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Abstract

For numerical simulations to be effective tools in
plasma propulsion research, a higher order accu-
rate solver that captures MHD shocks monotoni-
cally and works reliably for strong magnetic fields
is needed. For this purpose, a characteristics based
scheme for the MHD equations, with flux limiters
to improve spatial accuracy, has been developed. In
this method, the symmetric form of the MHD equa-
tions, accounting for waves propagating in all direc-
tions, is solved. The required eigensystem of axisym-
metric MHD equations, with appropriate normaliza-
tion, is presented. This scheme was validated against
unsteady (Riemann problem) and force-free equilib-
rium (Taylor state) test cases. The capability of this
method to simulate resistive plasma flows is demon-
strated using a simple example.

1 Introduction

Plasma propulsion systems offer significantly higher
exhaust velocities than chemical propulsion systems,
and process more power and produce higher thrust
densities than space-charge limited electric propul-
sion systems, as seen in figs.(1), (2). The fundamen-
tal acceleration process involves converting electri-
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cal energy into kinetic energy of the propellant, by
the application of electromagnetic body forces. How-
ever, this simple explanation belies the complexity
of the electromagnetic acceleration processes, which
embodies interlocking aspects of compressible gasdy-
namics, ionized gas physics, electromagnetic field the-
ory, particle electrodynamics (as explained in ref.[1])
and plasma-surface interactions (ref.[2]). The result-
ing theoretical complexity makes realistic description
of the flow analytically intractable.

As shown in Fig.(3), the electrical power deposited
into the plasma can be expended into many sinks,
only two of which, directed electromagnetic kinetic
power and directed electrothermal kinetic power, are
useful for propulsion. Understanding and quantifying
these disparate processes is essential to improving the
efficiency of these devices. Since it is difficult to do so
using an empirical approach, numerical simulations
are valuable tools in plasma thruster research. More-
over, simulations can be valuable aides to expensive,
and sometimes impractical, experimental parametric
studies.

2 Plasma Thruster Simula-

tions

The importance of numerical simulation in advancing
plasma thruster research was realized early in its his-
tory. Martinache[5] and Villani[6] at Princeton made
some of the earlier attempts to use simple computer
codes to study these devices. Later, Kimural[7] et al.
at Institute of Space and Astronautical Sciences, and
Fujiwara[8] at Nagoya University, started develop-
ing single-temperature, 2-D models on simple geome-
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Figure 1: Realm of electric propulsion among other
space propulsion systems (from ref.[3]).

tries, and have continued to make improvements to
their models. Currently, the efforts of Fujiwara[9]
et al. are directed at studying critical phenomena
in magnetoplasmadynamic thrusters (MPDT), using
multi-temperature models. Caldo and Choueiri[10] at
Princeton have developed a two-temperature model
to study the effects of anomalous transport, described
in ref.[11], on MPD flows. The effort by LaPointe[12]
focused on studying the effect of geometry on per-
formance. Martinez-Sanchez[13],[14] et al. at MIT
have developed multi-temperature axisymmetric nu-
merical models to study various aspects of the flow.
Turchi[15] et al. at Ohio State use MACH2, an un-
steady MHD solver developed for high power plasma
gun simulation, to model PPTs and MPD thrusters
in many geometries. MACH3[16], the next gener-
ation of MACH2, is also used to simulate possible
3-D effects in specific situations. The most persis-
tent effort so far has been that of Sleziona[17],[18]
et al. at University of Stuttgart, who have been de-
veloping numerical models for MPD thrusters for over
a decade. Detailed models for many transport pro-
cesses and multiple levels of ionization have been in-
corporated into their governing equations, which are
solved on unstructured adaptive grids.

Despite these efforts, there remains a need for
accurate and robust numerical schemes to simulate
propulsive plasma flows. In general, three shortcom-
ings of existing models can be identified.

1. Some of the above mentioned codes exhibit nu-
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Figure 2: Realm of electromagnetic accelerators
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ref.[3]).
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Figure 3: Expenditure of input power in an electro-
magnetic accelerator (not to scale, from ref.[4]).

merical instabilities at high current levels. MPD
thrusters perform better at higher currents, and
many of the important research questions, such
as performance limiting phenomena, tend to also
occur at higher currents. Consequently, the in-
ability of a simulation to work reliably at those
situations undermines its value.

A probable explanation for these instabilities is
the failure to solve the magnetic field evolution
self-consistently with the flow. For highly re-
sistive flows, the time scale for resistive diffu-
sion of the magnetic field is orders of magnitude
smaller than that of convection. However, in
MPD flows it is common to have resistivities of
O(107*) Ohm.m. In such situations, these time
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scales are not very far off, and there is a strong
coupling between the flow and the magnetic field.
The corresponding magnetic Reynolds’ numbers
indicate that both convective and resistive diffu-
sion of the magnetic field are important. More-
over, the Alfven and fluid time scales are not
very disparate. Therefore, the full set of equa-
tions describing the flow field and magnetic field
evolution have to be computed self-consistently.

An important feature of the MHD formalism is
the multitude of waves it permits to exist. The
nonlinear coupling of these waves play an im-
portant role in determining physical phenom-
ena and in computing the solution, as explained
in ref.[19]. Solving Maxwell’s equations consis-
tently with compressible gasdynamics equations
naturally produces waves physically associated
with the problem, such as Alfvéen and magne-
tosonic waves, as eigenvalues. Such a formula-
tion is thus suitable for handling MHD waves
and shocks.

2. Some of the earlier efforts have experienced
problems conserving mass, momentum, and en-
ergy. A conservative formulation of the govern-
ing equations ensures that these quantities are
indeed conserved. Such a formulation also fa-
cilitates the application of boundary conditions,
since the fluxes are the only quantities to be spec-
ified at the boundaries. From the perspective of
numerical solution, it can be shown that con-
servative formulation is necessary for accurately
capturing discontinuities.

3. Though noted earlier (ref.[14]), none of the ex-
isting models (with the exception of recent work
ref.[18]) take advantage of the developments in
the techniques for numerical solution of Euler
and Navier-Stokes equations. These techniques
allow non-oscillatory capturing of shocks and
high accuracies in smooth regions of the flow.

For the reasons explained above, the numerical
scheme developed in this work has three salient fea-
tures:

1. Self-consistent treatment of flow and magnetic
field equations,

2. Conservative formulation of the problem,

3. Characteristics-splitting techniques satisfying
Rankine-Hugoniot relations, combined with
anti-diffusion to increase accuracy.

The solver developed based on these principles will
be described in the following sections.

3 MHD Equations

The solver developed in this work can be illustrated
with the simple flow problem of a fully ionized, quasi-
neutral plasma in thermal equilibrium under con-
ditions for which the continuum treatment is valid.
Subsequent physical models can be added as deemed
appropriate, without significant changes to the un-
derlying numerical building blocks of the solver. The
governing equations for this problem can be written
in the form:

p pa

9 | pu puu +p — By _

& B +V- uB—B_u =S. (1)
& (5—|—p)u—l§M~u

The vector of source terms, S, contains contributions
due to round-off errors in V - B, and physical dissi-
pative effects:

0 0
B 7o
Sy = (V-B) /l‘l , Sgis =V - E::e . (2)

Ho

The continuity equation does not have any source
or sink terms because this model assumes complete
ionization and no recombination, and the nuclei are
neither created nor destroyed.

The momentum equation contains the electromag-
netic body force per unit volume, j x B, written as
the divergence of the Maxwell stress tensor By, as
described in ref.[1]. Here, p is the isotropic thermo-
dynamic pressure tensor, and T, is the viscous stress
tensor.

In Faraday’s law, the convective diffusion of the
magnetic field, which is the contribution of the back
EMF, is written as a divergence of the antisymmetric
tensor uB — Bu. The resistive diffusion appears as
divergence of the resistive diffusion tensor, F,.s, as in
ref.[20],

VB = -V x {77~VXB},

Ho

where 7 is the full resistivity tensor, which includes
the dispersive Hall effect.
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The energy equation is written in terms of the en-
ergy density (energy per unit volume), £, whose com-
ponents are the internal energy, kinetic energy and
the energy in the magnetic field:

P 1 B-B

e=-L_ 4 pu.
S—1 tarut 5

Apart from the familiar convective flux of energy,

(€ + p) u, the other terms are the energy expended in
electromagnetic acceleration, By, - u, and the energy
sources/sinks due to viscous heating, Ohmic heating,
and thermal conduction,

V.-q=V- |:{Tvis'u}+{W}+{ﬂ~VT}}.

Under some physical conditions, when the mag-
netic pressure is several orders of magnitude larger
than thermodynamic pressure, the conservation form
of the energy equation may not be suitable. In these
cases, since the thermodynamic pressure, p, is cal-
culated by subtracting one large number (B2%/2u,)
from another (£), the associated errors could be large.
However, for the conditions that are of interest to
plasma propulsion, the magnetic pressure is seldom
two orders of magnitude greater than thermodynamic
pressure. Thus the conservation form of the energy
equation is numerically suitable here.

The treatment of the V - B terms are important,
since they could be a cause of numerical instabilities,
as explained in ref.[21]. The technique of Powell[22]
to absorb these terms into the Jacobian ensures that
any artificial source is convected away as,

0

5 (V- B)+ V- (uV-B)=0.

(3)
Since the physical dissipation is written in the diver-
gence form, the entire set of equations can be written
in the form,

ou
_+v'~7:conv:v']:diff7

where F,on is the convective flux tensor, and Fg;s
the dissipative flux tensor.

4 Numerical Solution
The emphasis of this paper is on the numerical tech-

niques for the hyperbolic nature of the convective
part of the problem. One reason for this is that the

goal of this work is to simulate problems in propul-
sion and therefore computing the flow is the most
important part. More importantly, it is this part of
the problem that has required improvements. The
dissipative part of the problem, which brings in a
parabolic nature to the governing equations, is rel-
atively well understood. However, as explained in
section 2, there is strong coupling between the hy-
perbolic and the parabolic part of the problem. This
coupling raises important issues in spatial as well as
temporal discretization, which will be discussed in
this section.

4.1 Mesh System

Before delving into the details of numerical solution,
a choice of mesh system has to be made. For the
cylindrical coordinate system that is most suitable
to study many plasma thrusters, the easiest choice is
to use structured grids where the finite volumes are
concentric shells. Apart from their simplicity, they
are also computationally inexpensive. However, they
impose a limitation on the variety of geometries that
can be modeled.

The use of unstructured grids to simulate plasma
thrusters has gained some popularity (ref.[17], [18]).
Though the obvious advantage is the freedom to spec-
ify an arbitrary geometry, there are some disadvan-
tages that may not be immediately apparent. Un-
structured grids are computationally expensive and
there are problems in extending higher order accu-
rate schemes to them. Since precise control of geom-
etry may not be as critical to the design of plasma
thrusters as it is to, say aircraft design, the use of
unstructured grids may not be as crucial.

A good settlement in this issue would be to use
body-fitted meshes, and maintain the use of higher
order accurate schemes. Work is underway to imple-
ment this solver on such a meshing system.

The variables to be computed, given by U in
eqn.(4), can be stored either in the vertices of the
cells, or in the center of the cells (ref.[23]). In the for-
mer, the variables will coincide with the boundary,
and they will be specified as boundary conditions. In
the latter, the faces of the cells will be aligned with
the walls, and the fluxes of these variables will be
specified as boundary conditions. While solving the
conservative formulation, it is preferable to choose
the cell-centered scheme since specifying the fluxes is
more compatible with the governing equations.
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4.2 Spatial Discretization

Discretization of a mixed set of equations has to be
done prudently. Simple explicit central differencing
schemes are well suited for parabolic problems, but
ill suited for hyperbolic problems. Conversely, simple
explicit backward differencing schemes are well suited
for hyperbolic problems, but ill suited for parabolic
problems. The discretization method used for both
these cases will be addressed.

The numerical solution of the set of hyperbolic
equations is based on techniques that are extensively
used in computational fluid dynamics. The principles
underlying the design of non-oscillatory discretization
schemes for compressible flows have been well estab-
lished over the past decade. There are two important
issues in the design of discretization schemes:

e Estimating the numerical flux through cell
boundaries, and accounting for waves propagat-
ing at different speeds, and possibly in different
directions,

e Obtaining non-oscillatory solutions and captur-
ing discontinuities with sufficient accuracy.

The numerical scheme used in this work is derived
from research based on the pioneering work of Go-
dunov [24], [25]. The characteristics-splitting tech-
nique, which will be described later, was first devel-
oped (ref.[26], [27]) to solve problems in compressible
fluid dynamics, and has been proven to work reliably
in the solution of Navier-Stokes equations.

Analyzing stability and convergence of a nonlinear
set of equations is a nontrivial task. The most pop-
ular check used is the TVD principle. A practical
limitation of the TVD condition is that its exten-
sion to multidimensional problems does not provide
a satisfactory measure of oscillations. The concept
of local extremum diminishing (LED) schemes, de-
veloped by Jameson[28], can be extended to multiple
dimensions, and ensures that there are no unbounded
local oscillations. It has been shown (ref.[28]) that
TVD is in fact a 1-D special case of the LED frame-
work. These schemes can be combined with flux lim-
ited anti-diffusion to provide higher order accuracy
in smooth regions of the flow. These concepts are
explained in the ensuing section.

Numerical methods for parabolic problems are rel-
atively commonplace. The equations dictate that the
numerical scheme should be second-order accurate
in space. In the framework used here, this implies
that the first derivatives of variables are to be known
across the cell faces. A good way to achieve this has

been adapted from an earlier work (ref.[23]), and is
illustrated in Fig.(4). The gradient across a cell face
is an algebraic average of the value of the gradient at
the cell vertex. The vertex value is calculated using
discrete Stokes theorem in the shaded area. The net
diffusive flux is is estimated from gradients across the
adjacent faces.

Figure 4: Discretization for diffusion equations

4.3 Temporal Discretization

Unlike in fluid mechanics, the equations of MHD al-
low many different types of waves to exist. Even
though physically the flow velocity is the sought
quantity of most interest to propulsion, numerically
the velocity of the fastest wave is what determines the
time-step constraints. In plasmas of propulsion inter-
est, the fluid velocity is O(10*) m/s . For a quasineu-
tral plasma with charge density of O(10?!)/m? and
thermodynamic pressures of O(107!) Torr and mag-
netic pressure of O(10') Torr, the fast magnetosonic
wave speed is typically of the same order of mag-
nitude as the flow velocity. This indicates that an
explicit time marching scheme is suitable. From the
CFL criterion, the time step for such a problem would
be O(107% —1079) s.

A multi-stage scheme can be chosen to march for-
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ward in time. Writing eqn.(1) as,

Y ru=o,

7 ()

where F (U) represents the sum of all the fluxes, the
multi-stage scheme can be written as:

Ul  =U"- At F(U)

U2 =U"- At F(UY) ,

U? =U" - At F(U?) (6)
U! =U"— At F(UY)

Un+1 U4 .

The coefficients are a; = 0.1084, as = 0.2602, a3 =
0.5052, ¢y = 1.0, and the scheme is fourth order ac-
curate in time.

Physical dissipation brings in different characteris-
tic time scales into the problem. They are:

Viscous diffusion: = pA7?/j1ysc ~107"s
Magnetic diffusion= u,Ar?/n ~ 10710 g
Heat conduction: = n.kgAr?/ky, —~ 107°

If these were vastly different, that would call for an
implicit treatment of time stepping. That is not the
case here, and an explicit time-stepping scheme was
chosen.

Depending upon the particular case being simu-
lated, the difference between convective and dissipa-
tive time scales could be more severe. Then, evaluat-
ing the convective fluxes at the time scales of dissipa-
tive fluxes would be prohibitively expensive. In order
to side step this difficulty, a sub-stepping scheme can
be chosen. In this method, the convective fluxes are
evaluated using a time step based on the CFL limit
for the hyperbolic problem, and an intermediate solu-
tion is obtained. This intermediate ideal MHD solu-
tion is used to advance the parabolic problem, using
the diffusive time step limits, to obtain the complete
solution at a time t + At.

5 Solution of Ideal MHD

5.1 Characteristics-Splitting Method

Any time-dependent conservation law, such as

eqn.(1), can be written in a general form:

= Cix (U = U)).

ik

(7)

A FLUX-LIMITED NUMERICAL METHOD FOR MHD EQUATIONS

If the numerical scheme has a compact stencil in
which the value at a point is directly dependent only
on its nearest neighbors, and if the coefficients are all
non-negative, then:

If U; is a local maximum, then, (U — U;) < 0, caus-

dg’ < 0. Conversely, if U; is a local minimum,

then, (Uy —U;) > 0, causing gj > 0. In other
words, this scheme is local extremum diminishing.
Apart from ensuring that there are no local oscilla-
tions, a scheme built on these conditions can be easily
extended to multi dimensions, which was a drawback
of the TVD concept.

It has been shown (ref.[28]) that schemes built on
obtaining information from the upwind part of a char-
acteristic satisfy positivity constraints (eqn.(8)) and
are thus stable. This concept is used in the develop-
ing the numerical scheme used in this work.

The method can be explained using eqn.(1) in 1-
spatial dimension,

>0k=7+1,
= 0;else

(8)

ing

(9)

where U is the vector of conserved variables, Hz is

the approximation of flux in the Z direction.

= e

ijr1

Figure 5: Discretization for convection equations

The true flux, shown in Fig.(5), obtained from
eqn.(1), in the 2 direction can be split as,

Fz(U) = Fz(U)" + Fz(U) ", (10)
where the eigenvalues of dFz'/dU are all non-

negative, and the eigenvalues of dFz~ /dU are all
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non-positive. Then, the approximation of flux is es-
timated as,

— Fgt -
Hz; . =Fz; + Fz;,,.

Using eqn.(10), this can be rewritten as,

Hz;,,

(FZ]' + FZj+1) — Dz, 1

J+30

DN =

where
1 - ,
Dz;, 1 = 5 [{szﬂ_l - sz} + {sz+1 — Fz; H -

There still remains a question of how Fz" and Fz~
can be evaluated. This evaluation is possible if there
is a matrix A, such that
FZjJrl — FZj =A- (Uj+1 — U]) . (12)
Note that, in the case the points j + 1 and j are on
opposite sides of a discontinuity, eqn.(12) indicates
that this scheme satisfies the Rankine-Hugoniot jump
conditions exactly.
For a hyperbolic system of equations, A can be
diagonalized as:

A=RAR 1, (13)
where R contains the right eigenvectors of A as its
columns, and R™! contains the left eigenvectors of A
as its rows. A is the diagonal matrix of eigenvalues
of A. Since A can be easily split into,

A=AT+A",

using eqn.(13), A can be split. Thus if there exists
an A such that eqn.(12) is true, then F can be split.
For the Euler equations, this matrix was derived by
Roe[26], [27]. There have been efforts by Cargo[29]
and Powell[30] to derive such matrices for MHD equa-
tions. The literature[31] suggests that various forms
of averaged matrices work satisfactorily.

From Godunov’s theorem[24], it is evident that the
scheme can only be first order accurate. However,
away from the discontinuities, the spatial accuracy of
the scheme can be improved by including flux-limited
anti-diffusion, as described in ref.[28]:

1
Dz,,, = 5 |A| [AU,,; —Lz (AU 4, AU,

Similar equations can be written for the correspond-
ing terms in the 7 direction.

An alternative to characteristics-splitting for solv-
ing conservation form of the equations is to use scalar

diffusion. In this formalism, the equivalent expression
for eqn.(11) is,

1
— oA

Dzj+% 92

max A[I]+% (15)
Because of its low computational cost, scalar diffu-
sion schemes such as eqn.(15) have been successfully
adapted for many commercial applications. However,
as described in ref.[28], these schemes tend to artifi-

cially smooth out the solution.

5.2 Validation of the Scheme
5.2.1 Unsteady Case

The test problem chosen was of the classical Riemann
type, which consists of a single jump discontinuity in

an otherwise smooth initial conditions. In 1-D the
problem is:
’ o UR if © Z % ’

The Riemann problem was chosen because it is one
of the very few that have an analytical solution. This
problem provides an excellent illustration of the wave
nature of the equations. The solution to the Rie-
mann problem is useful to verify the capturing of both
smooth waves (characteristics) as well as non-smooth
waves (shocks).

The initial states used were very similar to the
Sod’s[32] problem for Euler equations. They were:

p =1.0 P = %
V, =00 V., =00
V, =00 V, =00
Left : g:p _ (%)'O Right : ZZT _ %'O (17)
B, =10 B, =-10
B, =0.0 B, =00
p =10 p = %0

For a nondimensionalized form of the equations, the
solution at at time 7 = 0.1 was computed, with the
initial conditions described above. The solutions for
the magnetic field and pressure profiles, with 400
points in the spatial dimension, are presented in figs.

)} . (14) (6) and (7) respectively. The number of points in the

domain, and the time 7 were chosen to allow compar-
isons to other works, such as ref.[22].

In these figures, the fast rarefaction (FR) wave can
be seen on the far right and the far left, as it is the
fastest of the waves present in the problem. The slow
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Figure 6: Magnetic field in the Riemann problem.

shock (SS) and the compound wave (SM) have speeds
less than that of the FR wave.

As shown in these figures, the scheme successfully
captures the time-dependent discontinuities.

5.2.2 Steady State Case

In order to simulate steady-state MHD flows, this
solver can be used to solve the unsteady equation
to steady state. Then, an important question is
whether it remains in that steady state. To answer
this question, a test problem was chosen, whose equi-
librium solution is known analytically. This equilib-
rium solution is given as the initial condition for the
solver. After marching several hundreds or thousands
of time steps, a check is performed if the variables
have changed from the initial conditions.

The test problem chosen for this simulation was
the Taylor State[33] configuration. When a perfectly
conducting plasma in an arbitrary initial condition is
allowed to evolve, it will move quickly and dissipate
energy before coming to rest. This stable equilib-
rium configuration can be analytically found using
the minimum energy principle, and is of the form:

V x B = A\B, (18)
where A is an eigenvalue.

Since the current is parallel to the magnetic field,
the j x B body force is identically zero. Furthermore,

A FLUX-LIMITED NUMERICAL METHOD FOR MHD EQUATIONS
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X

0.75 1.00

Figure 7: Pressure profile in the Riemann problem.

if there are no thermodynamic pressure gradients, the
plasma is in a state of force-free equilibrium. For an
axisymmetric geometry, the resulting magnetic field
profile is:

By = ByJ1(Ar); B. = ByJo(Ar), (19)
where B, is a constant amplitude, Jy and J; are

Bessel functions of the first kind, of orders 0 and 1
respectively.

For a Cartesian grid of dimensions L, x L, , with
symmetry along the ¢ direction, the magnetic field
distribution satisfying eqn.(18) is:

B, nm
et o) ).
B, = By 81n<mL”> i (%)7 (20)
B, = % cos ("ﬂ‘) sin ("Lﬂ>,

where m and n are eigenvalues.

With these initial conditions, the code was run for
10000 time steps on a 100 x 100 grid. At the end,
the solution had deviated from equilibrium by less
than 0.5%. The results from the code for B, given
in eqn.(20) are compared with the exact solution in
Fig.(8).



SANKARAN, et al.: A FLUX-LIMITED NUMERICAL METHOD FOR MHD EQUATIONS 9
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Figure 8: Magnetic field in the Taylor configuration

6 Applications of the Scheme

The test cases described above were intended to val-
idate the new characteristics splitting scheme, which
was developed to calculate the convective part of the
MHD equations. However, as described in sections 2
and 4, for the flows of interest both convection and
diffusion are important. The ability of the numeri-
cal method to solve this mixed set of equations was
tested by computing the flow of a resistive plasma
in a coaxial self-field MPD thruster. Resistive diffu-
sion was the only non-ideal MHD effect included in
this computation. Other forms of dissipation, namely
thermal conduction, viscosity and Joule heating were
not included.

In the case chosen, the operating conditions were
an external current of 6.0 kA, and Argon plasma at
a mass flow rate of 6.0 g/s. The calculated con-
tours of enclosed current at steady state are shown in
Fig.(9). All the current is downstream of the back-
plate (z = 0), and there is 300 A of current flowing
between each contour. In ideal MHD, magnetic field
and therefore current lines, which are lines of constant
rBy, would be convected to the exit. However, due
to the presence of resistivity, the current lines remain
in the channel. It is also apparent that many current
lines inside the thruster are not vertical. This is be-
cause the Lorentz force is strongest near the cathode,
and therefore magnetic convection is strongest there.

e Scheme

Anods

R!llllcymllllllllll»),

Figure 9: Current Lines in a coaxial thruster

Though the contours in Fig.(9) look reasonable,
they are not an accurate representation of a true
MPD thruster flowfield. In order for the simulations
to agree with experimental data, further refinements
to the physical model are needed. As already men-
tioned, the physical model adapted to illustrate the
scheme is simplistic. Specifically, the equations de-
scribed above assume a fully ionized plasma, with
ideal equation of state, in thermal equilibrium, and
with only the classical form of transport coefficients,
and lack the description of many energy sinks. Fur-
thermore no sheath models are included. However,
as stated above, such physical effects can be added
without affecting the numerical foundation.

The extension to include the effect of two temper-
atures and finite ionization can be done in two steps:

1. Adding a continuity equation for electrons:

Ope
ot

+ V- (peue) = mene, (21)

where n,. is the net ionization/recombination
rate, and u. = u — j/en,,

2. Adding a separate energy equation for electrons.

Including ionization reactions will bring in a differ-
ent time scale to the problem, and the time-stepping
scheme may have to change. However, this does not
conflict with the methodology of the solver.

Another improvement that could be implemented
easily is to include a realistic equation of state, as
there is no fundamental change in the scheme to have
p/p=f(T).

Accurate expressions for classical transport coef-
ficients, such as thermal conductivity and viscosity,
and anomalous coefficients, obtained from ref. [11],
can easily be introduced. These are presently be-
ing implemented in a code to simulate self-field MPD
thrusters.
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7 Concluding Remarks

A new solver to accurately compute plasma flows
of interest to propulsion has been developed and
validated. The characteristics-splitting technique is
used to capture discontinuities monotonically. Flux-
limited anti-diffusion to improve spatial accuracy
away from discontinuities, and a multi-stage time
stepping scheme to improve temporal accuracy are
used in this numerical method. This solver has suc-
cessfully demonstrated the capability to compute re-
sistive plasma flows in simple geometries, thus show-
ing promise to be a suitable platform to accurately
simulate plasma thruster flows upon improvements in
the physical model.
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A Eigensystem of MHD
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