of measured values of local
velocities reported in Ref. 38 for these conditions. On the centerline,
Boyle39 measured axial velocity increasing from 10 to 13 km/s, with
distance from 2 to 15 cm in front of the cathode. It can be seen in
Fig. 8 that this simulation also predicts a similar pattern and values.

E. Temperature
The calculated values of electron temperature are shown in

Fig. 7c, for the ξ = 1.09 case. In the bulk of the chamber, Te ranges
from 1.0 to 1.75 eV, which is in the range of measurements in Ref. 40.
The rear top end of the chamber has lowest values (0.75 eV) because
it has the lowest ohmic-heating rate. The highest values of �3.5 eV
are found on the inner and outer faces of the anode. This can be
explained by the large ohmic heating caused by the high-current
density observed in that region. Diamant8 measured temperatures
around 2.5 eV near the anode at this condition, and they are in gen-
eral agreement with the simulation, in that region. Temperatures of
�3.0 eV are seen in the simulation in front of the cathode on the
centerline.
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Fig. 7 Electrons, ṁ = 6.0 g/s and J = 16.0 kA: a) calculated electron number density (per cubic meter), b) calculated axial velocity (meters per second),
c) calculated electron temperature (electron volts), and d) calculated effective ionization fraction and electron number density near anode starving
with increasing current: e) (J = 12.0 kA, f) J = 16.0 kA, and g) J = 20.0 kA.

Fig. 8 Comparison of measured39 and calculated centerline velocities
at J = 16.0 kA, ṁ = 6.0 g/s.

For the ξ = 1.36 case (J = 20 kA), the near-anode temperatures
reach 4.5–5.0 eV. Measurements by Diamant8 have shown that this
is indeed the case.

VI. Insight into MPDT Physical Processes
As evident from the preceding section, this simulation has pre-

dicted many of the salient features of the flowfield, and the results
are in general agreement with measurements for many quantities.

Fig. 9 Calculated velocity streamlines at J = 16.0 kA, ṁ = 6.0 g/s.

Therefore, we can now use this simulation to delve into some of the
physical mechanisms of the MPDT. Unless explicitly stated other-
wise, we will focus on the operation at J = 16.0 kA (at =6.0 g/s) be-
cause this corresponds to the nominal operating condition of ξ � 1.0.

A. Effect of the Anode Lip
The velocity streamlines in the FSBT are shown in Fig. 9. The

expansion of the streamlines past the anode lip, and hence plume
divergence, is evident from Fig. 9. It is clear that the anode lip is an
obstruction to the streamlines, and its stagnation effect can be seen
in the increased density (Fig. 7a) and temperature (Fig. 7c) in that
region.

To ascertain the effect of the anode lip on thrust, we need to look
at the mass flux and the momentum flux in this thruster.



SANKARAN, CHOUEIRI, AND JARDIN 135

J. S. Cory41 measured the mass flux at this operating condition
for the configuration A thruster (which has a similar geometry to
the FSBT, but with a shorter conical cathode). The results of this
simulation are compared to those measurements in Fig. 10. Gen-
erally, the agreement between the simulation and the data is very
good. Except for the point on the centerline, the agreement is within
20%. Near the centerline, the measured mass flux is higher than that
predicted by the simulation. This may be attributed to the difference
in the cathode lengths in the experiment and the simulation.

As seen in Fig. 10, the flux of mass near the anode is relatively
small. More important, as seen in Fig. 11, the flux of momentum in
the anode region is small compared to the cathode region. Because
of a combination of the pumping force ( jz Bθ ) pushing the plasma
toward the cathode and the 1/r 2 variation of the axial Lorentz force

Fig. 10 J.S. Mass flux at a distance of 12.5 cm from the anode plane; no
error bars on the measurements were provided in the original work.41

Fig. 11 Calculated momentum flux at the cathode tip plane.

a) b)

Fig. 12 Discharge structure, J = 16.0 kA and ṁ = 6.0 g/s: a) calculated electron number density and b) observed argon ion emission from the discharge
recorded photographically using an FSBT with transparent walls.42

density ( jr Bθ ), the high-speed jet is confined to the cathode region
of the thruster, and the anode region does not play a significant role
in the momentum flux. Furthermore, the results shown in Fig. 11
clearly indicate that the contribution of the anode region in the thrust
production decreases with increasing J 2/ṁ. Therefore, the anode
lip is not a significant impediment to the production of thrust at these
operating conditions.

B. Ionization Levels
The effective ionization fraction is shown in Fig. 7d. Note that

this simulation uses an equilibrium ionization model, and hence,
Z = Z(n, Te). Therefore, an understanding of Te distribution is
important to understand the distribution of ionization levels. In
the rear top end of the chamber, where the current density is
low (�5.0 × 104 A/m2), we find that the ionization level is low
(Z � 0.25), as expected. In the bulk of the chamber, Z � 1.0. Near
the inner face of the anode and the anode lip, where the current
density is high, the effective ionization level ranges from 1.5 to 2.5.
In the outer edge of the anode, current density is also very high,
the ionization level is �3.0. The presence of these higher states
of ionization (Ar III and Ar IV) has been shown by Bruckner23 in
the anode plane of the configuration A thruster, for these operating
conditions (argon at 6.0 g/s, J = 16.0 kA).

C. Discharge Structure
In many experimental observations1,42 at nominal operating con-

ditions, the luminous structure of the discharge was observed to have
some invariant features, such as a cathode jet, a luminous barrel that
is larger at the base of the cathode and constricts toward the middle
and expands again at the cathode tip. All of these features can be
seen in Fig. 12. In Fig. 12a are the calculated values of electron
density, whereas Fig. 12b shows the observed argon ion emission
from the discharge recorded photographically using an FSBT with
transparent walls.42 The similarity in the calculated and observed
structure of the discharge is evident. This is the first instance, to our
knowledge, where numerical simulations of such thruster flows are
compared directly to visual observations.

D. Current on the Cathode
The current distribution on the cathode is shown in Fig. 13. Near

the inlet, the surface current density has a value of �550 A/cm2

and quickly decreases to �200 A/cm2 along most of the cathode,
only to rise again near its tip. In Fig. 13, this is compared with the
measurements by Boyle,39 who measured similar values along the
cathode. However, whereas Boyle reports that the current density
at the cathode tip is in excess of 1000 A/cm2, the simulation only
predicts �550 A/cm2. This difference could be because the cathode
in Ref. 39 was shorter than that of the FSBT and had a conical tip, as
opposed to the hemispherical tip of the FSBT. As seen in Fig. 13, the
longer cathode (simulation) has a greater surface area and, hence,
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Fig. 13 Surface current density on the cathode; error bars on the mea-
surement not available in the original source.39

Fig. 14 Power expenditure (in kilowatt) in various regions; read as
total power = kinetic power + ohmic heating.

lesser current density. This may play a role in reducing erosion, as
well as in decreasing ohmic dissipation (to be discussed).

E. Thrust Composition
The electromagnetic contribution to the thrust TEM is

TEM =
∫

( j × B) dV (30)

The fractional contribution of the electromagnetic thrust to the total
thrust is presented in Table 1. The other component, namely, the elec-
trothermal, is substantial when ξ < 1.0. (For instance, at ξ = 0.82,
40% of thrust is electrothermal.) However, the importance of elec-
trothermal thrust decreases, and the importance of electromagnetic
thrust increases, with increasing current. From Table 1, it is clear
that at ξ ≥ 1.0 (which for argon is J = 16.0 kA for 6.0 g/s), the FSBT
is predominantly an electromagnetic accelerator.

F. Energy Deposition
The total power deposited into the MPDT plasma can be split into

kinetic power and dissipation,∫
j · E dV =

∫
( j × B) · u dV +

∫
η j2 dV (31)

The second term on the RHS is often termed the “dissipation
integral,”15 and understanding and quantifying it are essential to
improving the efficiency of the MPDT. We have calculated all of
the three terms in Eq. (31) for the FSBT, and the results are shown
in Fig. 14. Note that these calculations do not include the power
dissipated in the electrode fall, which can be a significant loss mech-
anism.

In a coaxial configuration, the current density is inversely propor-
tional to the radius, and therefore, the power deposition and the dis-
sipation are large near the cathode. This is evident in Fig. 14, where
almost 45% of the dissipation occurs in the inner flow region,39

which is restricted to 1 cm around the cathode. As with thrust pro-
duction (discussed in Sec. VI.A), this near cathode region is an
important one in energetics as well. For consistency, one can verify
that the sum of all of the input power in all of the zones in Fig. 14
add up to VJ (571 kW) (Table 1).

Note that the shell near the cathode is the only region where the
kinetic power exceeds the ohmic heating (which is largely unrecov-
ered because of the lack of a nozzle or other mechanism to convert
it into thrust).

VII. Conclusions
We have described the reformulation of our MHD code that was

developed for the simulation of propulsive plasma flows. We pre-
sented the physical models: the two-temperature MHD equations
with suitable transport properties, ionization, and equation of state
models. We also discussed the techniques for obtaining a numerical
solution of the governing equations.

The code was used to simulate plasma flows in the Princeton
FSBT. The calculated contours of density, ionization levels, ve-
locity, mass flux patterns, enclosed current contours, cathode sur-
face current density, and temperature compared well with measure-
ments at similar operating conditions. The calculated value of thrust
matched with the measured value within 2% at the nominal operat-
ing condition.

The code was then used to provide insight into some physical
mechanisms. Among the important observations are the following
three.

1) Despite being a cause of stagnation in a part of the flow, the
anode lip does not have a serious adverse effect on the thrust.

2) The FSBT is predominantly an electromagnetic accelerator
at its nominal operating condition (J = 16 kA for ṁ = 6.0 g/s of
argon).

3) The inner-flow region, 1 cm around the cathode, plays an im-
portant role in the energetics.

Currently, this code is being utilized to simulate the operation of
the FSBT at other regimes of operation. The next goal of this effort
is to simulate the performance of other thrusters, such as the LiLFA,
for which there is a dearth of data.

Appendix A: Governing Equations
The finite volume formulation of Eq. (1) is

∂
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Appendix B: Derivatives
in Nonorthogonal Coordinates

Recall that if some vector B̂ = [0, −r B], then

∇ × B̂ = ∂(r B)

∂r
(B1)
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Fig. B1 General nonorthogonal control volume.

Using Stokes theorem, this becomes

jz = 1

µ0

1

r

∂(r B)

∂r
= 1

µ0

1

r

1

A
[

J + 1
2

]
[K ]

∮
[0, −r B] · dl (B2)

Similarly, if B̂ = [B, 0], then

∇ × B̂ = ∂ B

∂z
(B3)

which becomes,

jr = − 1

µ0

∂ B

∂z
= − 1

µ0

1

A[J ]
[
K + 1

2

]
∮

[B, 0] · dl (B4)

Here, A[J ][K + 1
2 ] and A[J + 1

2 ][K ] refer to the areas of the dot-
ted cells in Fig. B1 to the right and top, respectively. They can be
estimated a simple averages of the control volumes.

The contour integrals in Eqs. (B2) and (B4) require estima-
tion of B along dl, which is the dotted line in Fig. B1. First,
the line element vectors dl have to be computed from the coor-
dinates of the vertices and the center of the cell. Then, B along
this line element can be obtained by averaging from the nearby cell
centers.
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