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Abstract

A characteristics-based scheme for the solution of ideal MHD equations was developed, and its

ability to capture time-dependent discontinuities monotonically, as well as maintain force-free

equilibrium, was demonstrated. Detailed models of classical transport, real equations of state,

multi-level ionization models, anomalous transport, and multi-temperature effects for argon and

lithium plasmas were implemented in this code. The entire set of equations was solved on non-

orthogonal meshes, using parallel computers, to provide realistic description of flowfields in vari-

ous thruster configurations. The calculated flowfield in gas-fed magnetoplasmadynamic thrusters

(MPDT), such as the full-scale benchmark thruster (FSBT), compared favorably with measure-

ments. These simulations provided insight into some aspects of FSBT operation, such as the weak

role of the anode geometry in affecting the coefficient of thrust, the predominantly electromagnetic

nature of the thrust at nominal operating conditions, and the importance of the near-cathode region

in energy dissipation. Furthermore, the simulated structure of the flow embodied a number of

photographically-recorded features of the FSBT discharge. Based on the confidence gained from

its success with gas-fed MPDT flows, this code was then used tostudy a promising high-power

spacecraft thruster, the lithium Lorentz force accelerator (LiLFA), in order to uncover its interior

plasma properties and to obtain insight into underlying physical processes that had been poorly

understood. The simulated flowfields of density, velocity, ionization, and anomalous resistivity

were shown to change qualitatively with the total current. The simulations show the presence of a

velocity reducing shock at low current, which disappeared as the current was increased above the

value corresponding to nominal operation. The breakdown and scaling of the various components

of thrust and power were revealed. The line on which the magnetic pressure equaled the gasdy-

namic pressure, and its motion with increasing current, wasshown to provide a clear illustration

of the anode starvation mechanism that leads to the current conduction crisis called onset.
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Nomenclature

a Sonic speed

A Jacobian of the hyperbolic system

B Magnetic induction vector

¯̄BM Maxwell stress tensor

C Wave propagation speed

Dr,Dz Numerical dissipation in the radial and axial flux directions

e Charge of an electron

E,E ′ Electric field strengths in the lab and plasma reference frame

E Energy density

¯̄F Flux tensor

Hr,Hz Radial and axial flux across the cell face

j Current density

J Total current

kB Boltzmann’s constant

kth Thermal conductivity

Lr,Lz Flux limiters in the radial and axial directions

ṁ Propellant mass flow rate

m Mass of a particle

M Mass of a particle

n Number density of a specie

n Unit normal vector

p Thermodynamic pressure

¯̄p Isotropic pressure tensor

P Total (magnetic+ thermodynamic) pressure
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q Energy source/sinks

Q Collision cross section

Q Partition function

R,R−1 Matrix of eigenvectors, and its inverse

Rm Magnetic Reynolds’ number

T Thrust

T Temperature

u Velocity vector

U Vector of conserved variables,ρ, ρu,B, andE

Un
J,K Value ofU at timen · ∆t at the point(J · ∆r,K · ∆z)

ude Electron drift velocity

vti Ion thermal velocity

Z Average ionization fraction at a spatial location

β Ratio of thermodynamic to magnetic pressure

γ Ratio of specific heats

∆r,∆z Cell-size in the radial and axial direction

∆V Characteristic increment in spacecraft velocity

εo Permitivity of free space

η Classical resistivity

¯̄η Anisotropic resistivity tensor

λ Eigenvalue

λD Debye length

λmfp Mean free path between collisions

Λ Diagonal matrix of eigenvalues

Λ Plasma parameter = number of particles in a Debye sphere

µo Magnetic permeability of free space
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µvis Coefficient of viscous dissipation

ν Energy averaged momentum transfer collision frequency

νAN Anomalous collision frequency

ρ Average mass density of the fluid

τ Characteristic time scale

¯̄τvis Viscous stress tensor

ψ Stream function =rBθ

ω Plasma frequency

Ω Hall parameter (ratio of gyro and collisional frequncies)

Ω Control volume in a mesh (cell)

| Ω | Volume of the cellΩj

Subscripts

a Anode

c Cathode

D E × B drift

e Electrons

ex Exhaust

EM Electromagnetic

g Gasdynamic

h Heavy species (Ar I, Ar II, Ar III, Ar IV, Li I, Li II, Li III)

i Ions

j, k Cell indices

r Radial direction

w Wall

z Axial direction

θ Azimuthal direction
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The mass flow ratėm = 6.0 g/s or argon in all cases. . . . . . . . . . . . . . . . . . 89

4.5 Calculated velocity stream lines in the flow. J = 15.0 kA,ṁ = 6.0 g/s. . . . . . . . 89
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4.16 Mass flux at a distance of 12.5 cm from the anode plane. No error bars on the

measurements were provided in the original work[11]. . . . . .. . . . . . . . . . 106

xiv



4.17 Calculated momentum flux at the cathode tip plane. . . . . .. . . . . . . . . . . . 106

4.18 Left: Calculated electron number density (m−3); Right: Photograph of light emis-

sion from FSBT discharge with transparent walls[136].J = 16.0 kA, andṁ = 6.0

g/s in both plots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

4.19 Surface current density on the cathode. Error bars on the measurement are not

available in the original source[14]. . . . . . . . . . . . . . . . . . .. . . . . . . 109

4.20 Power expenditure in various regions (kW). The values of each of the terms in

eqn.(4.17) are shown in various regions. . . . . . . . . . . . . . . . .. . . . . . . 111

5.1 Computational domain of the Lithium Lorentz Force Accelerator (LiLFA), where

Rca= 5.0 cm,Rch= 11.0 cm,Ran= 13.4 cm,Rex= 20.0 cm,Lca= 26.0 cm,Lch=

26.0 cm,Lan= 26.5 cm, andLex= 22.5 cm. . . . . . . . . . . . . . . . . . . . . . . 115

5.2 Scaled engineering drawing of the Lithium Lorentz ForceAccelerator (LiLFA)

(from ref.[139]), whereRca= 5.0 cm,Rch= 11.0 cm,Dan= 27.0 cm,Lca= 26.0 cm,

Lch= 26.0 cm, andLan= 26.5 cm. . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.3 Calculated Mach number contours forξ = 1.0 (J = 4.5 kA andṁ = 0.25 g/s). . . . . 120
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Chapter 1

INTRODUCTION

The Earth is the cradle of the mind, but we cannot live foreverin a cradle.

Konstantin E. Tsiolkovsky

1.1 Objective of This Thesis

The ultimate goals of this work are three-fold:

1. Realistic simulation of plasma flowfields in high-power Lorentz force accelerators with self-

induced magnetic fields. For this purpose it is necessary to develop a full-fledged high-

fidelity computational model in which the governing equations of the relevant physical pro-

cesses are solved using a reliable numerical scheme.

2. Use the results of these simulations to:

• Obtain detailed distributions of relevant flowfield parameters inside the thruster. Inter-

nal flowfield data are scarce due to the dearth of high-power experimental facilities and

the difficulties in making measurements in harsh plasma environments.
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• Obtain insight into the physics of thrust production and energy dissipation in these

devices.

3. Use this code to understand the operation of a specific typeof thruster, the lithium Lorentz

force accelerator (LiLFA), for which experimental data is scarce.

1.2 Importance of Plasma Propulsion

Arguably the greatest technological achievement of the twentieth century was NASA’s Apollo

mission that successfully put men on the surface of the moon and brought them safely back to earth.

However, only about 2% of the total mass of about 2750 metric tonnes of the rocket was useful

payload. The bulk of the remaining mass was filled by the 960 thousand gallons of fuel needed for

propulsion. The reason for the large propellant fraction isclear from therocket equation, derived

by Tsiolkovsky[1] in 1903. In the absence of external forces, the ratio of mass of propellant (mprop)

to the total mass of the rocket (mtot) is given by the relation,

mprop

mtot
= 1 − e−∆V/ue , (1.1)

whereue is the exhaust velocity of the propellant and∆V is the characteristic velocity increment

imparted to the vehicle.

Since the exhaust velocities of the chemical rockets used intheSaturn Vwere relatively small

(the F-1 engines used in the first stage had exhaust velocities ranging from 2600 to 3000 m/s from

sea level to high altitude, and the J-2 engines used in the second and third stage had an exhaust

velocity of 4200 m/s at high altitude) compared to the∆V requirements for the mission, the mass

of propellant required was enormous. Despite the advances in combustion research, the highest

exhaust velocity of a functional chemical propulsion system, 3600 to 4500 m/s from sea level to

high altitude (of the Space Shuttle Main Engine), is still inadequate for most deep-space missions

of interest[2]. The reinvigorated vision of NASA[3] calls for missions beyond the moon, and for
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such missions chemical propulsion is not a viable option, except for the case of launch vehicles

where high thrust is required.

Functionally, the inability of chemical propulsion systems to achieve higher exhaust velocities

is due to the limitation in the maximum tolerable temperature in the combustion chamber, to avoid

excessive heat transfer to the walls. Fundamentally, thereis also an intrinsic limitation on the

maximum energy that is available from the chemical reactions.

Both these limitations can be overcome by the use of electricpropulsion, a working definition

of which is found in ref.[2],

The acceleration of gases for propulsion by electrical heating and/or by electric and

magnetic body forces.

Two distinct means to harness electrical power to accelerate propellants can be identified:

1. Heating the propellant locally, such that average temperatures are higher than those that can

be tolerated by the walls,

2. Acceleration of the propellant by the application of bodyforces.

The first method can be understood by observing that the electrical power deposited per unit

volume of the plasma is,

j · E =
{

ηj2
}

+ {(j× B) · u} . (1.2)

By maximizing the first term, the Ohmic heating, the electrical power can be used to increase the

enthalpy of the propellant in a localized fashion, thus avoiding excessive temperatures near the

walls. This allows for the average chamber temperature to behigher than those attainable in chem-

ical propulsion systems. The enthalpy can be recovered and converted into directed kinetic energy

using a nozzle, as in a chemical rocket. This is the acceleration mechanism inelectrothermal

thrusterssuch asarcjets, resistojetsandmicrowave-heated thrusters.
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Figure 1.1: Schematic of plasma acceleration in a magnetoplasmadynamic thruster.

The second acceleration method relies on bypassing thermalexpansion altogether, via applica-

tion of direct body forces. This can be achieved by forces exerted by electrical and magnetic fields

on an ionized gas:

fext = {ρeE} + {j× B} . (1.3)

From eqn.(1.3) two distinct means of application of body forces can be identified. The first

term is the body force due to an external electric field. This is the acceleration mechanism in

electrostatic thrusterssuch asion thrustersandfield emission thrusters.

For a highly conducting, quasineutral working fluid, the first term in eqn.(1.3) is small (as

will be shown in§2.1 , eqn.(2.4)), compared to the second, the electromagnetic body force (a.k.a.

Lorentz force). This is the driving force inelectromagnetic thrusterssuch asmagnetoplasmady-

namic thrusters, andpulsed plasma thrusters. As shown in Fig.(1.2), this body force accelerates

the fluid in the direction perpendicular to both the electricand the magnetic fields. The energy

expended in this process is given by the second term in eqn.(1.2).

It is important to note that, although the various means for using electrical power to acceler-

ate gases has been explained in a conceptual fashion, the discovery of these methods was often
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empirical. For instance, magnetoplasmadynamic acceleration was discovered when an arcjet was

operated under conditions of very low mass flow rates and highcurrents[4], at which the second

term of eqn.(1.2) dominated the first.

In order to provide the obligatory electrical power for magnetoplasmadynamic acceleration,

an on-board power supply has to be carried along. Therefore,the problem now reduces to that

of minimizing the combined mass of the power supply and the mass of the propellant, instead

of merely the latter. As seen in eqn.(1.1), the required propellant mass decreases with increasing

exhaust velocity. However, for a system that provides a constant thrust, at a constant efficiency, the

mass of the powerplant increases with increasing exhaust velocity[2]. Thus, the exhaust velocity

should be at an optimum value that minimizes the combined mass of propellant and power supply.

Moreover, for piloted missions, the optimization has to be done not only for minimum propellant

mass but also for a reasonable trip time. Due to these factors, the choice of a propulsion system is

mission specific. Over their periods of development, many varieties of electric propulsion systems

have spawned their own array of technical specialties and subspecialties, and their own cadres of

proponents and detractors[5]. As described in ref.[6], many of these technologies have carved

out their own niche, and have validly qualified for specific applications, to various degrees of

suitability. Appendix A describes how some of these propulsion systems are suited for a piloted

missions to Mars, and ref.[6] expands the discussion to consider Mars cargo missions as well.

All electric propulsion systems are intrinsically thrust limited, because, it is not practically

feasible to electrically supply power of the same order as that is available from chemical/nuclear

reactions. This is obvious from observing that the kinetic power in the exhaust of theSaturn V

rocket (about 120 GW) is more than 50 times greater than the maximum electrical power genera-

tion capacity of the Hoover dam. In the absence of such colossal electrical power supplies, electric

propulsion systems are not suitable for overcoming steep gravitational potential wells, such as

launching from earth’s surface. However, they are well suited for missions where the instanta-
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neous thrust requirements are small (in micro-gravity environments), but the total impulse (
∫

Tdt)

requirements are large.

Magnetoplasmadynamic thrusters (MPDT) (and their variants, lithium Lorentz force accel-

erators (LiLFA),) and pulsed-plasma thrusters (PPT) use quasineutral plasma as a working fluid.

Therefore, unlike ion thrusters (cf. ref.[7])), they are not constrained by space-charge limitations[2].

Moreover, since MPDTs/LiLFAs and PPTs rely on the interaction of the collision dominated cur-

rent, rather than the Hall current, with magnetic field to produce thrust, they can operate at much

larger mass flow rates and densities than Hall thrusters[2].

The MPDT/LiLFA has the unique capability, among all developed electric thrusters, of pro-

cessing megawatt power levels in a simple, small and robust device, producing thrust densities as

high as105 N/m2. These features render it an attractive option for high energy deep-space missions

requiring higher thrust levels than other EP systems[5], such as piloted and cargo missions to Mars

and other outer planets, as well as for near term missions such as transfer from LEO to GEO[8].

1.3 Research Issues in High-Power Plasma Thrusters

The gas-fed self-field MPDT is the most studied high-power plasma propulsion device, and has

been the subject of numerous graduate theses (such as refs.[9]-[33]). Yet, despite four decades

of research and development involving laboratory tests of many permutations of geometries and

operating conditions and even a space flight test[34], no MPDT is currently used on operational

spacecraft. Three reasons can be identified for the present absence of MPDTs in actual spaceflight

missions:

1. Intolerably high cathode erosion rates,

2. Unacceptably low efficiencies at low power levels that areavailable today in space,

3. Occurrence of performance limiting oscillations at operation above a certain value ofJ2/ṁ.
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Fortunately, it has been known for some time (cf. refs.[35, 36, 37, 38]) that using a multi-

channel hollow cathode, with alkali metals such as lithium as the propellant, promises to alleviate

some of these pitfalls. The improvements on the first two drawbacks are perhaps because,

1. Multi-channel hollow cathodes have lower surface current densities and therefore have lower

electrode evaporation rates. Moreover, compared to all other potential propellants, lithium

coated electrodes have a lower work function (φ = 2.9 eV) than uncoated electrodes[39,

27] (φ = 5.4 eV). A combination of these two factors reduces the electrode erosion rates

significantly, thus improving the thruster lifetime.

2. Lithium has a low ionization potential, and therefore thefraction of input power expended

in ionizing the propellant is reduced.

This version of the MPDT is termed the lithium Lorentz force accelerator (LiLFA) for historical

reasons to differentiate it from the traditional gas-fed solid cathode MPDT variant. The LiLFA

has demonstrated essentially erosion-free operation for over 500 hours of steady thrusting, with

excellent performance characteristics (12.5 N of thrust, 4000 secIsp, and 60% efficiency at 500

kW of input power[40]).

For high energy, deep-space missions, these thrusters would operate at power levels of sev-

eral megawatts (MW). However, testing these devices at MW power levels presents formidable

technological and economic challenges. In fact, there are no experimental facilities at present that

are capable of long-term MW-level operation of a MPDT/LiLFA. To this date all data in the MW

range has been taken in quasi-steady mode. In this mode, the thruster is operated for current pulse

length ofO(1 ms), and data from this mode is expected to be a good indicator of its steady-state

performance[41]. Databases of measured quasi-steady thruster performance have been compiled

in Japan [42] and at Princeton University [43]. A MW-class pulsed facility at the NASA-Glenn Re-

search Center began operation in 2001, with plans to developit to a steady-state facility[44]. So far,

steady-state data is limited to less than 600 kW, and has beenobtained mostly at the NASA Glenn
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(formerly Lewis) Research Center[45], and at the University of Stuttgart[46]. The NASA-Lewis

test facility had the capability to operate at steady-statepower level of up to 600 kW, but research

was discontinued by the early 1990s. NASA-JPL has only recently completed development of a

500 kW facility to test the LiLFA.

The dearth of high-power experimental facilities imploresthe need for a rational alternative to

empirical testing, as a way to predict performance. Unfortunately the simple explanation for the

acceleration mechanism described earlier, in§1.2, belies the complexity that underlies the electro-

magnetic acceleration process, which embodies interlocking aspects of compressible gasdynamics,

ionized gas physics, electromagnetic field theory, particle electrodynamics[2], collective plasma

phenomena and plasma-surface interactions[27]. Consequently, a realistic description of the accel-

eration process is analytically intractable. This inability is the foremost hindrance to understanding

the details of processes by which the electrical energy is partitioned among various energy sinks,

including acceleration.

As shown in Fig.(1.3), the electrical power deposited into the plasma can be expended into

many sinks, only two of which, directed electromagnetic kinetic power and directed electrothermal

kinetic power, are useful for propulsion. Understanding and quantifying these disparate processes

is essential to improving the efficiency of these devices. Since it is difficult to do so using an

empirical or analytical approach alone, numerical simulations are valuable tools in plasma thruster

research.

Over the years, there have been several notable attempts to develop detailed numerical models

to study MPDT flows. Some of them will be summarized below.

1.4 Existing Computational Work

The earliest recorded attempt to simulate the flowfield in a high-power plasma accelerator was

made by Burshlinkskii, Morozovet al.[48, 49, 50] (1967-68). Due to serious limitations on com-
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Figure 1.2: Expenditure of input power in an electromagnetic accelerator (from ref.[47]).

putational power available in the 1960s, their model had to be relatively simple. It excluded the

energy equation, and assumed a constant uniform value of resistivity. Nevertheless, their code was

able to make reasonable predictions of current and density contours in coaxial devices.

Kimuraet al. [51] (1982), and Fujiwaraet al.[52] (1984), started developing single-temperature,

2-D models on simple geometries, and have continued to make improvements to their models.

Currently, the efforts of Fujiwaraet al.[53] (1999) are directed at studying critical phenomena in

magnetoplasmadynamic thrusters, using multi-temperature models.

Chanty, Niewood, Martinez-Sanchezet al. [54, 30] (1987-93) have developed two-temperature

axisymmetric numerical models to study various aspects of the flow. The model of Niewood[30]

(1993) includes a non-equilibrium ionization model developed by Sheppard[31], and accounts for

effects due to the presence of neutrals, such as ion-neutralslip.

The effort by LaPointe[55] (1992) was aimed at simulating the effect of geometry on perfor-

mance on the ZT-1 thruster[56] and the Half-Scaled Flared Anode Thruster (HSFAT)[22].

Caldo and Choueiri[57] (1994) developed a two-temperaturemodel to study the effects of

anomalous transport, described in ref.[58], on MPDT flows. The steady state form of Faraday’s
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law and time-dependent form of the flow equations were solvedusing a multigrid, multi-stage time

iteration scheme, on a grid that was customized for Princeton’s Full-Scale Benchmark Thruster

(FSBT)[16].

The most persistent effort so far has been that of Auweter-Kurtz, Sleziona, Heiermann,et

al.[59, 60, 56, 61, 62, 63, 64, 65, 33] (1989-2002) at the University of Stuttgart, who, for almost

two decades, have been developing numerical models for MPDTs. Detailed models for many

transport processes and multiple levels of ionization havebeen incorporated into their governing

equations, which are solved on unstructured adaptive grids. The major objective of this work is

to predict the overall performance of the ZT-1 and the HAT series of thrusters. Another proposed

used of their code is to study the role of gradient-driven instabilities in MPDT flows[66].

Turchi, Mikelllides,et al. [32, 44, 67, 68, 69] (1994-2004) utilized MACH2, a widely-used

unsteady MHD solver developed for high power plasma gun simulations[70], to model PPTs and

MPDTs in many geometries. MACH3[71] (1995), the next generation of MACH2, is also used to

simulate possible 3-D effects in specific situations.

1.5 Scope of This Thesis

Though the abovementioned research efforts have made significant progress in simulating MPD

flows, there remains room for improvement in both physical models and numerical schemes used

in them.

As is argued in§2.3.6, it is important to have equation-of-state models that are suitable to the

conditions of interest to plasma thrusters. In addition, itis important to have reliable models for

classical and anomalous transport, as well as ionization processes.

At a more fundamental level, any code used to predict plasma properties should be first val-

idated against standard MHD test problems for which analytical solutions exist, as well as by

comparisons with plasma thruster experiments for which experimental data exist.
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While it can be argued that the existing codes can be adapted to meet the abovementioned

requirements, it is not viable to change the underlying numerical methods of a code. Some notable

shortcomings of existing numerical models can be identified:

1. Some of the existing codes exhibit numerical instabilities at high current levels. MPDTs

reach higher efficiencies at higher currents, until a value at which voltage oscillations occur,

and many of the important research questions tend to also occur at higher current levels.

Consequently, the inability of a simulation to work reliably at those situations undermines

its value.

A probable explanation for these instabilities is the failure to solve the magnetic field evo-

lution self-consistently with the flow. For highly resistive flows, the time scale for resistive

diffusion of the magnetic field is orders of magnitude smaller than that of convection. How-

ever, in MPDT flows it is common to have resistivities ofO(10−4) Ohm m. In such situa-

tions, these time scales are not very far off, and there is a strong coupling between the flow

and the magnetic field. The corresponding magnetic Reynolds’ numbersRem ∼ O(1 − 10)

indicate that both convective and resistive diffusion of the magnetic field are important (to be

discussed later in§2.3.3). Moreover, the Alfvèn and fluid time scales are not very disparate.

Therefore, the full set of equations describing the flow fieldand magnetic field evolution has

to be computed self-consistently.

An important feature of the MHD formalism is the multitude ofwaves it permits to exist. The

nonlinear coupling of these waves play an important role in determining physical phenomena

and in computing the solution, as explained in ref.[72, 73].Solving Maxwell’s equations

consistently with compressible gasdynamics equations naturally produces waves physically

associated with the problem, such as Alfvèn and magnetosonic waves, as eigenvalues. Such

a formulation is thus suitable for handling MHD waves and shocks.

2. Some of the earlier efforts[57, 59] have experienced problems conserving mass, momentum,
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and energy. A conservative formulation of the governing equations ensures that these quan-

tities are indeed conserved. Such a formulation also facilitates the application of boundary

conditions, since the fluxes are the only quantities to be specified at the boundaries. From the

perspective of numerical solution, it can be shown that conservative formulation is necessary

for accurately capturing discontinuities.

3. As also noted in ref.[30], none of the existing models (with the exception of recent work at

the University of Stuttgart[61, 62, 63, 64, 65, 33]) take advantage of the developments in the

techniques for numerical solution of Euler and Navier-Stokes equations.

Each of the problems mentioned above can be overcome, respectively, by adapting the follow-

ing approach:

1. Treat the flow and magnetic field equations in a self-consistent manner,

2. Formulate the governing equations in a conservative form,

3. Use characteristics-splitting techniques satisfying Rankine-Hugoniot relations, combined

with anti-diffusion to increase accuracy. These techniques can capture shocks and other

strong gradients in a non-oscillatory manner, and can have good spatial accuracy in smooth

regions of the flow.

The development of precisely such a code, and its application to produce realistic simulations of

the internal flowfield, and obtaining insight into the underlying physical phenomena from those

simulations, is the subject of this thesis.

The physical models and numerical methods developed in thisthesis, and the code itself, can

be used to study many types of plasma thrusters. However, this thesis focuses only on high-

power Lorentz force accelerated thrusters with self-induced magnetic fields (magnetoplasmady-

namic thrusters (MDPTs) and Lithium Lorentz Force Accelerators (LiLFAs)).
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1.6 Outline

The physical models that describe the evolution of the flow and the field are described in chap-

ter 2. A concise review of existing analytical models is made, and the need for a detailed multi-

dimensional, time-dependent numerical simulation is demonstrated. Subsequently, the MHD equa-

tions, which form the core of the current model, are briefly reviewed. Models for classical and

anomalous transport coefficients, effects of thermal nonequilibrium between electrons and ions, a

real equation of state, and a multi-level equilibrium ionization model are also developed in chapter

2.

The techniques that are used to obtain a numerical solution of the governing equations are

discussed in chapter 3. First, the relevant fundamental concepts are summarized. Following that,

a new characteristics-splitting scheme developed for the solution of the ideal MHD equations is

described. Finally, the validation of this scheme, by solving standard test problems with known

analytical solutions, is also described in chapter 3.

The physical models, presented in chapter 2, are incorporated into the numerical scheme, devel-

oped in chapter 3, and are used to simulate plasma flows in a real MPDT configurations in chapter

4. It includes descriptions of the thruster geometries, along with appropriate boundary conditions

required to obtain realistic solutions. The profiles of manyrelevant physical properties, obtained

from the converged numerical solutions, are then compared with experimental data in chapter 4.

The confidence acquired from accurately predicting MPDT flows sets the stage for predicting

flowfields in thrusters for which little or no internal data exist, and extracting insight into the

underlying physical processes in the LiLFA. This is the subject of chapter 5.

A summary of this work and the recommendations for future work are discussed in chapter 6.
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Chapter 2

PLASMA FLOW MODELING

I have been carried ... into that sanctuary of minuteness andof power, where molecules
obey the laws of their existence, clash together in fierce collision, or grapple in yet
more fierce embrace, building up in secret the forms of visible things. But who will lead
me into that still more hidden and dimmer region where Thought weds Fact, where the
mental operation of the mathematician and the physical action of the molecules are
seen in their true relation?

James Clerk Maxwell

The physical laws governing the flow of the plasma and the evolution of the magnetic field in

Lorentz force accelerators are discussed in this chapter. First, the case for a continuum treatment

of the plasma is made. Then, a brief review of existing analytical models for MPDT flows is

made and the need for a comprehensive multi-dimensional time-dependent model is demonstrated.

Subsequently such a model, the set of MHD equations, is discussed along with effects of thermal

nonequilibrium, appropriate expressions for classical and anomalous transport, a real equation of

state, and a multi-level equilibrium ionization model.
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2.1 Continuum Model of the Plasma

The mechanism of plasma acceleration in an electromagneticthruster can be described in terms

of the mean trajectories of the current-carrying electrons, as done in ref.[2]. While attempting to

follow the applied electric field, the electrons are turned in the stream direction by the magnetic

field with a velocity,

VD =
E × B

B2
. (2.1)

The motion of these electrons then sets up microscopic polarization fields that accelerate the ions.

Alternatively, the transfer of streamwise momentum from electrons to the bulk of the plasma can

also be accomplished through collisions. It is important toobserve that, in either process, the

working fluid remains quasineutral, that is, there is no macroscopic charge separation.

If limitless computing power is available, a perfect simulation would solve for the trajectory

of every particle in three-dimensional space, subject to fundamental physical laws such as New-

ton’s laws and Maxwell’s equations (with some knowledge of quantum mechanics to estimate

collision cross sections). However, for conditions of interest to plasma thrusters, with electron

and ion densities ofO (1021) /m3, mass-averaged velocitiesO(104) m/s, temperatures of∼ 2 eV,

thermodynamic pressures ofO(10−1 − 1) Torr, and magnetic pressures ofO(1− 10) Torr, particle

simulations are not presently practical, even when following only representative or macro particles.

Under these conditions, the most useful approach to understanding the nature of electromag-

netic acceleration is that of magnetohydrodynamics, in which the ionized gas is treated as a con-

tinuum fluid whose physical properties are described by a setof bulk parameters whose dynamical

behavior is represented by a set of conservation relations[2].

For typical operating conditions, the MPDT/LiLFA plasma isquasineutral. This assumption

can be justified by the following rationale:

1. The dimensions of the device are much larger than the characteristic length scale of charge
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separation (theDebye length),
L

λD

∼ O
(

105
)

. (2.2)

2. The residence time scale is much larger than the time scaleneeded for the electrons to adjust

to the charge separation (inverse of theelectron plasma frequency),

τres

1/ωpe
∼ O

(

105
)

. (2.3)

3. Inertial forces are far greater than the electrostatic force due to charge separation,

ρU · ∇U

ρeE
∼ O

(

109
)

. (2.4)

From these, it is sensible to treat the plasma in the bulk of the device as quasineutral. There is,

however, asheathat the interface between the plasma and a boundary, where thequasineutral

assumption breaks down. Modeling the sheath will be a topic for future research, and is discussed

in §6.2.2.

The continuum treatment is reasonable because the characteristic length scale of the device is

found to be much larger than the mean free path between collisions:

L

λmfp

∼ O
(

103
)

. (2.5)

In self-field accelerators, the flow direction of the plasma is perpendicular to the magnetic field.

In such a situation, the magnetic field further bolsters the continuum approximation by playing

the role of collisions in maintaining Maxwellian distributions and in providing the ’localizing

influence’ that is the essential ingredient of the fluid theory (cf. ref.[74]).

Now that the continuum treatment has been justified, the acceleration mechanism (in a self-field

device such as the one shown in Fig.(1.2)) can be described asfollows: The applied electric field,

E, induces a current of densityj , which induces a magnetic fieldB. The interaction of the current

and the magnetic field produces a distributed body force density, fEM = j×B, that accelerates the

flow.

16



2.2 Simplified Analytical Models

An analytical model, based on the continuum description, topredict theelectromagneticcompo-

nent of thrust was developed by Maecker[75], and later expounded by Jahn[2]. The essence of this

approach is a calculation of the unbalanced magnetic pressure acting on the thruster, by evaluating

the surface integral of the magnetic stress tensor (to be explained in§2.3.2). The result of that

analysis is that for a total operating current ofJ , the thrust is given by,

T =
µo

4π

(

ln
ra

rc

+ A

)

J2, (2.6)

wherera andrc are the radii of the anode and the cathode, respectively, andA is a dimensionless

constant between 0 and 1. Note that this formula needs no information on field distribution patterns

inside the thruster or the propellant type or even the mass flow rate. Yet, Maecker’s formula

(eqn.(2.6)) generally predicts the thrust with acceptableaccuracy over a wide range of operating

conditions.

However, as pointed out in ref.[76], the deviations from Maecker’s law are significant at cur-

rents below a critical value. The model by Tikhonovet al.[77] improved on the Maecker’s formula

by proposing the following scaling relation,

T =
µo

4π

(

γ + 1

2
+

1

2

(

8πaoṁ

γµoJ2

)2
)

J2, (2.7)

obtained from a quasi-1-D MHD analytical model that allows the free boundary of the flow to vary

consistently with the flow conditions. Here,ao is the ion acoustic speed evaluted at the upstream

end. The Tikhonov thrust scaling law will be useful in the discussion of the LiLFA in§5.3.

Though the Tikhonov scaling law is an improvement over the Maecker’s law, it still does not

account for the type of propellant or any details of the geometry. The model of Choueiri[76],

however, accounts for variations in current distribution patterns and propellant types. However,

that model is semi-empirical in nature, requiring some experimental data for current distribution

patterns on the electrodes and the pressure distribution onthe backplate. Nevertheless, it provides
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excellent predictions of thrust and is very useful in the understanding of thrust scaling trends.

Specifically, it was shown that the non-dimensional parameter

ξ ≡





µoJ2

4π

(

ln ra

rc
+ A

)

ṁ
√

2φi/M





1/2

, (2.8)

with

A a dimensionless constant between 0 and 1,

ṁ the mass flow rate,

φi the first ionization potential of the propellant, and

M the atomic weight of the propellant,

plays an important role in many scaling relations. This can also be viewed as an appropriate non-

dimensionalization of the thruster current,

ξ ≡ J

Jci
, (2.9)

whereJci is the Alfvèn critical ionization current,

Jci =





ṁ
√

2φi/M

(µo

4π
)
(

ln ra

rc
+ A

)





1/2

. (2.10)

It has been shown[76] that nominal operation is achieved atξ ' 1.

By and large, these analytical models have been successful in accurately predicting the electro-

magnetic thrust. This is because a good estimate of the magnetic pressure acting on the boundaries

can be made from the total current, without detailed knowledge of field distributions within the

channel.

However, as mentioned in§1.3, prediction of energy dissipation is a far more challenging

endeavor. Some of the earlier efforts to understand the energetics were made by DiCapua[10],
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Villani[18] and King[17] at Princeton. Armed with experimental information on relevant param-

eters, they constructed simple analytical models to estimate the expenditure of energy. They will

now be briefly reviewed.

DiCapua[10] investigated the energy loss mechanisms in a parallel plate accelerator, using a

simple 1-D model. A magnetic boundary layer model, in which the convection and diffusion of

the magnetic field was estimated, was used to explain some of the features of the discharge region.

The analysis using momentum and energy balance indicated that over currents ranging from 10

kA to 100 kA, with argon mass flow rates such thatJ2/ṁ = 37.0 kA2/g/s, up to85% of the input

power appeared in the exhaust. However, only∼ 20% was in the form of directed kinetic energy of

the flow, with the remainder going into ionization and raising the enthalpy. It was concluded that

the Ohmic heating term was always greater than the energy expended in accelerating the working

fluid (cf. ref.1.2).

Villani’s efforts[18] were focused on the understanding effect of current distribution on the

efficiencies of coaxial thrusters. From simple order-of-magnitude analysis, he determined that pre-

dicting the total power consumed by the thruster reduces to the problem of estimating the volume

integral of the Ohmic heating term. Observing that the variations inj2 in the channel far exceed the

corresponding variations in the values of resistivity (η), it was demonstrated that Ohmic heating

(ηj2) can be minimized with a curl-free current distribution (∇× j = 0).

Using 1-D models, King[17] attempted to relate the terminalcharacteristics, such as voltage,

specific impulse, and thrust efficiency, to the total current, mass flow rate, and geometry of self-

field coaxial MPDTs. It was determined that decreasing the anode radius and increasing the elec-

trode length precluded the occurrence of large Hall parameters and thus delayed the onset of volt-

age oscillations (alluded to in§1.3). By relating the thermodynamics of energy addition to relevant

plasmadynamic quantities, this model predicted an upper bound of∼ 70% for the thrust efficiency,

at large magnetic Reynolds’ numbers.
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Though these analytical investigations have elucidated the crucial issues, they provide no as-

sistance in prescribing precise guidelines for design. Forinstance, they do not attempt topredict

the current distribution patterns (and thus Ohmic heating terms) for a given geometry and operat-

ing condition. This is because the task of assessing the energy deposition into various modes of

the plasma in an accelerator requires detailed knowledge ofthe electromagnetic fields, the gasdy-

namic flow fields, and the thermodynamic state of the plasma. The difficulty of the task is further

magnified by the complex non-equilibrium nature and non-ideal equation-of-state of the working

fluid[17]. Therefore, any investigation neglecting these complexities is reduced to a “black box”

or a terminal analysis of the accelerator[10].

To overcome these limitations, it is apparent that a comprehensive, time-dependent, multi-

dimensional treatment of the plasma flow is required. Such a model, with appropriate descriptions

of transport and non-equilibrium effects, will be described in the subsequent section.

2.3 Multidimensional Time-Dependent Model

The governing equations of conservation of mass, momentum,energy, and magnetic flux will be

derived in this section. Much of the discussion in this section is based on refs.[78, 79, 74].

2.3.1 Conservation of Mass

If the plasma were to be treated as a single fluid, the global continuity equation for the plasma can

be written as,
∂ρ

∂t
+ ∇ · (ρu) = 0 , (2.11)

whereρ is the mass-averaged density. Note that there are no source/sink terms because the average

density is not affected by ionization/recombination reactions.

However, the electrons are created and destroyed in ionization/recombination reactions, and
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they obey a different continuity relation,

∂ρe

∂t
+ ∇ · (ρeue) = meṅe, (2.12)

whereρe is the density of the electron fluid,ṅe is the net ionization/recombination rate, and the

electron velocity isue = u− j/ene .

The adapted models for ionization and recombination will bedescribed in§2.3.8.

2.3.2 Conservation of Momentum

The relation for conservation of momentum of the plasma is analogous to the Navier-Stokes mo-

mentum equation, with an external body force acting on the fluid:

∂ρu

∂t
+ ∇ · (ρuu + ¯̄p) = ∇ · ¯̄τvis + fext ,

where, in the case under consideration, the external force is the Lorentz force,fext = j × B, per

unit volume of the plasma.

Using the vector identities eqns. (C.1), (C.2), and (C.3), along with the definition of the

Maxwell stress tensor,

¯̄BM =
1

µo

[

BB − B2

2
¯̄I
]

, (2.13)

the conservation of momentum can be rewritten as:

∂ρu

∂t
+ ∇ ·

(

ρuu + ¯̄p− ¯̄BM

)

= ∇ · ¯̄τvis + B (∇ ·B) . (2.14)

In a self-field MPDT, the inertial term (ρu2) is typicallyO (104) Pa, the thermodynamic pressure

is typicallyO (103) Pa, and the magnetic pressure is typicallyO (104) Pa.

Although the Maxwell’s equations prescribe that∇ · B = 0, terms involving this quantity are

retained in the present treatment for a numerical reason to be explained in§2.3.10.

The importance of viscous effects in plasma thruster flows isstill an open question, although it

is known to depend on the overall geometry. Viscosity tends to complicate the discharge physics
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by reducing the back EMF, which alters the current distribution in the channel. This, in turn, redis-

tributes the local Ohmic dissipation, which affects the local temperature, which in turn changes the

coefficient of viscosity. Wolff[22] attributed the unexpectedly low values of thrust from geometries

with long electrodes to the detrimental effects of viscous drag. Niewood[30] partly attributes the

high observed ion temperatures to viscous heating. Mikellideset al.[80, 81] suggest that viscous

effects are important inapplied-fieldMPDTs. On the other hand, DiCapua[10] and Villani[18]

have shown from order-of-magnitude analysis that viscous dissipation is probably a second order

effect with little effect on the performance. For a fully ionized plasma, the coefficient of viscosity

(with ions being the primary contributors) is (cf. ref.[78]),

µvis = 0.27
(4πεo)

2
√
M (kBT )5/2

Z2e4 ln Λ
. (2.15)

In the temperature range of interest to plasma propulsion (1-10 eV), it can be verified thatµvis ≤

10−5kg/m.s, and consequently, the total viscous drag is∼ O (0.01 - 0.1) N at normal operating

conditions of a thruster. Heimerdinger[29] examined the strong variation of the coefficient of

viscosity with temperature and concluded that it is indeed important in certain regimes, though

the effect on the overall characteristics is small. However, it is important to note that none of the

aforementioned theories and predictions has ever been empirically verified in high-power self-field

plasma thrusters. For now, viscous effects will be ignored during the applications of this model,

though they can be easily included in the general formulation of the physical model if deemed

relevant.

All the preceding discussions had an implicit assumption that all the heavy species (ions of

various stages of ionization and neutrals) can be treated asa single fluid. However, it is important

to realize that the momentum of the neutrals is not affected by electromagnetic forces, but only by

collisions with ions. Under extreme conditions of very low densities and very high magnetic fields,

ion-neutral collisions may become sufficiently rare that the ions traverse the accelerator channel

or achieve cycloidal drift of their own, without interacting with the neutrals. This condition is
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referred to asion slip; if severe, as explained in ref.[2], ion slip could lead to anuncoupling of the

electromagnetic processes from the gasdynamics, resulting in an inefficient thruster. However, for

the conditions of interest here, both the ionization fraction and the collision frequencies are high

enough to warrant neglecting ion slip. Further discussion of this issue will appear in§2.3.3.

2.3.3 Faraday’s Law

The relevant equation to determine the magnetic field evolution is Faraday’s law:

∂B

∂t
= −∇×E . (2.16)

In a collisionless plasma, the particles will be frozen to the magnetic field lines, and the induced

EMF will cancel out the electric field. However, in the presence of collisions, the particles slip

away from the field lines, and the electric field in the reference frame of the plasma is finite.

The electric field can be determined from the electron momentum equation,

ρe

[

∂ue

∂t
+ (ue · ∇)ue

]

+ ∇pe = −en {E + (ue × B)} +
∑

s

menνes (us − ue) , (2.17)

whereνes is the collision frequency between electrons with speciess. Collisions among electrons

do not contribute to this because the momentum of any interacting pair of electrons is conserved

and thus the total electric current carried by the pair is preserved (cf. ref.[82]). For the case in

consideration, with effective ionization fractionZ ' 1, the electron-ion collisions are far more

important than electron-neutral collisions.

Using the relationue = u − (j/ene), and ignoring the electron inertial terms, the resulting

relation, call the generalizedOhm’s law, takes the form:

E′ = E + (u ×B) = ηj +
(j ×B) −∇pe

ene
, (2.18)

where the resistivity is,

η =
me

∑

s νes

nee2
. (2.19)
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Calculation of classical transport coefficients requires estimation of momentum transfer during

elastic collisions. The energy-weighted average of the momentum transfer collision frequency

between the electrons and speciess, is (cf. refs.[78, 65]),

νes = nsQes

√

8kBTe

πme
. (2.20)

WhereQ is the cross section for collision. If the species in consideration is an ion of ionization

levelZs, and the average ionization level of that region of space isZ, then,

Qes =
π

4

(

Zse
2

4πεokBTe

)2

ln

(

1 +
144π2 (εokBTe)

3

nee6Z2 (Z + 1)

)

. (2.21)

The electron-neutral collision cross section for argon is taken to beQeo ' 4.0 × 10−20m2, and

the ion-neutral collision cross section isQio ' 1.4 × 10−18m2 for conditions of interest here (cf.

ref.[83]). The ion-ion collision frequency is estimated as(cf. [78])

Qii =
5.845 × 10−10

T 2
h

ln



1.239 × 107

√

T 3
h

ne



 . (2.22)

The collision cross sections and the collision frequenciesare shown in figs.(2.1 & 2.2), respec-

tively, for argon and lithium plasmas.

In the 1-3 eV temperature range of interest to propulsive plasma flows, the typical value of

resistivity is,O (10−3 − 10−4)Ohm.m, as shown in Fig.2.3.

Under these circumstances, the magnetic Reynolds’ number,Rm = µouL/η, which can be

viewed as an estimate of the relative importance of back EMF to resistive voltage drop, isO (1).

This implies that an ideal MHD treatment is not acceptable for these situations.

The Hall effect, which induces current conduction normal tothe magnetic field and the ap-

plied electric field, can be ignored if the gyro-frequency ismuch smaller than collision frequency.

However, for electrons, the primary current carriers, thisratio, theelectron Hall parameter, is,

Ωe =
ωc,e
∑

s νes
∼ O (1) . (2.23)
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Figure 2.1: Variation of electron collision cross sectionswith temperature, for lithium and argon.

Therefore, the Hall effect must be included in the Ohm’s law (eqn.(2.18)).

As mentioned in§2.3.2, there could be an ion slip contribution to the current. This can be

estimated to be,

jion = (1 − α)2
ΩeΩi

B2
{(j ×B) × B} , (2.24)

whereΩe andΩi are the electron and ion Hall parameters respectively,α = ni/(nA + ni) is the

fractional degree of ionization (0 ≤ α ≤ 1). In the ionization model adapted later, the ionization

fractionα ' 1. For the cases considered here,Ωe ∼ O(1). The ratio of ion to electron Hall

parameters is then
Ωi

Ωe
'
√

me

Mi
∼ O

(

10−2
)

. (2.25)

Therefore, the ion slip effect is small and can be neglected in the present discussion.

The Hall effect causes the resistivity to be anisotropic, asshown in the appendix§C.2. So,

Faraday’s law (without∇pe) can be written as,

∂B

∂t
= − [∇× {(¯̄η · j) − (u× B)}] . (2.26)
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Figure 2.2: Variation of electron collision frequency withtemperature, for lithium and argon.

The convective diffusion can be written, using eqns. (C.4) and (C.2) from the appendix, as

the divergence of a tensor. Maintaining the same formulation, the resistive diffusion can also be

written as the divergence of a tensor, using some manipulations shown in§C.2 in the appendix.

Thus, the relation for the evolution of magnetic field takes the form,

∂B

∂t
+ ∇ · (uB − Bu) = ∇ · ¯̄Eres + u (∇ · B) . (2.27)

2.3.4 Conservation of Energy

The Navier-Stokes relation for the conservation of gasdynamic energy density,

Eg =
p

γ − 1
+

1

2
ρu · u , (2.28)

can be written as,

∂Eg

∂t
+ ∇ · [(Eg + p)u] = ∇ · (¯̄τvis · u) + ∇ · (kth∇T ) + q̇ , (2.29)

where,
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Figure 2.3: Variation of resistivity with temperature, forlithium and argon.

∂Eg

∂t
= rate of change of the energy density,

(

ρu2

2

)

u = convective flux of kinetic energy,

γ = ratio of specific heats,

γp
γ−1

u = convective flux of internal/thermal energy,

¯̄τvis · u = viscous heat transfer,

kth∇T = thermal conduction,

q̇ = external energy source/sink.

For a typical MPDT plasma, the gasdynamic energy density isO (104) J/m3. This is partitioned

between the kinetic energy and the internal energy, and their ratio is a function of Mach number

squared (kinetic energy/internal energy∼ v2/T ∼ (v/a)2 ∼M2).

For reasons explained in§2.13, the viscous dissipation of energy can be assumed to be negligi-

ble. Globally, the thermal conduction can be shown to be small compared to the dominant terms.

However, in the presence of strong thermal gradients, and inregions where convective heat transfer
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is small, thermal conduction can be significant and therefore has to be included in the model.

The external source is clearly the electrical power input per unit volume,q̇ = j · E. Using

Faraday’s law, Ampère’s law without the displacement current, and the vector identity:

∇ · (E ×B) = B · (∇× E) − E · (∇×B)

= − ∂
∂t

(B2/2) − µo (j ·E) ,

the power input to the plasma can then be written as:

j · E = −
[

∂

∂t

(

B2/2µo

)

+ ∇ · (E × B)

µo

]

. (2.30)

The first term can be identified as the rate of change of energy density in the magnetic field, and

the second term is the Poynting flux of electromagnetic energy. Defining the magnetogasdynamic

total energy density (gasdynamic energy density + energy density in magnetic field)

E = Eg +
B2

2µo
=

p

γ − 1
+

1

2
ρu2 +

B2

2µo
, (2.31)

the conservation of total energy density of the plasma can bewritten as:

∂E
∂t

+ ∇ ·
[

(E + p)u− ¯̄BM · u
]

= ∇ ·
[−E′ ×B

µo
+ kth∇T

]

+

(

B

µo
·u
)

(∇ · B) ,

where the contribution of the back EMF (¯̄BM · u) and resistive drop to the electric field (in the

Poynting flux term) have been separated to emphasize the energy expended in acceleration and in

heating, respectively.

Under some physical conditions, (for instance, when the magnetic pressure is several orders of

magnitude larger than thermodynamic pressure) the conservation form of the energy equation may

not be suitable. In these cases, sincep is calculated from subtraction of one large number (B2/2µo)

from another (E), the associated numerical errors could be large. However,for the conditions that

are of interest to plasma propulsion, thermodynamic pressure is seldom two orders of magnitude

lesser than the magnetic pressure (β = p/pm > 10−2), and there is generally no need to worry
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about such errors. Thus the conservation form of the energy equation is, in general, numerically

suitable here.

In order to treat the fluid as if it were in thermal equilibrium, the characteristic residence time

scale should be much larger than the time scale for energy equilibration between electrons and

ions. For MPDT plasmas this ratio is,

τres

τequi
∼ O (10) . (2.32)

Since this condition is not strongly satisfied, it may be important to treat the electrons and ions as

separate fluids with separate temperatures. In fact, there is sufficient experimental evidence[14, 12]

that this is indeed the case, though the disparity is less than an order of magnitude. This suggests

that the temperature of the individual species can be obtained by subtracting the energy of other

components from the total energy. In order to do so, some rearrangements are necessary. The

definition of the fluid energy density, eqn.(2.28), has to be split into the internal energy density and

the kinetic energy density:

Eg = Eint + EKE . (2.33)

With this definition, the conservation relation for the internal energy takes the form:

∂Eint

∂t
+ ∇ · [Eintu] + p∇ · u = ηj2 + ∇ · (kth∇T ) . (2.34)

The internal energy of the fluid can be further split into those pertaining to electrons and ions,

Eint = Ei + Ee . (2.35)

The thermal conductivity in the total energy equation is thesum of the contributions from both

electrons and ions,

kth∇T = (kth,e∇Te) + (kth,i∇Th) . (2.36)
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From the relation for collision frequency (eqn.(2.20)), the coefficient for electron thermal con-

ductivity can then be estimated as

kth,e = 3.20
k2

BneTe

me

∑

s νes
, (2.37)

while that of the ions is

kth,i =

√

πk3
BTh

8Mi

(

ni

niQii + noQio

)

. (2.38)

The electron and ion thermal conductivities are shown in figs.(2.4 & 2.5), respectively, for argon

and lithium plasmas. It can be shown[78] that,

kth,e

kth,i

'
√

Mi

me

∼ O
(

102
)

. (2.39)

As seen in fig.(2.5),kth,i ' 0.01 − 0.1 W/K/m, and as seen in fig.(2.4),kth,e ' 1 W/K/m, in the

1 - 3 eV temperature range. Since the temperatures of electrons and ions are not very disparate,

one could make the assumption that thermal conduction of theions is negligible compared to that

of the electrons. However, there may be some regions, such asstagnation points, where thermal

conduction may be an important dissipation mechanism for the ions. Moreover, inclusion of ion

thermal conduction does not impose additional constraintson the solver. Therefore this term is

retained in this model.

With these assumptions, the conservation relations for theinternal energy of electrons can be

written as,
∂Ee

∂t
+ ∇ · [Eeu] + pe∇ · u = ηj2 − ∆Ėie + ∇ · (kth,e∇Te) , (2.40)

and that of ions as,

∂Ei

∂t
+ ∇ · [Eiu] + pi∇ · u = ∆Ėie + ∇ · (kth,i∇Th) . (2.41)

In deriving eqns.(2.40) and (2.41) it was also assumed that Ohmic heating primarily affects the

electrons. Note that the energy expended in acceleration,(j×B)·u, does not appear in eqns.(2.34),
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Figure 2.4: Variation of electron thermal conductivity with temperature, for lithium and argon.
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Figure 2.5: Variation of ion thermal conductivity with temperature, for lithium and argon.
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(2.40) and (2.41) becuase they are relations for theinternal energy only. The acceleration energy

would appear only if the kinetic energy were also included inthe definition of energy density.

In eqns.(2.40) and (2.41), the rate of exchange of energy (via collisions) between electrons and

ions can be estimated to be[74],

∆Ėie =
3nemeνei

Mi
kB (Te − Th) . (2.42)

2.3.5 Radiation

Energy losses due to radiation are important in many types ofplasmas. As explained by LeVeque

et al.[84], the energy lost by radiation, per unit time, per unit volume, can be captured as a sink

term to the right hand side of eqn.(2.29). In this case,

q̇r = −neniL(Te), (2.43)

whereL(Te) is obtained empirically. For lithium plasma,L(Te) was obtained from ref.[85], and is

shown in fig.(2.6).

However, earlier experimental work by Boyle[14], Villani[18], and Bruckner[12] on argon-fed

MPDTs suggest that the relative magnitude of this sink is notsignificant for the MPDT plasma.

As will be shown in§4.2.4, the highest observed emission in the MPDT is from a thin shell around

the cathode (dubbed as the “cathode barrel”). Even in this region, the power loss by radiation is

only q̇r < 107W/m3, whereas the Ohmic heating is typicallyq̇ = ηj2 ∼ 109W/m3, indicating

that radiation accounts for only 1% of the energetics of thatregion. This radiation loss model

(eqn.(2.43)) was implemented for the LiLFA calculations (§5), and its effect on the solution was

confirmed to be insignificant.
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Figure 2.6: Energy loss rate by radiation for lithium (from ref.[85]).

2.3.6 Equation of State

For a system withN structureless molecules in thermal equilibrium at a temperatureT, moving

freely in a volumeV, the pressure is given by the ideal gas law. However, real molecules are

not structureless, but possess energy in modes other than translational motion. Furthermore, their

motion may be influenced by potentials of the neighboring molecules. In these situations, the

relationship between pressure, density and temperature isof the form,

p = NkBT
∂ lnQ

∂V
. (2.44)

Ignoring nuclear contributions, the total partition function, Q can be written as,

Q = QrotQvibQtrQel , (2.45)

whereQrot is the contribution of rotational energy levels,Qvib that of the vibrational energy levels,

andQel that of the electronic energy levels.

The calculation of the translation partition function for non-interacting particles is relatively
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straightforward and is found to be (cf. ref.[86]), ,

Qtr = V

(

2πMikBT

h2

)3/2

. (2.46)

However, estimating this forinteractingparticles is a nontrivial task. For argon, this information

was obtained from ref.[87]. Based on it, King[17] and Choueiri[88] have derived expressions

to obtain the temperature from pressure and density. As shown in Fig.(2.7), it is clear that at

temperatures at or above104K, the deviations from the ideal gas model are significant. This relation

for the equation of state will be used in the current model, and further details can be found in

the appendix. For lithium, it is known[89, 90, 91, 92] for very high density and/or very high

temperature situations, but not for the parameters of interest to propulsive plasmas. Therefore, this

model currently uses eqn.(2.46) for lithium plasmas, though its validity has yet to be assessed.

As energy is deposited into the internal modes, the ratio of specific heats also changes. This

can be estimated using the internal energy partition function. Fortunately, most of the propellants

of interest to plasma propulsion (Li, Ar, and Xe) are monatomic in nature, and therefore, the
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rotational and vibrational contributions are absent in theinternal energy partition function. Thus

the problem of finding the equation of state of a real gas reduces to the problem of estimating

the electronic excitation partition functionQel. Even this is very difficult to compute for atoms

with multiple electronic levels. Fortunately, this information can be found for many elements of

interest in references such as ref.[87]. Information from ref.[87] was used to compute the ratio of

specific heats for argon.Qel for lithium is simple enough to computed from first principles. The

electronic energy levels for lithium, obtained from ref.[93, 94], are given Table 2.1. Using these,

the electronic energy partition function can be calculatedas,

Qel =
∑

i

gi e
−εi/kBTe. (2.47)

Then,

Qtot = QtrQel. (2.48)

Using this, the internal energy per unit volume,E , can be computed,

E = nkBT
2∂ lnQtot

∂T
. (2.49)

Using the definition of specific enthalpy,

h ≡ E + p, (2.50)

the specific heats can then be calculated using their standard definitions,

cp ≡ ∂h

∂T
, (2.51)

and

cv ≡ ∂E
∂T

. (2.52)

Armed with these parameters, the ratio of specific heats can be calculated as,

γ ≡ cp
cv
. (2.53)
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For argon, information for eqns.(2.47-2.50) was obtained from ref.[87], and for lithium eqns.(2.47)-

(2.53) were calculated from first principles. The resultingratios of specific heats are shown in

Fig.(2.8). As the temperature increases, progressively more electronic energy levels become ac-

cessible, and consequentlyγ continues to drop (γ = 1 is the isothermal case in which an infinite

number of internal energy states are available to absorb energy without raising the temperature).

For argon, the deviation from the ideal value of5/3 is severe at temperatures above104K. In

contrast, lithium’s ratio of specific heats quickly revertsto its ideal value of 5/3 because the gap

between the first and second ionization potentials (5.39 eV and 75.62 eV) is very large. This fact

may be significant for propulsive applications; as discussed in §2.2 and in ref.[10], much of the

power in an argon MPDT exhaust is in internal modes, and is noteasily recovered (hence known

as “frozen flow”); but for lithium, this energy is in thermal energy, which can potentially be recov-

ered as directed kinetic energy.
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2.3.7 Anomalous Transport

It is known that current can drive microinstabilities in a collisional and finite-β magnetized plasma[95]

such as those in MPDTs/LFAs. The presence of current-drivenmicroinstabilities - generalized

lower hybrid drift instability (GLHDI) and electron cyclotron drift instability (ECDI) - in such ac-

celerator plasmas has been established experimentally in the plasma of the MPDT at both low and

high power levels[96, 97]. Exchange of momentum between particles and waves induced by these

microinstabilities gives rise to enhanced values of transport properties (hence the term anomalous

transport), and substantially increases energy dissipation and adversely impacts the efficiency of a

thruster.

Choueiri[58] has developed a model to estimate the resulting anomalous transport and heating

in terms of macroscopic parameters. Under this formulation, apart from the classical collision

frequency of the particles, there exist additional momentum and energy-transferring collisions be-

tween particles and waves. The resulting anomalous collision frequency is important whenever the

ratio of electron drift velocity to ion thermal velocity,

ude

vti

=
j

ene

√

Mi

2kBTh

≥ 1.5 . (2.54)

Above this threshold, the ratio of anomalous collision frequency to classical collision frequency

was found to depend on the classical electron Hall parameter, Ωe, and the ratio of ion to electron

temperatures,Th/Te. Polynomials giving these relations were derived in ref.[58] to be,

νe,an
νe,cl

= {0.192 + 3.33 × 10−2Ωe + 0.212Ω2
e − 8.27 × 10−5Ω3

e}

+Th

Te
{1.23 × 10−3 − 1.58 × 10−2Ωe − 7.89 × 10−3Ω3

e} ,

and are shown in Fig.(2.9). It was shown in ref.[95] that thisrelationship is insensitive to the ion

mass, and therefore it will be used in this work for both lithium and argon. As a result, the effective

resistivity of the plasma is,

ηeff =
me (νe,cl + νe,an)

e2ne
. (2.55)
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Figure 2.9: Ratio of anomalous to classical resistivity in argon plasmas (from ref.[58])

2.3.8 Ionization Processes

It is imperative that, within the acceleration region, a significant fraction of the working fluid re-

mains in a state of ionization, as the free charges are responsible for carrying current, and thereby

establishing the electromagnetic fields required for acceleration[2]. The plasma in a self-field,

quasi-steady MPDT is generally in a state of ionizational nonequilibrium [31]. The reaction rates

for ionization reactions must account for transitions fromthe ground states, as well as those from

excited states. Though some numerical simulations (such asrefs.[30]) have used finite-rate ioniza-

tion models, they do not include higher levels of ionizationthat have been observed experimentally

[12, 98]. There are indications[60] that, for the conditions of interest to MPD plasmas, the solu-

tion of flow fields using the seemingly restrictive assumption of equilibrium ionization may yield

results that are sufficiently close to reality.

In equilibrium, irrespective of the manner in which the species are created, the densities of the
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electrons,ne, ions,ni, and the neutrals ,no, are related by the Saha[99] equation,

nine

ni−1
=

2 (2πmekBT )3/2

h3

∑

l g
i
l e

−εi
l
/kBT

∑

l g
i−1
l e−εi−1

l
/kBT

= Ki , (2.56)

whereεil is the lth energy level of the species of ionization leveli, andgi
l is the corresponding

statistical weight.

Similar expressions can be written for higher ionization levels, with the energy levels scaled

to a common ground. The propellants considered in this work are lithium and argon. Lithium’s

first and second ionization potentials are 5.39 eV and 75.62 eV respectively. The relevant energy

levels of lithium atom, its ions, and their statistical weights are given in Table (2.1), and they have

to be adjusted to the ionization potentials given above. Argon’s first, second and third ionization

potentials are 15.755 eV, 27.63 eV, and 40.90 eV respectively. The relevant energy levels of argon

atom, its ions, and their statistical weights are given in Table (2.2), and they have to be adjusted to

the ionization potentials given above.

Even when thermal nonequilibrium exists between electronsand ions, a modified Saha equation

can be applicable. As shown in refs.[100] and [101], due to the high mobility of the electrons, the

temperature in eqn.(2.56) can be replaced, in such situations, with the temperature of the electron

fluid, and the resulting modified Saha equation is an accuratemodel.

For a model withN levels of ionization, the electron number density can be obtained by finding

the single positive root of the polynomial (from Heiermannet al.[65]),

nN+1
e +

N
∑

l=1

[

nN−l
e (ne − lno)

l
∏

m=1

Km

]

= 0 ,

whereno is the total number density of all nuclei, and the equilibrium constant,Km is from

eqn.(2.56).
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Li I Li II Li III

E0
l (eV) g0

l E+
l (eV) g+

l E++
l (eV) g++

l

0.000 2 0.000 1 0.000 2

1.848 6 59.021 3 91.788 8

3.373 2 60.920 1 108.785 18

3.834 6 61.281 9 1114.735 32

3.879 10 62.216 3

4.341 12 68.780 3

4.522 6 69.278 1

4.541 10 69.368 9

4.541 14 69.584 15

4.748 2 69.588 5

4.837 6 69.647 3

4.847 24

Table 2.1: Energy levels and statistical weights in lithiumand lithium ions (obtained from ref.[93,

94])

2.3.9 Summary of Governing Equations

The nucleus of this model is the set of single fluid MHD equations. The corresponding conser-

vation laws, given by eqns. (2.11), (2.13), (2.16) and (2.32), can be summarized in the vector

form:

∂

∂t



















ρ

ρu

B

E



















+ ∇ ·



















ρu

ρuu + ¯̄p− ¯̄BM

uB − Bu

(E + p)u− ¯̄BM · u



















= ∇ ·



















0

0

¯̄Eres

q



















. (2.58)
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Ar I Ar II Ar III Ar IV

E0
l (eV) g0

l E+
l (eV) g+

l E++
l (eV) g++

l E+++
l (eV) g+++

l

0.000 1 0.059 6 0.111 29 0.000 4

11.577 8 13.476 2 1.737 6 3.478 16

11.802 4 16.420 20 4.124 2 14.671 24

13.096 24 16.702 12 14.214 6 31.133 24

13.319 12 17.177 6 17.856 1 35.568 40

14.019 48 17.688 28 17.964 10

14.242 24 18.016 6 19.460 14

14.509 24 18.300 12 20.066 1

14.690 12 18.438 10 20.222 8

Table 2.2: Energy levels and statistical weights in argon and argon ions (obtained from refs. [102,

98, 103])

Under this framework, ancillary relations such as the energy equation for the individual species,

which do not fit into the conservation form, are solved separately, without affecting the underlying

solver. Notice that the eqns. (2.11), (2.13), (2.16) and (2.32) strictly contain a∇ · B term not

included in the conservation form given in eqn.(2.58). Thisis the topic of the next section.

2.3.10 Zero Divergence Constraint

Though it is physically true that∇ · B ≡ 0, it is often not true numerically, as there may be trun-

cation errors. The treatment of the terms are important, since they could be a cause of numerical

instabilities, as explained in ref.[104]. The technique used here, based on the work of Powell[105],

has a modified eigensystem (see appendix§D) that accounts for any possible errors in∇ · B. The
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Figure 2.10: Variation of ionization fraction with temperature for lithium and argon.

resulting scheme satisfies the relation,

∂

∂t
(∇ · B) + ∇ · [(∇ ·B)u] = 0 . (2.59)

In other words, the numerical scheme used in this work ensures that any artificial source of∇ · B

is convected out of the domain.

In the case of a self-field accelerator in a coaxial geometry,the magnetic field is purely az-

imuthal. If the assumption of axisymmetry is made, then

∇ · B =
1

r

∂Bθ

∂θ
= 0 . (2.60)

Therefore, in this work, the divergence of the magnetic fieldis always zero throughout the domain.

2.4 Summary

In summary, the physical models and the corresponding governing equations that describe MPDT

flows were discussed in this chapter. The set of MHD equations, comprising the conservation
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relations for mass, momentum, energy and magnetic flux were described. Further improvements

to the MHD model, such as the effects of thermal nonequilibrium, anomalous transport effects,

along with relations for classical transport, a real equation of state and a multi-level equilibrium

ionization model, were also developed in this chapter.

The techniques for obtaining a numerical solution of these governing equations will be dis-

cussed in the following chapter.
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Chapter 3

NUMERICAL SOLUTION

No knowledge can be certain if it is not based upon mathematics, or upon some other
knowledge which is itself based upon the mathematical sciences.

Leonardo da Vinci.

As mentioned in§1.3, despite several earlier efforts to simulate MPDT flows,there remains a need

for accurate and robust numerical schemes for this purpose.A new numerical method that has

the potential to overcome the problems described in§1.3, will be described in this chapter. First,

some fundamental concepts, pertaining to the guiding principles to be used in this thesis, will be

reviewed. Then, the characteristics-splitting techniquefor the solution of the convection equations

will be developed and validated. That will be followed by a brief discussion of the well known

techniques for the solution of the diffusion equations.

3.1 Guiding Principles

In light of the discussion in§1.3, it is imperative that the numerical scheme developed inthis work

strictly adheres to the guidelines listed below:
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1. Treat the flow and magnetic field equations in a self-consistent manner,

2. Use a conservative formulation of the problem,

3. Use non-oscillatory discontinuity capturing techniques that satisfy Rankine-Hugoniot rela-

tions, combined with techniques to limit numerical diffusion and improve spatial accuracy.

The mathematical foundation for the numerical solver used in this work will be described in this

chapter.

3.2 Mesh System

The fundamental aspect of a numerical solution obtained using differencing schemes, unlike that

of an analytical solution, is that it is defined on a discrete domain instead of a continuous domain.

A rigorous treatment of this issue can be found in ref.[106],and only the information directly

relevant to the present application will be discussed here.The true domain,D, is divided into small

control volumes,Ωj , whose centers are given by position vectorscj . Within each of these control

volumes, the solutionU(x, t) is approximated by a constantUj (t), which should be considered

as an approximation of the mean value ofU over the cellΩi rather than the value ofU at pointcj,

Uj (t) ∼= 1

|Ωi|

∫

Ωi

U (x, t) d3x, (3.1)

where|Ωi| is the volume ofΩi.

Given an initial distributionU(x, 0), and using the definition in eqn.(3.1), the time rate of

change ofU inside the control volume can be calculated from the sum of the fluxes through its

boundaries,
∂Uj (t)

∂t
= − 1

|Ωi|
∑

∫

Γij

F · nidA, (3.2)

whereΓij is the boundary between cellsΩi andΩj .
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Figure 3.1: Uniform, orthogonal structured grid.

The adjoining issue is the detailed description of the control volumes, their identities, shapes,

sizes, and locations. Mesh generation is an entire field of study in itself, and is beyond the scope of

this work to get into the intricacies of that trade. Only a brief review that is relevant to the problem

at hand will be made.

Generally, cylindrical coordinates are preferable for thestudy of plasma thrusters. Four distinct

techniques of dissecting the domain into control volumes can be identified:

1. Structured, concentric cylindrical shells, separated by lines of constant̂r, θ̂ andẑ. Combined

with the axisymmetric assumption, the control volumes are simply rectangles in ther − z

plane (cf. Fig.(3.1)).

2. Structured shells, separated by lines of a constant stream functions,η, ξ that fit the true

boundaries as close as possible. Combined with the axisymmetric assumption, the control

volumes are quadrilaterals in ther − z plane (cf. Fig.(3.2)).

3. Structured shells, separated by non-orthogonal lines that fit the boundaries (cf. Fig.(3.3)).

4. Unstructured irregular tetrahedrons that fit the complicated boundary exactly. In an axisym-

metric case, the control volumes are triangles in ther − z plane (cf. Fig.(3.3)).
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Figure 3.2: Non-uniform, orthogonal structured grid (obtained from ref.[59]).

Figure 3.3: Non-uniform, non-orthogonal structured grid.
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Figure 3.4: Non-uniform, non-orthogonal unstructured grid.

Grids of type 4 (unstructured) may seem very attractive because of their adaptability to complex

geometries, and have been popular (cf. refs.[56, 61, 63, 64,65, 33]). However there are some

disadvantages that may not be immediately apparent. Unstructured grids are computationally ex-

pensive and there are problems in extending higher order accurate schemes to them. Since the

precise control of geometry may not be as critical to the design of plasma thrusters as it is to, say

aircraft design, the use of unstructured grids may not be as worthwhile. This work currently uses

grids of type 3, shown in Fig.(3.3).

The variables to be computed, given byU in eqn.(3.1), can be stored either in the vertices of

the cells, or in the center of the cells (further discussion can be found in ref.[107]). In the former,

the variables will coincide with the boundary, and they willbe specified as boundary conditions. In

the latter, the faces of the cells will be aligned with the walls, and the fluxes of these variables will

be specified as boundary conditions. While solving the conservative formulation, it is preferable to

choose the cell-centered scheme since specifying the fluxesis more compatible with the governing

equations.
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3.3 Consistency, Stability, and Convergence

The true mathematical form of the systems of conservation laws are integral relations, while the

partial differential forms are actually a special case, in which smoothness of the solution is as-

sumed. To use the differential form in the presence of a discontinuity in the solution, one has to

introduce the concept of weak form of the differential equations (cf. LeVeque[84]). Often, there are

more than one possible weak solutions, of which, of course, only one is physical. If the numerical

scheme converges to a solution, the question to be answered is, “Is it the correct solution?”.

3.3.1 Lax-Wendroff Theorem

The above question is answered by theLax-Wendroff theorem, that states that (cf. [84]):

If the numerical approximation computed with a consistent and conservative method

converges, then the converged solution is the correct solution of the conservation law.

This is a powerful result, but it does not help to determineif a scheme is convergent, but merely

assures that the converged solution is the correct one.

3.3.2 Criteria for Stability and Convergence

For a linear numerical scheme there are a few techniques available to analyze stability. The most

popular of these was developed by John von Neumann[108] during the Manhattan project and is

commonly referred to as the von Neumann stability analysis (VNSA). It involves discrete Fourier

transforming the solution and inspecting the growth of waves in the frequency space. This ap-

proach is intuitively obvious because, like many physical instabilities, numerical instabilities are

often a result of unbounded growth of certain oscillations.Using this technique, it is possible to

determine physically allowable combinations of grid spaces and time steps which will result in a

stable numerical scheme.
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Given a consistent and stable linear numerical scheme, the goal is to ensure that, as the discrete

grid is refined to better emulate the continuous domain of thetrue solution, the discrete solution

approaches the true solution. In other words, the solution should converge. These three concepts,

consistency, stability and convergence, are related by theLax Equivalence Theoremwhich assures

that (cf. ref.[84]):

For a properly posed initial value problem, with a consistent linear numerical scheme,

stability is the necessary and sufficient condition for convergence.

This is indeed a useful result, since the VNSA can determine the stability of a linear method, and

consistency can be easily verified, it is straightforward todetermine if the numerical solution will

converge to the true solution.

However, nonlinear convergence and stability are not simple extensions of their analog in the

linear system. The Lax equivalence theorem is strictly applicable only to linear numerical schemes.

Though some nonlinear equations can be linearized to obtained approximate answers, it is not of

much help for truly nonlinear set of equations. For problems, such as the set of conservation laws

seen in eqn.(2.58), requiring nonlinear operators, the need for establishing convergence still exists.

Compounding the difficulty is the fact that VNSA is of practical use only for linear equations. In

the complex set of highly nonlinear equations, such as MHD equations and Euler equations of com-

pressible gas dynamics, a discrete Fourier transform wouldyield different frequencies. However,

without the principle of linear superposition, any sort of VNSA becomes intractable, as explained

by Laney[109].

Over the years, research in numerical techniques has led to the development of techniques to

determine the stability and convergence of nonlinear systems of equations. The most useful among

these are discussed below.
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Total Variation Diminishing Schemes

One method of analyzing stability stems from the classical concept of total variation in real and

functional analysis (cf. ref.[110]). Harten[111] adaptedthis to the sorts of functions seen in com-

putational gasdynamics. Thetotal variationof a functionU can be defined as:

TV (U) =

∞
∫

−∞

∣

∣

∣

∣

dU

dx

∣

∣

∣

∣

dx. (3.3)

For the discrete situation, eqn.(3.3) can be written as:

TV (Un) =
∑

j

∣

∣Un
j+1 −Un

j

∣

∣ . (3.4)

It can be proven (cf. ref.[109]) that the solutions to the conservation equations must betotal

variation diminishing (TVD)in the sense:

TV
(

Un+1
)

≤ TV (Un) , (3.5)

for all time levels. Since oscillations add to the total variation, the TVD condition cannot be

satisfied by unbounded growth of oscillations. Thus, the TVDcondition can be used as a stability

check for nonlinear equations.

Local Extremum Diminishing Schemes

Though the TVD principle is a popular check for convergence,it has its limitations. Since it im-

poses a condition only on the global variations, a scheme satisfying TVD condition eqn.(3.5) could,

theoretically, allow spurious local oscillations (cf. ref.[109]). A more practical limitation of the

TVD condition is that its extension to multidimensional problems does not provide a satisfactory

measure of oscillations. To overcome both these shortcomings, Jameson[112] has developed the

concept oflocal extremum diminishing (LED)schemes, which is summarized below.

Any time dependent conservation law, such as eqn.(2.58), can be written in a general form:
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dUj

dt
=
∑

j 6=k

Cj,k (Uk −Uj) . (3.6)

If the numerical scheme has a compact stencil, in which the value at the point is directly dependent

only on its nearest neighbors, and if the coefficients are allnon-negative, then:

Cj,k =











≥ 0; k = j ± 1,

= 0; else
(3.7)

If Uj is a local maximum, then,(Uk −Uj) ≤ 0, causingdUj/dt ≤ 0. Conversely, ifUj is a

local minimum, then,(Uk −Uj) ≥ 0, causingdUj/dt ≥ 0. These schemes are, therefore, aptly

calledlocal extremum diminishing(LED). Apart from ensuring that there are no local oscillations,

the schemes built on this condition can be easily extended tomulti dimensions. It can be shown

that TVD is actually a 1-D special case of the LED concept.

It can be shown[112] that schemes built on obtaining information from the upwind part of a

characteristic do satisfy positivity constraints (eqn.(3.7)) and are thus stable. This concept is used

in the developing the numerical scheme used in this work.

3.4 Convergence and Stability Checks

In order to verify convergence, there are two types of diagnostics in the code. In the first diagnostic,

the change of conserved variables between every time level is calculated. In each case the largest

changein the domain, and the averagechangeover the entire domain are stored. Monitoring

the maximum change helps check for stability. Monitoring the average change helps check for

convergence. Since the entire set of eqns.2.58 is of the form,

dU

dt
+ ∇ · F = 0 , (3.8)

monitoring∆t (∇ · F) is an appropriate measure of change in U. The time history of the average

change throughout the domain of an MPDT is shown in Fig.(3.5).
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In the second diagnostic, the maximumvalue in the domain, and the averagevalueover the

domain of the conserved variables are stored. As before, monitoring the maximum value helps

check for stability, and monitoring the average value helpscheck for convergence. The time history

of the average value throughout the domain is shown in Fig.(3.5). From these plots, it was observed

that convergence is reached only after∼ 2.0 × 106 time steps, which corresponds to∼ 200µs of

physical time. The converged values of relevant variables are shown in§4.1.4.

3.5 Conservation Form

From a numerical solution perspective, it can be shown that the conservative formulation is neces-

sary to accurately capture discontinuities. This can be seen even in a simple equation such as the

Burger’s equation (cf. ref.[84]):
∂u

∂t
+
∂ (u2/2)

∂x
= 0 (3.9)

If eqn.(3.9) is solved using non-conservative schemes suchas Lax-Friedrichs,

un+1
j =

un
j+1 + un

j−1

2
− ∆t

[

un
j+1 + un

j−1

2

un
j+1 − un

j−1

2∆x

]

, (3.10)

or backward differencing,

un+1
j = un

j − ∆t

[

un
j

un
j − un

j−1

∆x

]

, (3.11)

it can be verified that both eqns. and give incorrect solutions of eqn.(3.9).

However, a conservative numerical formulation of eqn.(3.9),

un+1
j = un

j − ∆t

2∆x

[

(un
j )

2 − (un
j−1)

2
]

, (3.12)

will give the correct answer. For further information on this issue, refer to LeVeque[84].

Most of the discussion on the numerical techniques has emphasized the hyperbolic nature of

the convective part of the problem. This is because the goal of this work is to simulate problems

in propulsion, consequently computing the flow is the most important part. Also, the convective
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Figure 3.5: A. Convergence rates for the conserved variables; B. Domain averaged values of i)

Density, ii) Axial momentum, iii) Magnetic field, and iv) Total energy at each time step
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problem is the harder one to solve numerically. The dissipative part of the problem, which is

responsible for adding a parabolic nature to the governing equations, is relatively well understood.

However, as explained in section 3.1, there is strong coupling between the hyperbolic and the

parabolic part of the problem.

This coupling raises important issues in spatial as well as temporal discretization. The issue

regarding the time scales is discussed in§3.6.2. In the case of spatial discretization, the issue is that

schemes that are good for parabolic equations are not suitedfor hyperbolic equations. Consider a

simple scalar diffusion equation,
∂u

∂t
= µ

∂2u

∂x2
. (3.13)

A standard scheme to solve this equation is the explicit central differencing scheme:

un+1
j = un

j + ∆t

[

un
j+1 − 2un

j + un
j−1

∆x2

]

. (3.14)

However, it can be easily verified that for a simple scalar convection equation,

∂u

∂t
+ λ

∂u

∂x
= 0, (3.15)

the FTCS scheme analogous to eqn.(3.14) does not satisfy thepositivity condition (eqn.(3.7)) and

even fails the VNSA.

On the other hand, a good scheme for solving the scalar convection equation is the explicit

backward differencing scheme:

un+1
j = un

j − ∆t

(

λ

[

un
j − un

j−1

∆x

)]

. (3.16)

Obviously, this scheme will not work for the diffusion equation because the numerical domain of

dependence does not contain the physical domain of dependence (recall the CFL condition).

Therefore, it is clear that discretization of the convective and dissipative parts of the problem

must be treated separately.
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3.6 Hyperbolic (Convection) Equations

3.6.1 Spatial Discretization

The numerical solution to the set of hyperbolic equations (eqn.2.58 without the diffusion terms)

is based on techniques that are extensively used in computational fluid dynamics. Based on the

pioneering work of Godunov[113], [114], the principles underlying the design of non-oscillatory

discretization schemes for compressible flows have been well established. There are two important

issues in the design of discretization schemes:

• Estimating the numerical flux through cell boundaries, accounting for waves (discussed in

appendix§D) traveling at different speeds, and possibly in differentdirections.

• Obtaining non-oscillatory solutions and capturing discontinuities with sufficient accuracy.

The scheme used in this thesis is developed in terms of local extremum diminishing (LED)

principle of Jameson[112]. The method can be explained using eqn.(2.58) in one spatial dimension,

dUj

dt
+

Hzj+1/2 − Hzj−1/2

∆z
= 0, (3.17)

where,U is the vector of conserved variables, andHz is the approximation of flux in thêz direction.

The true flux, obtained from eqn.(2.58), in theẑ direction can be split as,

Fz(U) = Fz(U)+ + Fz(U)−, (3.18)

where the eigenvalues ofdFz+/dU are all non-negative, and the eigenvalues ofdFz−/dU are all

non-positive. Then, the approximation of flux is estimated as,

Hzj+ 1
2

= Fz+
j + Fz−j+1.

Using eqn.(3.18), this can be rewritten as,

Hzj+ 1
2

=
1

2
(Fzj + Fzj+1) −Dzj+ 1

2
,
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where

Dzj+ 1
2

=
1

2

[{

Fz+
j+1 − Fz+

j

}

−
{

Fz−j+1 − Fz−j
}]

. (3.19)

There still remains a question of howFz+ andFz− can be evaluated. This evaluation is possible

if there is a matrixA, such that

∆Fzj+1/2 = A ·
(

∆Uj+1/2

)

, (3.20)

where∆Fzj+1/2 = Fzj+1 − Fzj , and∆Uj+1/2 = Uj+1 − Uj. Note that, in the case the points

j + 1 andj are on opposite sides of a discontinuity, eqn.(3.20) indicates that this scheme satisfies

the Rankine-Hugoniot jump conditions exactly.

Since the ideal MHD equations are hyperbolic, they have realcharacteristics. Therefore, the

characteristic directions or characteristic manifolds have important physical meaning, since all in-

formation propagates along them (as explained in refs. [115, 72]). Moreover, the eigenvectors of

the Jacobian,A, are orthogonal and can be normalized. Therefore, the Jacobian can be diagonal-

ized as:

A ≡ RΛR−1, (3.21)

whereR contains the right eigenvectors ofA as its columns, andR−1 contains the left eigenvectors

of A as its rows.Λ is the diagonal matrix of eigenvalues ofA. SinceΛ can be easily split into,

Λ = Λ+ + Λ−,

using eqn.(3.21),A can be split as,

A± ≡ RΛ±R−1 . (3.22)

Thus if there exists anA such that eqn.(3.20) is true, then,

∆Fz±j+1/2 = A± ·
(

∆Uj+1/2

)

. (3.23)
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Defining |A| = A+ −A−, eqn.(3.19) can be written as,

Dzj+ 1
2

=
1

2
|A| · ∆Uj+ 1

2
. (3.24)

For the Euler equations, the matrixA was derived by Roe[116, 117]. However, this is not

necessarily applicable to MHD equations. There have been efforts by Cargo[118] to derive such

matrices for MHD equations. The literature[119] suggests that various forms of averaged matrices

work satisfactorily.

From Godunov’s theorem, it is evident that the scheme can only be first-order accurate, if it

is to capture discontinuities. However, away from the discontinuities, the spatial accuracy of the

scheme can be improved by including flux-limited anti-diffusion,Lz, described by Jameson[112]:

Dzj+ 1
2

=
1

2
|A|
[

∆Uj+ 1
2
− Lz

(

∆Uj+ 3
2
,∆Uj− 1

2

)]

. (3.25)

Essentially, this reduces numerical diffusion where it is not required.

Similar equations can be written for the corresponding terms in ther̂ direction.

An alternative to characteristics-splitting for solving conservation form of the equations is to

use artificial viscosity (scalar diffusion). In this formalism, the equivalent expression for eqn.(3.24)

is,

Dzj+ 1
2

=
1

2
|λ|max ∆Uj+ 1

2
. (3.26)

Because of its low computational cost, scalar diffusion schemes such as eqn.(3.26) have been suc-

cessfully adapted for industrial applications such as aircraft design. However, since these schemes

tend to artificially smooth out the solution [112], eqn.(3.26) was only used in this work for com-

parison with eqn.(3.25).

3.6.2 Temporal Discretization

Unlike in fluid mechanics, the equations of MHD allow many different types of waves to exist.

Even though physically the flow velocity is the sought quantity of most interest to propulsion, nu-

58



merically the velocity of the fastest wave is what determines the time-step constraints. In plasmas

of propulsion interest, the fluid velocity isO(104) m/s . For a quasineutral plasma with charge

density ofO(1021)/m3 and thermodynamic pressures ofO(10−1) Torr and magnetic pressure of

O(101) Torr, the fast magnetosonic wave speed is typically of the same order of magnitude as the

flow velocity. This indicates that an explicit time marchingscheme is suitable. From the CFL

criterion, the time step for such a problem would beO(10−8 − 10−9) s.

A multi-stage scheme can be chosen to march forward in time. Writing eqn.(2.58) as,

dU

dt
+ F (U) = 0 , (3.27)

whereF (U) represents the sum of all the fluxes, the multi-stage scheme can be written as:

U1 = Un − α1∆t F (Un) ,

U2 = Un − α2∆t F (U1) ,

U3 = Un − α3∆t F (U2) ,

U4 = Un − α4∆t F (U3) ,

Un+1 = U4 .

(3.28)

The coefficients used in this work areα1 = 0.1084, α2 = 0.2602, α3 = 0.5052, α4 = 1.0, and were

obtained from ref.[120]. This multi-stage scheme offers increased temporal accuracy and stability,

and was therefore used for the unsteady test cases describedbelow. However, it is not beneficial

when only the steady-state solution is sought. In those cases, a standard one-step explicit Euler

time-stepping scheme was used.

3.6.3 Verification

Unsteady Case

Riemann problem

The test problem chosen to validate this scheme was of the classical Riemann problem type, which
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consists of a single jump discontinuity in an otherwise smooth initial conditions. In 1-D the prob-

lem is:

U (x, 0) =











UL if x < L
2

UR if x ≥ L
2

. (3.29)

The Riemann problem was chosen because it is one of the very few that have an analytical solution.

This problem provides an excellent illustration of the wavenature of the equations. The solution

to the Riemann problem is useful to verify the capturing of both smooth waves (characteristics) as

well as non-smooth waves (shocks).

The initial states used were very similar to the Sod’s problem[121] for Euler equations. They

were:

Left :



























































































ρ = 1.0

Vx = 0.0

Vy = 0.0

Vz = 0.0

Bx = 3
4

By = 1.0

Bz = 0.0

p = 1.0

Right :



























































































ρ = 1
8

Vx = 0.0

Vy = 0.0

Vz = 0.0

Bx = 3
4

By = −1.0

Bz = 0.0

p = 1
10

. (3.30)

Some sample results are shown in Fig.(3.6).

The solution was computed at a dimensionless time (defined inref.[122], based on the fast

magnetosonic speed and the grid dimension) ofτ = 0.1, with the initial conditions described

above. The solutions for the magnetic field and pressure profiles, with 400 points in the spatial

dimension, are presented in Fig.(3.6). The number of pointsin the domain, and the timeτ were

chosen to allow comparisons to other works, such as ref.[105].

In these figures, the fast rarefaction (FR) wave can be seen onthe far right and the far left, as

it is the fastest of the waves present in the problem. The slowshock (SS) and the compound wave
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Figure 3.6: Comparison of calculated profiles of pressure and magnetic field, with exact solution

(SM) have speeds less than that of the FR wave.

As seen in these figures, the scheme successfully captures the time-dependent discontinuities.

Steady-State Case

Taylor state

In order to simulate steady-state MHD flows, this solver can be used to solve the unsteady equa-

tions and marched to steady state. An important question is whether the solution remains in that

steady state. To answer this question, a test problem was chosen, whose equilibrium solution is

known analytically. This equilibrium solution is given as the initial condition for the solver. After

marching several hundreds or thousands of time steps, a check is performed if the variables have

changed from the initial conditions.

The test problem chosen for this simulation was the Taylor State configuration[123]. Under

certain conditions, described in ref.[123], when a boundedplasma is allowed to evolve, it will

move quickly and dissipate energy before coming to rest. This stable equilibrium configuration
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can be analytically found using the minimum energy principle, and is of the form:

∇× B = λB, (3.31)

whereλ is an eigenvalue.

Since the current is parallel to the magnetic field, thej × B body force is identically zero.

Furthermore, if there are no thermodynamic pressure gradients, the plasma is in a state of force-

free equilibrium. For an axisymmetric geometry, the resulting magnetic field profile is:

Bθ = B0J1(λr); Bz = B0J0(λr), (3.32)

whereBo is a constant amplitude,J0 andJ1 are Bessel functions of the first kind, of orders0 and

1 respectively.

For a Cartesian grid of dimensionsLx×Lz , with symmetry along thêy direction, the magnetic

field distribution satisfying eqn.(3.31) is:

Bx = −B0√
2

sin
(

mπx
Lx

)

cos
(

nπz
Lz

)

,

By = B0 sin
(

mπx
Lx

)

sin
(

nπz
Lz

)

,

Bz = B0√
2

cos
(

mπx
Lx

)

sin
(

nπz
Lz

)

,

(3.33)

wherem andn are eigenvalues.

With these initial conditions, the code was run for104 time steps (based on the fast magne-

toacoustic speed) on a100 × 100 grid. At the end, the solution had deviated from equilibriumby

less than 0.5%. The results from the code forBx given in eqn.(3.33) are compared with the exact

solution in Fig.(3.7).

Thus theproperty of linearity preservationhas been successfully verified for this solver.
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Figure 3.7: Magnetic field in the Taylor state configuration

3.7 Parabolic (Diffusion) Equations

3.7.1 Spatial Discretization

Numerical methods for parabolic equations are relatively commonplace. The parabolic terms can

be written as,

Sdis = ∇ ·



















0

0

¯̄Eres

q



















,

where

∇ · ¯̄Eres = −∇×
[

¯̄η · (∇× B)

µo

]

,

represents the resistive diffusion of the magnetic flux, including the Hall effect, and,

∇ · q = ∇ ·
[{

−E′ × B

µo

}

+ {kth∇T}
]

, (3.34)
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represents the energy sources/sinks due to viscous heating, Ohmic heating, and thermal conduction

respectively. The first term, energy dissipation due to viscosity, can be shown[18] to be several

orders of magnitude less than Ohmic heating, and therefore will be ignored henceforth.

Thus, the equations dictate that the numerical scheme should be second-order accurate in space.

In the framework used here, this implies that the first derivatives of variables are to be known across

cell faces. Therefore, a simple central-differencing scheme will be sufficient for this problem.

3.7.2 Temporal Discretization

Physical dissipation brings in different characteristic time scales into the problem. They are:

Magnetic diffusion: =µo∆r
2/η ∼ 10−10 − 10−11 s,

Thermal conduction: =nekB∆r2/kth ∼ 10−9 − 10−11 s.

Since these time scales could reach the extremities of the ranges mentioned, the choice of the

time stepping scheme can be made on a case-by-case basis. If they are not vastly different, and an

explicit fractional time-steppingscheme can be chosen.

In the situations when the time scales are less than two orders of magnitude apart, it may not be

worthwhile to choose an implicit scheme, however a standardexplicit or multi-stage time-stepping

scheme would be expensive because it would require evaluating the convective fluxes at the time

scales of dissipative fluxes. In order to find an optimum, a fractional time-stepping scheme can be

chosen. In this method, the equation,

∂U

∂t
+ ∇ · ¯̄Fconv = ∇ · ¯̄Fdiff , (3.35)

is marched forward at the dissipative time scale,∆td, dictated by the dissipative fluxes,̄̄Fdiff .

However the convective fluxes,̄̄Fconv, are evaluated only afterN dissipative time steps. The

numberN is chosen such that the effective convective time step,∆tc = N∆td, is still smaller

then the convective time step dictated by the CFL condition.By reducing the time consuming

operation of evaluation of the convective fluxes, the effective speed of the computation increases
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significantly. In this workN ' 10 to 25 has been tried successfully. It should be noted that

fractional time stepping is beneficial only if evaluation ofconvective fluxes is expensive compared

internal calculations.

3.8 Application of Governing Equations

The conservation form of the MHD equations, given in eqn.(2.58), describe the evolution of

eight variables, namely the total density (ρ), three components of momentum (ρu, ρv, ρw), three

components of magnetic field (Br, Bθ, Bz), and the total energy (E). However, in a self-field

MPDT/LiLFA the magnetic field is purely azimuthal. Moreover, due to the assumption of axisym-

metry, azimuthal momentum can be neglected. Though the solver described in§3.1 - §3.7 is for

the generalized set of eight equations, it can be reduced fora system of five equations: the total

density (ρ), two components of momentum (ρu, ρw), one component of magnetic field (Bθ), and

the total energy (E).

Expanding the vector-tensor form of eqn.(2.58) in cylindrical coordinates, using the identities

eqns. (C.5), (C.6), and (C.7), along with the assumptions stated above, the MHD equations are:

∂

∂t



























ρ

ρu

ρw

Bθ

E



























+
∂

∂r



























ρu

ρu2 + p + B2

2µo

ρuw

−E ′
z + uBθ

u
(

E + p+ B2

2µo

)

− qr



























+
∂

∂z



























ρw

ρuw

ρw2 + p+ B2

2µo

E ′
r + wBθ

w
(

E + p + B2

2µo

)

− qz



























= Sr (3.36)
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with

Sr = −1

r



























ρu

ρu2 + B2

µo

ρuw

0

u
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These equations are solved, in combination with species energy equations (eqn.(2.40) and/or

eqn.(2.41)), at every time level, throughout a specified domain (to be described in§4.2.1), for a

given set of initial and boundary conditions, to be described in §4.1.3 and§4.1.2 respectively.

3.9 Finite Volume Formulation

The MHD equations, in eqns.(2.58 & 3.36) are conservation relations for massdensity, momentum

density, magnetic flux, and energydensity. However, in reality, the conserved quantities are, mass,

momentum, magnetic flux, and energy. Therefore, the first, second, and the fourth equations in the

set eqn.(2.58) need to be multiplied by the volume element. In cylindrical coordinates, the volume

of the cell is2πr dr dz.

Equations of the form,
∂U

∂t
=
∂Fr

∂r
+
∂Fz

∂z
+ S , (3.37)

upon multiplication by the volume of the cell (2πr dr dz) take the form,

∂ (rU)

∂t
=
∂ (rFr)

∂r
+
∂ (rFz)

∂z
+ (S − Fr) . (3.38)
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3.9.1 Integral Form

Now, these equations can be written in their integral form. Every one of these five conservation

laws (for mass, radial momentum, axial momentum, magnetic flux, and total energy) can be indi-

vidually integrated over the cell area,

∫∫

A

[

∂U

∂t
=

(

∂Fr

∂r
+
∂Fz

∂z

)

+ Source

]

dA . (3.39)

Now, if a vectorF̂ = [Fz,−Fr], is defined, then,

∇× F̂|θ =
∂F̂r

∂z
− ∂F̂z

∂r
=
∂Fr

∂r
+
∂Fz

∂z
. (3.40)

Then, the right hand side of eqn.(3.39) can be expressed as the curl of F̂. Then, using Stokes’

theorem, this curl over the cell area can be expressed as the line integral around the edges of the

cell,
∫∫

A

∂U

∂t
dA =

∮

F̂ · dl +

∫∫

A

(Source) dA . (3.41)

Since this equation is true irrespective of the shape of the control volume, the fluxesFr andFzcan

written in the (r,z) coordinate system, as shown in eqn.(3.42), regardless of the shape of the cell.

So, the finite volume formulation of eqn.(2.58) is,
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(3.42)

whereqr andqz are the same as in eqn.(3.36).

3.9.2 Derivatives in Non-orthogonal Coordinates

As it is apparent from eqn.(3.42), evaluation of dissipative fluxes requires computation ofjr, jz as

well as∂T/∂r and∂T/∂z across the bounding surfaces of a cell. In an orthogonal gridsystem,

the gradients can be simply estimated as,

∂B

∂z

∣

∣

∣

∣

J,K+ 1
2

=
BJ,K+1 − BJ,K

∆z
, (3.43)

and so forth.

However, in a non-orthogonal grid, the points (J,K) and (J,K+1) are not along the lines of

constant “r”. So, the gradients have to be estimated in a different manner.

Recall that, if some vector̂B = [0,−rB], then,

∇× B̂ =
∂(rB)

∂r
. (3.44)
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Figure 3.8: A general non-orthogonal control volume.

Using Stokes’ theorem, this becomes,

jz =
1

µo

1

r

∂(rB)

∂r
=

1

µo

1

r

1

AJ+ 1
2
,K

∮

[0,−rB] · dl . (3.45)

Similarly, if B̂ = [B, 0], then,

∇× B̂ =
∂B

∂z
, (3.46)

which becomes,

jr = − 1

µo

∂B

∂z
= − 1

µo

1

AJ,K+ 1
2

∮

[B, 0] · dl . (3.47)

Here,AJ,K+ 1
2

andAJ+ 1
2
,K refer to the areas of the dotted cells in fig.(3.8) to the rightand top,

respectively. They can be estimated a simple averages of thecontrol volumes.

The contour integrals in eqns.(3.47,3.45) require estimation ofB alongdl, which is the dotted

line in fig.(3.8). First, the line element vectors,dl, themselves have to be computed from the

coordinates of the vertices and the center of the cell. Then,B along this line element can be

obtained by averaging from the nearby cell centers.

Now that the derivatives can be estimated across non-orthogonal surfaces, it enables the evalu-

ation of all necessary fluxes. With this, all the pieces are inplace for calculating the flowfields in

real thrusters.
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3.10 Parallel Computing

As described in§3.4 it takesO(106) time steps for a time-dependent simulation to reach steady

state. In real time, this takes a single CPU roughly 200 to 400hours to do this work. Clearly,

there is a need to increase the computational speed to solve the problem at hand. With the current

trend in high performance computer architectures being away from single processor scalar/vector

machines, and toward the design and construction of parallel machines, it is important to exploit

the strength of parallel computing platforms (cf. ref.[124]) for this purpose. A successful par-

allel implementation of a numerical algorithm must addresshow to allocate available resources

(CPU/memory), how the algorithm itself is amenable to parallelization, and how the processors

communicate efficiently.

For a given multiprocessor architecture, two distinct means of utilizing the computational

power to solve a given problem can be identified: process decomposition, and domain decom-

position (cf. ref.[125]).

3.10.1 Process Decomposition

Process decomposition involves allocating specific processors to specific portions of the algorithm.

For instance, ifntot processors are available to solve the problem at hand, thenn1 processors could

be allocated to compute the convective fluxes,n2 to compute diffusive fluxes,n3 for equation of

state and ionization calculations, andn4 to coordinate the entire process and update the solution.

This method of resource allocation is effective when the available processors are of varying com-

putational speeds. In that case, the fastest one could be assigned to the most intensive task, and so

forth. It also works if the processors are of different types. Any available vector processors could

be used to calculate flux term (which can be vectorized easily), while terms/operations that cannot

be vectorized easily (such as matrix inversions) can be assigned to scalar processors. This method

is the preferred choice of processor allocation under the Parallel Virtual Machine (PVM) school
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of parallel computing (cf. ref.[125]). However, three notable problems can be identified with this

approach:

1. Ensuring that all the processors “load balanced”, i.e., each complete their part of the job at

the same time,

2. Difficulties if the computer memory were distributed across various processors (as it is in

the case of the machine that was used in this work - a “Beowulf cluster”, or the SGI Origin

2000 system),

3. Scalability: the code has to be rewritten if the number of available processors change.

Due to the abovementioned difficulties, it is better to follow the domain decomposition method of

parallel computing for this work.

3.10.2 Domain Decomposition

In this technique, the computational domain is divided intosmaller domains, and these smaller do-

mains are assigned to each of the available processors. Eachprocessor only computes the solution

in the domain it is assigned. This offers advantage on all of the three problem fronts listed above:

1. If the domain of each processor is roughly of the same size,then all processors will finish

one time step at roughly the same time, and if necessary, communicate with each other

about the updated solution. This feature, often termed as “load balancing” ensures maximum

utilization of the available computing power,

2. Domain decomposition works for either shared memory or distributed memory systems,

3. With domain decomposition, transporting the code acrosscomputers with varying number

of processors is a relatively easy task.
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Message Passing

If domain decomposition is used with shared memory systems,there is no overhead cost for com-

munication (except possibly if memory access slows down). However, in distributed computing

systems like the “Beowulf” clusters (which are very popularbecause of their scalability and inex-

pensive nature), there is a need for communication between processors.

In order to estimate the values at timet near the boundaries, processors require knowledge of

variables (at timet − ∆t) that lie just outside the boundaries of their domain. Underthe current

discretization scheme, each processor needs exactly one row of cells from each of its neighboring

processor’s domain, as illustrated in Fig.(3.10.2).

It is important to note that inter-processor communicationis significantlyslower than the com-

putational speed of a processor itself. There are two factors to this: the first is latency, the time

it takes between when a processor sends a request for data andwhen it receives it; the second is

bandwidth, which determines the rate of transfer of information between the processors. There-

fore, care must be exercised to minimize this overhead. In this work, we use the widely-accepted

Message Passing Interface (MPI) standard [126] to handle these inter-processor communications

in a reasonably efficient manner.
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Figure 3.9: Information sent and received by a processor

There are certain parts of the code (such as input/output, convergence checks, and estimating

global time steps) that are not amenable to parallelization. This constitutes an overhead, and we

assign a separate processor (termed MASTER) to handle this.All the other processors (termed

WORKERS) are exclusively involved in computation of the solution within their assigned do-

mains, or are communicating with other processors for this purpose. The schematic of the calcula-

tions in our code is shown in Fig.(3.10).
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Figure 3.10: Flow chart of the parallel MHD code
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3.10.3 Parallelization Results

Ideally, if a single processor takesτ amount of time to solve a problem, thenN processors would

only takeτ/N to solve the same problem. Unfortunately, with the communication costs and over-

heads, this is not possible. In order to verify the effectiveness of the MPI algorithm with domain

decomposition for parallelization, the 2-D heat diffusionheat equation

∂T

∂t
= ∇2T , (3.48)

was solved on a 500× 500 grid. This domain was decomposed into several parts, andthe speed up

from a single processor calculated was noted. The results from these tests are shown in Fig.(3.11).
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Figure 3.11: Effectiveness of parallelization by domain decomposition, for solving the thermal

diffusion equation

The problem at hand, the simulation of plasma flows in a MPDT, was then run with 11 pro-
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cessors (10 workers + 1 master). This parallelized code was 7.5 faster than the serial code. While

improvements to this 70% parallelization efficiency are possible with some effort, it was not in the

larger interest of this research and was not pursued.

3.11 Summary

The fundamental concepts of stability and convergence of a numerical solution were reviewed

in the context of the techniques used in this work. The concept of local extremum diminishing

(LED) schemes was introduced, and a new characteristics-splitting scheme, with flux-limited anti-

diffusion to improve spatial accuracy was developed for thesolution of the ideal MHD equations.

This scheme was validated against unsteady (Riemann problem) and force-free equilibrium (Taylor

state) test cases, and has demonstrated the ability the capture discontinuities monotonically, and

good spatial accuracy in smooth regions of the solution. Standard central differencing techniques

are used for the numerical solution of parabolic equations.These schemes are implemented on

a non-orthogonal structured mesh, and computed on a parallel computing system. The next two

chapters will discuss the applications of this code to simulate plasma flows in real MPDT/LiLFA

configurations.
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Chapter 4

GAS-FED MPDT SIMULATIONS

“Has anything escaped me? I trust that there is nothing of consequence which I have
overlooked?”

Dr.Watson to Sherlock Holmes
in The Hound of the Baskervilles

This chapter describes how the governing equations developed in chapter 2 were solved, using

the numerical techniques described in chapter 3, to simulate plasma flows in a gas-fed self-field

MPDTs. The purpose of doing this is two-fold:

1. Validate the code by comparing its results with thrustersfor which detailed experimental

data exist, in order to make predictions on thrusters (such as the LiLFA) for which detailed

experimental data does not exist, and

2. Aid in the understanding of thrust production and energy dissipation in gas-fed MPDTs.

The geometries of the gas-fed MPDTs chosen for simulation, and the relevant initial and bound-

ary conditions for obtaining a solution are described in this chapter. The resulting profiles for many

plasma parameters, obtained from the calculations, are compared to experimental data.

We will first simulate a MPDT configuration that is simple but without much experimental

data, and then move on to a more complicated geometry for which there is more data.
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4.1 Villani-H Thruster

The first geometry chosen for this simulation was one of the series of constant area coaxial thrusters

used by Villani[18], shown in Fig.(4.1). The simplicity of its geometry makes it an attractive choice

to validate a numerical code.

4.1.1 Geometry

The computational domain for simulating the flowfield in thisthruster is shown in Fig.(4.2). Due to

the assumption of axisymmetry, only half of the cross section, starting from the centerline (surface

#1), had to be included in the simulation.

In this particular case, the cathode and the anode radii were0.95 cm and 5.10 cm respectively.

The cathode and the anode lengths were 26.4 cm and 20.0 cm respectively. For simplicity, the

hemispherical tip of the cathode was represented as a flat tip(surface #8) in the simulation. For

the same reason, the anode in the simulation has a sharp corner (interface of surfaces #4 and #5),

instead of the rounded corner of the actual anode.

The location of propellant injection ports in the real thruster are shown in Fig.(4.1). Due to the

complexity of the physical processes near the inlet region in MPDTs (to be discussed in§4.1.2),

the simulation has pre-ionized propellant entering the domain uniformly (surface #6).

The real thruster would operate either in the unbounded vacuum of space or in a bounded vac-

uum of a test chamber. However, the computational domain hasto be restricted to something much

smaller in size (surfaces #2 and #3). In this case, it is truncated at one cathode length downstream

of the tip of the cathode (52.8 cm), which is more than three anode diameters downstream of the

anode plane. Issues regarding this truncation are discussed in §4.1.2.
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Figure 4.1: Geometry of the thruster chosen for simulation (lc = 26.4 cm)
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Figure 4.2: Schematic of the computational domain (not to scale)
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4.1.2 Boundary Conditions

The set of governing equations (eqns.(3.36)) describe the evolution of many types of drastically

different plasma flows. It is the role of the boundary conditions to distinguish one problem from

another. For the particular MPDT simulation at hand, there are eight boundaries in the computa-

tional domain (see Fig.(4.2)), and they are of various types. This section will discuss the estimation

of the convective and dissipative terms at each type of boundary.

Flow Properties

Freestream

The computational domain is assumed to be large enough such that there are no normal gradients

in any of the flow properties at the free stream boundaries (surfaces #2 and #3).

Solid Walls

In reality, a sheath is formed at the interface of the plasma and the solid boundaries (surfaces #4,

#5, #7, and #8). However, the sheath is a non-quasineutral region, and the fluid theory is not

applicable there. Moreover, the size of the sheath region istypically of the order of a few Debye

lengths, making it too small to be resolved by conventional grids. Therefore sheaths are currently

ignored in this simulation. Discussion on inclusion of thiseffect will be made in§6.

At solid boundaries, all convective fluxes into the wall, given in eqn.(2.58), are zero because

n · u = 0.

However, diffusive fluxes are nonzero. To calculate thermalconduction into a wall, the equa-

tions require that either the temperature of the wall, or thenet heat flux to the wall itself, be

specified. Ideally, the simulation would self-consistently and continuously compute the heat trans-

fer from the plasma to the wall, then the heat transfer withinthe metallic conductor, then calculate

the temperature distribution of the wall, and from that information recompute the heat transfer

from the plasma to the wall. Clearly, these calculations arecomputationally expensive, and may
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be impractical. However, there isn’t sufficient data to makegood estimates of either of those quan-

tities. Unlike the LiLFA (described in§1.3, and in refs.[40, 39]), high-power, inert gas, self-field

MPDTs are generally operated in a quasi-steady mode, in which the pulse length are∼ 1 ms. The

heat capacity of the plasma is typically not high enough to raise the temperature of the electrodes

significantly in that duration. It is possible that there is avery thin layer that is hot enough to emit

thermionically. Unfortunately, there have been no known reliable measurements of heat transfer

or electrode temperature distribution in a quasi-steady pulse. In reality, there may be a thermal

boundary layer in which the temperature varies from a few hundred Kelvin to more than an eV

in a very small distance. Such sharp gradients may not be resolvable in simulations. Therefore

judicious estimates for heat transfer or wall temperature has to be made. The results in§4.1.4 were

obtained with the temperature of the wall fixed at 2500 K.

Centerline

At the axis of symmetry (surface #1), there are no radial convective fluxes. Moreover, there are no

radial gradients. Therefore, there is no thermal conduction across the centerline.

Inlet

At the inlet (surface #6), a specified mass flow rate of the propellant enters at a specified temper-

ature at sonic conditions. In reality, the propellant is injected as neutral gas at room temperature,

and it gets almost fully ionized within a few millimeters from the inlet[98]. Classical theory cannot

explain this high rate of ionization, and it has been proposed[127] that a non-Maxwellian electron

energy distribution, resulting from plasma microturbulence, is the cause for this. Since this process

cannot be modeled by fluid theory, the inlet temperature is chosen to be high enough (1.0 eV) such

that the propellant is sufficiently ionized. Effectively, the backplate of the numerical model is not

the true backplate, but a region located few millimeters downstream of it.

On this issue, the present simulation distinctly differs from that of ref.[68], and ref.[63]. In both

these simulations, the propellant is injected at close to room temperatures, and ionization is allowed
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to develop in a classical fashion. Therefore, in both ref.[68] and ref.[63], the plasma is only weakly

ionized through most of the thruster channel. However, experimental measurements[98, 128] show

that the propellant is fully ionized upstream in the channel. Therefore, in the present simulation,

the plasma is set to be fully ionized at the inlet.

Field Properties

Freestream

The computational domain is chosen to be large enough such that all the current is enclosed within

the domain. Thus, from Ampère’s law, the magnetic field at the free stream boundaries (surfaces

#2 and #3) is zero. Note that if the domain is too small making this assumption unreasonable,

the simulation will yield unphysical results. For instance, the gasdynamic pressure is obtained

by subtracting the contributions of magnetic field energy and kinetic energy from the total energy

(refer to§2.3.4). If the magnetic field is artificially set to zero at thefreestream boundaries, then

there will be a corresponding unphysical increase in the gasdynamic pressure. Therefore, the

domain has to be large enough to make this assumption reasonable.

Solid Walls

At all other boundaries, the magnetic field is computed purely from Faraday’s law. Using Stokes’

theorem it can be written as,
∫

A

∂B

∂t
· dA = −

∮

C

E · dl . (4.1)

In the cell-centered scheme used in this work, eqn.(5.1) implies that the evolution of the mag-

netic flux is specified by the contour integral of electric field around the cell. Therefore, the only

information required is the electric field drop along the boundaries.

From classical electromagnetic theory[129], the jump in the magnetic field,H2 − H1, across

an interface between two media has to satisfy the relation,

n̂ × (H2 − H1) = Js , (4.2)
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whereJs is the surface current per unit length. Due to the no mass flux condition, the potential

drop at a wall (surfaces #4, #5, #7, and #8) is entirely resistive, and is given by,

Ew = ηwjw . (4.3)

At conducting boundaries (surfaces #4, #5, #7, and #8), all the current entering the discharge

flows at the surface, at least in the transient case. Therefore, even though resistivity,ηw, for most

conductors is very small compared to the plasma resistivity(in the 1 to 3 eV range - see fig.(2.3)),

ηplasma ∼ O (10−3 − 10−4) Ohm.m,

ηcopper = 1.7 × 10−8 Ohm.m,

ηtungsten = 5.6 × 10−8 Ohm.m,

(4.4)

the surface electric field is significant, due to the large current density in the transient case. In a

true steady state, after the magnetic field has diffused intothe conductor, the surface potential drop

decreases to zero.

At insulated boundaries, the magnetic field diffuses into the wall instantaneously. Therefore,

the jump in the magnetic field, and subsequently the surface current, is zero.

Centerline

At the axis of symmetry (surface #1), the inductive component of the electric field is zero because

there is no flow across it. The resistive component can be related to the magnetic field from the

point next tor = 0 using a simple Taylor series expansion, and is found to be,

E ′
z|r=0 = ηjz|r=0 = η

4 Bθ|∆r/2

µo∆r
. (4.5)

Inlet

At the backplate, which also serves as the inlet (surface #6), the total voltage drop is set as the

boundary condition. Emulating a true constant current circuit, this applied voltage is adjusted

every time step to maintain the specified amount of current toflow in the channel.
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4.1.3 Initial Conditions

The governing equations (3.36) also require that the initial spatial distribution of the quantities be

prescribed. The code is typically started with the entire domain filled with a background pressure

of 10−4 Torr at a temperature of 300 K.

Then, the inlet boundary conditions, which represent a specified mass flow rate of fully ionized

plasma, are imposed. After this plasma has filled the thrust chamber, the voltage at the backplate

is made finite, introducing the effects of current and the magnetic field into the problem. For the

calculations shown in§4.1.4, the current increased from 0 to 15 kA in∼ 5µs, and this rate is

controlled by the adjustments to backplate voltage every time step.

As the arc hears the propellant, its ionization level (Z) andthe ratio of specific heats (γ) change

rapidly (see figs.(2.10,2.8). If the current rise rate (dJ/dt) is too high, there may be a need to temper

these rapid changes in the first few microseconds. For instance, letγ∗ be the calculated value of

γ at a time leveln + 1, andγn be the old value at time leveln. Then, the value ofγ used at time

leveln+ 1 is:

γn+1 = {αγ∗} + {(1 − α) γn} , (4.6)

whereα is a relaxation parameter between 0 and 1. A similar method isused for introducing

ionization effects.

4.1.4 Results

The results shown in this section are for the geometry in§4.2.1, with argon flowing in at 6.0

g/s and a discharge current levels of 15.0 kA and 20.0 kA. The J= 15.0 kA case corresponds to

nominal operating conditions for the MPDT, since, from eqn.(2.8),ξ = 1.0. The J = 20.0 kA case

corresponds toξ = 1.4. The calculated profiles of various relevant quantities areshown in this

section, with some comparisons to relevant measurements.
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Density

The electron number densities within the chamber range from' 1×1021/m3 near the anode region,

to ' 3 × 1021/m3 near the cathode (see Fig.(4.3-I)). This increase may be attributed to the radial

pumping force,jzBθ, which pushes the plasma away from the anode, towards the cathode. This

trend has been observed in experiments[28] and in previous simulations[30] in various MPDTs.

As expected, this effect increases with increasing current, as seen in Fig.(4.3-I).
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Figure 4.3: Panel I. shows the calculated values of electronnumber density (m−3). Panel II. shows

the calculated values of effective ionization fraction. Panel III. shows the calculated values electron

temperature (eV). Panel IV. shows the calculated values iontemperature (eV). In each panel, the

calculated values are shown for two different values of current: a.) J = 15.0 kA, and b.) J = 20.0

kA. The massflow ratėm = 6.0 g/s or argon in all cases.
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Ionization Levels

The effective ionization fraction is,

Z =
ne

i=N
∑

i=0

ni

, (4.7)

wherene is the electron number density, andni is the density of theith ionized species. The re-

sulting distribution is shown in Fig.(4.3-II). The presence of Ar-III and a small amount of Ar-IV

in the plume is in agreement with experimental observations(cf. ref.[12]) for these operating con-

ditions. As expected, the fraction of higher levels of ionization increases with increasing current.

From Fig.(4.3-II), it can be seen that the effective ionization fraction in the chamber isZ ' 1.0,

indicating that the propellant is in a sufficiently high state of ionization to carry the current.

Electron Temperatures

The distribution of electron temperatures is shown in Fig.(4.3-III). Within the thrust chamber,Te

varies from about 1.0 to 1.5 eV. The lower values near the anode are probably due to the lower

value ofηj2 at higherr, and large heat transfer to the walls. Nevertheless, these numbers are in

general agreement with measurement[130] at these operating conditions for argon MPDTs.

The hot spot at the tip of the anode, whereTe is about 2.0 eV, is probably due to the strong

current attachment in that region, causing augmented values of Ohmic heating. The hot spot at the

tip of the cathode, whereTe is about 2.0 eV for theξ = 1.0 case and about 2.8 eV for theξ = 1.4

case, may be due to stagnation, when the kinetic energy of theelectron fluid is reduced and appears

as thermal energy.

Ion Temperatures

The distribution of ion temperatures is shown in Fig.(4.3-IV). Within the thrust chamber,Th varies

from about 1.0 to 1.5 eV for theξ = 1.0 case, and reaches 2.0 eV for theξ = 1.4 case. The hottest
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region of ion temperature occurs at the axis of symmetry. At the center of the cathode tip (r=0), the

ion temperature exceeds 4.0 eV. A partial explanation for this region of high temperature may once

again be related to stagnation. Another possible explanation could be that the axisymmetric as-

sumption causes thermal conduction at the centerline to go to zero. If there are symmetry breaking

oscillations in reality, then there would be thermal conduction that would reduce the temperature

in that region[131]. Nevertheless, these numbers are reasonable for these operating conditions for

argon MPDTs.

Velocities

The distribution of axial velocities in the domain are shownin Fig.(4.4-I). At the anode plane, the

axial velocity ranges from 8.0 km/s to 15.0 km/s for theξ = 1.0 case, and up to 18.0 km/s for

theξ = 1.4 case. The maximum velocity increases to a maximum (of 17.0 km/s for theξ = 1.0

case, and up to 21.5 km/s for theξ = 1.4 case) slightly further downstream. As expected, the

velocity increases with decreasing radius, because of the similar trend inj×B. The mass averaged

velocities, (7.2 km/s for theξ = 1.0 case and 13.5 km/s for theξ = 1.4 case, is typical for MPDTs

at this operating condition (see§4.2.3).
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Figure 4.4: Panel I. shows the calculated values of axial velocity (m/s). Panel II. shows the cal-

culated values of the electron Hall parameter. Panel III. shows the calculated ratios of anomalous

to classical resistivity. In each panel, the calculated values are shown for two different values of

current: a.) J = 15.0 kA, and b.) J = 20.0 kA. The mass flow rateṁ = 6.0 g/s or argon in all cases.

Figure 4.5: Calculated velocity stream lines in the flow. J = 15.0 kA, ṁ = 6.0 g/s.
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Figure 4.6: Calculated distribution of magnetic field (as % of maximum). J = 15.0 kA,ṁ = 6.0

g/s.

To look at the effect of radial velocity on the flow, the velocity streamlines (where the velocity

vector is a tangent at every point) are shown throughout the domain in Fig.(4.5) for theξ = 1.0

case.

Magnetic Field & Enclosed Current

The spatial distribution of magnetic field strength in the domain is shown in Fig.(4.6), as a fraction

of the maximum value. The maximum value attained, (0.26 T forthe ξ = 1.0 case and 0.34 T

for the ξ = 1.4 case), occurs at the intersection of the backplate and the cathode. Generally,Bθ

varies as1/r with radius and decreases linearly with axial distance. This is strictly true only for

a uniform current distribution in the channel. However, thecurrent and magnetic field propagate

downstream via convection and diffusion, and their distributions are no longer uniform.

The enclosed current is calculated as,

Jencl =
2πrBθ

µo

. (4.8)

The measured and calculated current contours are compared in Fig.(4.7) for theξ = 1.0 case.

The tendency of the current lines to be blown downstream is clearly seen. This pattern is generally

observed experimentally in many MPDT geometries. However,it is also evident that in the simula-

tion the current has not propagated as far downstream as in the experiment. A possible explanation
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is that the current in the experiment was allowed to attach onthe outer surface of the anode, while

it was not permitted to do so in the simulation.

Figure 4.7: Calculated (top) and measured (bottom) currentcontours. J = 15.0 kA,̇m = 6.0 g/s.

Electric Field & Potential

The calculated values of radial and axial electric fields areshown in Fig.(4.8) for theξ = 1.0 case.
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Figure 4.8: Radial and axial electric field contours (in Volts/m). J = 15.0 kA,ṁ = 6.0 g/s.

By definition, the relationship between a static electric field and its potential is,

E (r, z) = −∇φ (r, z) . (4.9)

So, the potential difference between any two points can be calculated as,

φ (r2) − φ (r1) = −
r2
∫

r1

E · dr ,

φ (z2) − φ (z1) = −
z2
∫

z1

E · dz . (4.10)

In this calculation, the anode was set at a reference potential of 0. The potential at every other point

in the domain was computed using eqn.(4.10). It is importantto note that the predicted values of

voltage do not include electrode drops, and are therefore cannot be compared to the measured

value across the electrodes. They only serve to quantify theplasma part of the voltage drop. This

simulation predicts a voltage drop across the plasma of 30.83 Volts. The true voltage drop is 56

Volts [18], and the difference can be attributed to the 25 Volts of anode drop that was measured.

Since the experimental measurements indicate that the anode drop is 25 V, the calculated potential
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contours were shifted by 25 V. Though this value is not a constant along the anode, it nevertheless

allows comparison of calculations with measurements. These contours are shown in Fig.(4.9),

with the unadjusted calculated values shown in parentheses. It can be seen that the region in space

that corresponds to the 30 V contour in the experiment, roughly corresponds to the 33 V in the

adjusted contour in the simulation. Similarly, the region in space that corresponds to the 40 V

contour in experiment, roughly corresponds to the 45 V adjusted contour in calculation. Again,

it is important to bear in mind that the calculated contours were shifted by an estimate for anode

drop. The purpose of this is not to obtain any insight into theoperation of the device, but merely

to check if the simulation results are reasonable. Having verified it to be so, such adjustments will

not be made in the subsequent calculations.

Anode

Cathode

(8)

(20)

Figure 4.9: Calculated (top) and measured (bottom) potential contours. The numbers in paranthesis

in the calculated contours are the values that are unadjusted for measured anode drop. J = 15.0 kA,

ṁ = 6.0 g/s.
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Hall Parameter & Anomalous Transport

The distribution of the electron Hall parameter in the domain is shown in Fig.(4.4-II). Within

the channel, it varies from 0.3 to 1.2 for theξ = 1.0 case, and up to 2.0 for theξ = 1.4 case.

Since the magnetic field and species temperatures increase with decreasing radius, so does the

Hall parameter. Outside the channel, the Hall parameter is higher at the electrode tips than in

any other region. Once again, referring to Fig.(4.6) and Fig.(4.4-III), the magnetic field is higher

(cyclotron frequency is higher) and temperatures are higher (collision frequencies are lower) in

those regions.

It is worth noting that these values of the electron Hall parameter are substantially lower than

those observed in other MPDT configurations, such as the FSBT(mentioned in§2.2, and discussed

in detail in§4.2). This is because, unlike in the FSBT where the anode is only a “lip”, the anode

here is along the entire length of the channel, leading to a more diffuse current attachment pattern.

Moreover, the electrode lengths in this configuration are substantially longer than the correspond-

ing dimensions of the FSBT. Therefore, there is much less canting of the current lines here than in

the FSBT, reducing the pumping forces that starve the anode and increase the Hall parameter (see

Fig.(4.11-e) in§4.2.3 for more on this issue.) This is consistent with the prediction of King[17]

that increasing the electrode length precluded the occurrence of large Hall parameters.

As seen in Fig.(2.9), the ratio of anomalous resistivity to classical resistivity (eqn.(2.55)) is

a strong function of the electron Hall parameter, beyond a cutoff, ude/vti ≥ 1.5. The ratio of

anomalous resistivity to classical resistivity for this case is shown in Fig.(4.4-III). For theξ = 1.0

case, since the Hall parameter is not very large in this particular geometry, the overall effect of

anomalous transport is limited (cf. Fig.(2.9)). For theξ = 1.4 case, the ratio of anomalous

resistivity to classical resistivity exceeds 1.0 at the cathode base, and reaches 1.75 near the anode.
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Thrust

By definition, the thrust is computed using the following relation,

T =

∫

A

uz (ρu · dA) , (4.11)

where the integral is performed over all the boundaries in Fig.(4.2).

As discussed in§2.2, the analytical expression for thrust is,

T =
µo

4π

(

ln
ra

rc

+ A

)

J2, (4.12)

wherera andrc are the radii of the anode and the cathode respectively. For this particular configu-

ration, the appropriate value for the current attachment parameter,A, is 0.15 (refer to Villani[18]).

Notice thatA is much smaller thanln (ra/rc) (which is 1.68).

Using eqn.(4.15), the code predicts a thrust of 42.9 N. This compares well with the analytically

calculated value is 41.2 N.

4.1.5 Summary

For the first set of simulations to validate this code, a simple constant area geometry was chosen for

simulation. The drawback of this choice of geometry was the dearth of data available for it. In fact,

the only available data were the current and potential contours. However, for those quantities, the

results of the simulation were in good agreement with measurements. As far as the other plasma

parameters, their values and distributions are within the reasonable range of values observed in

experiments on similar geometries for these operating conditions.

Other researchers[61, 62, 63, 64, 65, 33] have found the ideal equation of state suitable to

simulate MPDTs at lower current levels (J2/ṁ ≤ 25.0 kA2/g/s). However, for higher current

levels (J2/ṁ = 37.5 to 66.7 kA2/g/s in the simulations in this section), there are insufficient energy

sinks with the ideal equation of state, and the simulation did not converge. A real equation of state

was crucial to obtaining a realistic and stable solution.
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The purpose of this set of simulations was to illustrate the application of the numerical tech-

niques developed in this thesis to solve the governing equations of the physical model relevant to

the simulation of plasma flows in real MPDT functioning at nominal operating conditions. Now

that this has been accomplished, the stage is set to tackle a more interesting thruster that has been

extensively studied.

4.2 Full-Scale Benchmark Thruster

The Princeton full-scale benchmark thruster (FSBT) is a MPDT that has been the subject of many

experimental investigations [16]-[43] over the past threedecades. Yet, there has not been a detailed

numerical simulation of this device. It is now insightful torevisit this device with the improved

numerical methods and computing capability discussed in§3 (also see refs.[132, 133, 134]), by

comparing experimental measurements to results from this code.

For the purpose of this dissertation, the goal of this comparison is to validate this code so that

it can be used to study the lithium Lorentz force accelerator(LiLFA)[40]. This study is presented

in chapter 5.

Though the simulation technique described in chapter 3 remains unchanged, each thruster may

require a unique treatment of boundary conditions. In§4.2.2 the boundary conditions imposed on

the solver to calculate the flowfield in the FSBT will be discussed. In§4.2.3 the results from the

simulation of plasma flows in the FSBT will be presented, and compared the results to experimental

measurements. In§4.2.4 these aforementioned results will be used to investigate some underlying

physical processes in the FSBT.
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4.2.1 Geometry

A schematic of the Princeton full-scale benchmark thruster[43], with the relevant dimensions are

given in Fig.4.10. For simplicity, the rounded corners of the anode lip and the cathode were

truncated in the simulation. Note that in the simulation thethruster contains four mass injection

ports - one at the base of the cathode (as in Fig.4.10) at a45o angle, and three others r = 2cm, 3

cm, and 4 cm through the backplate directed normally into thechamber. In reality, several mass

injections schemes were tested in experimental studies, and the version shown in Fig.4.10 has only

one port through the backplate.

Figure 4.10: Princeton full-scale benchmark thruster, where rc= 0.95 cm,ra= 5.1 cm,rao=10.2

cm,rch= 6.4 cm,ta= 0.95 cm, andlc= 10.0 cm.

4.2.2 Boundary Conditions

The method used for estimation of the convective and dissipative terms at various boundaries

remains mostly the same as in§4.1.2, where the details are found. However, unlike the Villani-

H thruster discussed in§4.1.2, the FSBT has an insulated chamber. Therefore, the focus of this
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section will be on the boundary between the plasma and the insulator.

Since all the enclosed current is downstream of the insulator (backplate and the inner wall of the

chamber, in Fig.4.10), the stream function,ψ = rBθ = µoJtot/2π is a constant at any given time

at this boundary, and it depends only on the total current. The electric field along the backplate,

required for Faraday’s law, is then

Er(r, 0) = Er(r,∆z) + ∆z

(

1

r

∂ψ

∂t
− ∂Ez

∂r

)

, (4.13)

and the electric field along the chamber inner wall is

Ez(Rch, z) = Ez(Rch − ∆r, z) + ∆r

(

1

r

∂ψ

∂t
+
∂Er

∂z

)

. (4.14)

The abovementioned conditions, along with the ones described in§4.1.2 provide sufficient tools to

calculate the flowfield in the FSBT.

4.2.3 Results

The relevant results from the simulation of the FSBT will be presented here. All the discussion in

this chapter will be limited to argon propellant, with a massflow rate of 6.0 g/s. The current in the

simulations presented in this chapter varies from 12.0 kA to20.0 kA (see Table 4.1) at this mass

flow rate. The case with a total current of 16.0 kA (atṁ = 6.0 g/s) corresponds to the nominal

operating condition ofξ ' 1.0 (discussed in§2.2 - cf. ref.[76]), and therefore will be of special

importance to this discussion.

A summary of some important results are presented in Table 4.1.

Density

The electron number density contours within the chamber areshown in Fig.(4.11-a), for theξ

= 1.09 case. It is to be noted thatne increases towards the cathode inside the chamber. This

is attributed to the action of the radial pumping force,jzBθ, which pushes the plasma towards the
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Current (kA) ξ Tcalc (N) Texp (N) TEM/Ttot(%) Vplasma (V) Pin (kW)

12.0 0.82 33.3 30.8 60 28.0 336.0

16.0 1.09 51.2 50.4 75 36.0 576.0

17.5 1.19 59.3 61.5 78 49.4 864.5

20.0 1.36 77.0 82.7 80 62.4 1248.0

Table 4.1: FSBT Simulation Summary (ṁ = 6.0 g/s for all cases). The first column contains the

current level (in kA), the second the corresponding non-dimensional value of the current, the third

the calculated value of thrust (in N), the fourth the measured value of thrust (in N), the fifth the

calculated ratio of electromagnetic thrust to total thrust. The sixth column contains the calculated

values of voltage dropin the plasma(in V), and the seventh contains the calculated value of power

input to the plasma (in kW).

cathode. This trend has been observed in experiments and in previous simulations[30]. The density

in the thruster chamber ranges from' 2.0 × 1020m−3 near the chamber wall to' 5.0 × 1021m−3

near the cathode. Outside the chamber, on the centerline near the cathode, one also finds a region

of high density (' 5.0×1021m−3), which is often termed as “cathode jet”[135]. In this simulation,

the highest density,' 2.0 × 1022m−3, is found near the injection port on the base of the cathode.

While there exist no detailed measurements of electron density in the FSBT, Turchi[135] measured

them for a similar geometry (dubbed as “Configuration A”) with a shorter cathode. As reported

in Ref.[135], electron number densities near the cathode inthe chamber, and on the centerline in

front of the cathode are indeed around' 5.0 × 1021m−3 and are in accordance with the results of

the simulation.

It is well known from experimental measurements[26, 28] that the anode region of the FSBT

gets starved of charge carriers as the current is increased.This trend is seen clearly in the simula-

tions. Fig.(4.11) shows the calculated values of electron number density (m−3) near the anode for J
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Figure 4.11: Panel a. shows the calculated values of electron number density (m−3). Panel b.

shows the calculated values of axial velocity (m/s). Panel c. shows the calculated values electron

temperature (eV). Panel d. shows the calculated effective ionization fraction (J = 16.0 kA in

panels a-d). Plots of the electron number density (m−3) near the anode, shown in panel e (J = 12.0

kA), panel f (J = 16.0 kA), and panel g (J = 20.0 kA), indicate the starvation of the anode with

increasing current (̇m = 6.0 g/s in all plots).
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= 12.0 kA (panel e), J = 16.0 kA (panel f), and J = 20.0 kA (panel g). This starvation could play an

important role in understanding the performance-limitingonset of instabilities in the FSBT[26, 28].

Velocities

The contours of axial velocity are shown in Fig.(4.11-b). The range of values (8.0 to 13.0 km/s)

is in the range of measured values of local velocities reported in ref.[130] for these conditions.

On the centerline, Boyle[14] measured axial velocity increasing from 10 km/s to 13 km/s, with

distance from 2 cm to 15 cm in front of the cathode. It can be seen in Fig.4.12 that this simulation

also predicts a similar pattern and values.

14

12

10

8

6

4

2

0

V
e

lo
c
it
y
 (

k
m

/s
)

14121086420
Axial Distance (cm)

 Measurement

 Simulation

Figure 4.12: Comparison of measured[14] and calculated centerline velocities at J = 16.0 kA,̇m =

6.0 g/s.

Current

The calculated contours of enclosed current are shown in Fig.4.13, in comparison with experimen-

tal measurements[19]. For the sake of brevity, only the comparison at the most challenging of
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the operating conditions listed in Table 4.1 (J = 20 kA) is shown. As evident from the figure, the

simulation predicts the attachment locations of the 80%, 60% and the 40% contours accurately on

both the cathode and the anode. For the 20% and the 10% lines, the attachment on the cathode is

also predicted accurately. In the front face of the anode (inthe plume), however, comparison is

not possible because of the lack of data at that location. In any case, the continuum assumption

(inherent in eqn.(2.58)) would limit the validity of the simulations in the low collisionality region

of the plume.

Insulator

80%

80%

65%

65%

40%

40%

20%

20%

10%

10%

Figure 4.13: Panel “a” shows the calculated current contours for J = 20.0 kA,ṁ= 6.0 g/s, and panel

“b” shows the measured current contours (obtained from Ref.[19]) at the same conditions.

102



Temperatures

The calculated values of electron temperature are shown in Fig.(4.11-c), for theξ = 1.09 case. In

the bulk of the chamber,Te ranges from 1.0 to 1.75 eV, which is in the range of measurements in

ref.[9]. The rear top end of the chamber has lowest values (0.75 eV), because it has the lowest

Ohmic-heating rate. The highest values of' 3.5 eV are found on the inner and outer faces of

the anode. This can be explained by the large Ohmic heating caused by the high current density

observed in that region. Diamant[28] measured temperatures around 2.5 eV near the anode at this

condition, and they are in general agreement with the simulation, in that region. Temperatures of

' 3.0 eV are seen in the simulation in front of the cathode on the centerline.

For theξ = 1.36 case (J = 20 kA), the near anode temperatures reach 4.5 -5.0 eV. Measurements

by Diamant[28] have shown that this is indeed the case.

Thrust and Voltage

By definition, the thrust is computed using the following relation,

T =

∫

A

uz (ρu · dA) . (4.15)

The calculated values of thrust are compared to measurements[43], and the results are presented

in Table4.1. At the lowest current (12.0 kA,ξ = 0.82), the code over predicts thrust by 8%, and at

the highest current (20.0 kA,ξ = 1.36), the code under predicts by 7%. At the nominal operating

condition (16.0 kA,ξ = 1.09), the agreement is within 2%.

The plasma voltage drop is presented for various current levels in Table 4.1. For the nominal

operating condition (J = 16.0 kA,̇m = 6.0 g/s), this simulation predicts a plasma voltage drop of

36 V, as shown in Fig.4.14. It is important to note that the simulation did not include electrode fall

voltages, and therefore one cannot compare the calculatedplasmavoltage to the measuredtotal

voltage[43] directly. Measurements[28] have shown repeatedly that the anode fall can be' 50 V
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at ξ ' 1.0, and this is a major energy sink in an MPDT. It is useful to note that the monotonic

increase of voltage with current is consistent with measurements[43].
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Figure 4.14: Calculated potential contours (in Volts) for J= 16.0 kA.

4.2.4 Insight into Other Physical Processes

As evident from the preceding section, this simulation has predicted many of the salient features

of the flowfield, and the results are in general agreement withmeasurements for many quantities.

Therefore, it is possible to delve into some underlying physical mechanisms in the MPDT. Unless

explicitly stated otherwise, the focus will be on the operation at J = 16.0 kA (atṁ = 6.0 g/s), since

this corresponds to the nominal operating condition ofξ ' 1.0.

Effect of the Anode Lip

The velocity streamlines in the FSBT are shown in Fig.4.15. The expansion of the streamlines past

the anode lip, and hence plume divergence, is evident from the figure. It is clear that the anode lip

is an obstruction to the streamlines, and its stagnation effect can be seen in the increased density

(Fig.4.11-a) and temperature (Fig.4.11-c) in that region.
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Figure 4.15: Calculated velocity streamlines for J = 16.0 kA, ṁ= 6.0 g/s.

In order to ascertain the effect of the anode lip on thrust, one needs to look at the mass flux,

and the momentum flux in this thruster.

Cory[11] measured the mass flux at this operating condition for the “Configuration A” thruster

(which has a similar geometry to the FSBT, but with a shorter conical cathode). The results of this

simulation are compared to those measurements in Fig.(4.16). Generally, the agreement between

the simulation and the data is very good. Except for the pointon the centerline, the agreement

is within 20%. Near the centerline, the measured mass flux is higher than that predicted by the

simulation. This may be attributed to the difference in the cathode lengths in the experiment and

the simulation.
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Figure 4.16: Mass flux at a distance of 12.5 cm from the anode plane. No error bars on the

measurements were provided in the original work[11].

The flux of momentum was also calculated, and is shown in Fig.4.17.
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Figure 4.17: Calculated momentum flux at the cathode tip plane.
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As seen in Fig.4.16, the flux of mass near the anode is relatively small. More importantly,

as seen in Fig.4.17, the flux of momentum in the anode region issmall compared to the cathode

region. Due to a combination of the pumping force (jzBθ) pushing the plasma towards the cathode,

and the1/r2 variation of the axial Lorentz force density (jrBθ), the high speed jet is confined to

the cathode region of the thruster, and the anode region doesnot play a significant role in the

momentum flux. Furthermore, the results shown in Fig.4.17 clearly indicate that the contribution

of the anode region in the thrust production decreases with increasingJ2/ṁ. Therefore, the anode

lip is not a significant impediment to the production of thrust at these operating conditions.

Ionization Levels

The effective ionization fraction is shown in Fig.4.11-d. It is important to bear in mind that this

simulation uses an equilibrium ionization model, and henceZ = Z(n, Te), and therefore an un-

derstanding ofTe distribution is important to understand the distribution of ionization levels. In

the rear top end of the chamber, where the current density is low (' 5.0 × 104A/m2), we find that

the ionization level is low (Z ' 0.25), as expected. In the bulk of the chamber,Z ' 1.0. Near the

inner face of the anode and the anode lip, where the current density is high, the effective ionization

level ranges from 1.5 to 2.5. In the outer edge of the anode, current density is also very high,

the ionization level is' 3.0. The presence of these higher states of ionization (Ar-III and Ar-IV)

has been shown by Bruckner[12] in the anode plane of the “Configuration A” thruster, for these

operating conditions (argon at 6.0 g/s, J=16.0 kA).

Discharge Structure

In many experimental observations[16, 136] at nominal operating conditions, the luminous struc-

ture of the discharge was observed to have some invariant features, such as a “cathode jet”, a

luminous barrel which is larger at the base of the cathode andconstricts towards the middle and
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expands again at the cathode tip. All of these features can beseen in Fig.4.18. On the left panel

of Fig.(4.18) are the calculated values electron density, while the right panel shows the observed

argon ion emission from the discharge recorded photographically using an FSBT with transparent

plexiglass walls [136]. The similarity in the calculated and observed structure of the discharge is

striking. This is the first reported instance where numerical simulations of such thruster flows are

compared directly to visual observations.

Figure 4.18: Left: Calculated electron number density (m−3); Right: Photograph of light emission

from FSBT discharge with transparent walls[136].J = 16.0 kA, andṁ = 6.0 g/s in both plots.

Current on the Cathode

The current distribution on the cathode is shown in Fig.4.19. Near the inlet, the surface current

density has a value of' 550A/cm2, and quickly decreases to' 200A/cm2 along most of the

cathode, only to rise again near its tip. This is compared with the measurements by Boyle[14]

who measured similar values along the cathode, in Fig.4.19.However, while Ref.[14] reports

that the current density at the cathode tip is in excess of1000A/cm2, the simulation only predicts

108



' 550A/cm2. This difference could be because the cathode in Ref.[14] was shorter than that of the

FSBT, and had a conical tip, as opposed to the hemispherical tip of the FSBT. As seen in Fig.4.19,

the longer cathode (simulation) has a greater surface area,and hence lesser current density. This

may play a role in reducing erosion, as well as in decreasing Ohmic dissipation (to be discussed

below).

Figure 4.19: Surface current density on the cathode. Error bars on the measurement are not avail-

able in the original source[14].

Thrust Composition

The electromagnetic contribution to the thrust,TEM , is

TEM =

∫

(j× B)dV . (4.16)

The fractional contribution of the electromagnetic thrustto the total thrust is presented in Table

4.1. The other component, namely the electrothermal, is substantial whenξ < 1.0 (for instance, at

ξ = 0.82, 40% of thrust is electrothermal). But the importanceof electrothermal thrust decreases,
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and the importance of electromagnetic thrust increases, with increasing current. From Table 4.1, it

is clear that atξ ≥ 1.0 (which for argon is J = 16.0 kA for 6.0 g/s), the FSBT is predominantly an

electromagnetic accelerator.

Energy Deposition

The total power deposited into the MPDT plasma can be split into kinetic power and dissipation,

∫

j · EdV =

∫

(j× B) · udV +

∫

ηj2dV . (4.17)

The second term on the right hand side is often termed the “dissipation integral”[18], and under-

standing and quantifying it is essential to improving the efficiency of the MPDT. All the three

terms in eqn.(4.17) have been calculated for the FSBT, and the results are shown in Fig.4.20. Re-

call that these calculations do not include the power dissipated in the electrode fall, which can be

a significant loss mechanism.

In a coaxial configuration, the current density is inverselyproportional to the radius, and there-

fore the power deposition and the dissipation are large nearthe cathode. This is evident in Fig.4.20,

where almost 45% of the dissipation occurs in the “inner flow”region[14] which is restricted to

1 cm around the cathode. As with thrust production (cf.§4.2.4), this near cathode region is an

important one in energetics as well. For consistency, one can verify that the sum of all the input

power in all the zones in Fig.4.20 add up to VJ (571 kW) (see Table 4.1).

It is worth noting that the shell near the cathode is the only region where the kinetic power

exceeds the Ohmic heating (which is largely unrecovered because of the lack of a nozzle or any

other mechanism to convert it into thrust).
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Figure 4.20: Power expenditure in various regions (kW). Thevalues of each of the terms in

eqn.(4.17) are shown in various regions.

4.2.5 Summary

While it was evident from§4.1 that this code produces a realistic description of the MPDT flow-

field, this section strengthened the confidence in this code significantly. The calculated contours of

density, ionization levels, velocity, mass flux patterns, enclosed current contours, cathode surface

current density, and temperature all compared well with measurements at corresponding operat-

ing conditions. The calculated value of thrust matched withthe measured value within 2% at the

nominal operating condition.

Furthermore, the results of the code were able to provide insight into some physical mecha-

nisms. Among the important observations are:

• Despite being a cause of stagnation in a part of the flow, the anode lip does not have a serious

adverse effect on the thrust.
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• The FSBT is predominantly an electromagnetic accelerator at its nominal operating condi-

tion (J=16 kA,ṁ = 6.0 g/s of argon).

• The “inner flow” region 1 cm around the cathode plays an important role in the energetics.

Thus, the first two of the three goals set forth in the introduction (§1) have been accomplished.

Now, armed with this code, it is appropriate to simulate the flowfield of the LiLFA and study its

underlying processes.
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Chapter 5

LiLFA SIMULATIONS

. . . I have promises to ¯keep,
And miles to go before I sleep,
And miles to go before I sleep.

Robert Frost
Stopping By Woods On A Snowy Evening

Now that the code, with its physical and numerical models, isknown to reliably predict the flow-

field of the MPDT that rely on self-field Lorentz forces, it canbe used to study similar devices for

which little experimental data exist.

5.1 Thruster Description

The lithium Lorentz force accelerator (LiLFA) is a plasma thruster[40, 37, 38, 39, 27] that uses

the Lorentz force, produced by the interaction of current with self-induced magnetic fields, to

accelerate lithium propellant (with barium additive), fedthrough multi-channel hollow cathodes,

to high velocities (104 − 105 m/s) of interest to spacecraft propulsion. In particular, high-energy

missions such as robotic and piloted exploration of the moon, mars and the outer planets, had

been shown[137, 138, 6] to potentially benefit from the high specific impulse of the LiLFA and its
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ability to efficiently process many hundreds of kilowatts ofpower from a nuclear power plant in a

simple compact device (see§A for more information on this topic). Due to the LiLFA’s promise,

sustained efforts are being made in the US and Russia[40, 37,38, 39, 27] to study it and improve

its performance and lifetime.

While the work of Ageyevet al.[40] has demonstrated efficiency of 60% andIsp of 4000 s, with

500 hours of erosion free operation at power levels up to 500 kW, there are no published records of

systematic experimental or theoretical investigations ofthe underlying physical processes. Though

the reported data (terminal characteristics (Isp, andη) at the highest operating condition (J = 8.0 to

10.0 kA,ṁ = 0.2 to 0.3 g/s)) are good for bolstering the technology readiness level of this device,

lack of information on interior properties limits their utility for understanding plasma processes

in the device. For this purpose, the code described earlier in this thesis was used to simulate

the flowfield of the LiLFA. Since there are presently no experimental data for the LiLFA internal

flowfields, the goal here is not comparison with experiments,but rather gain insight into some

of the internal processes in the LiLFA. Moreover, the difficulty of obtaining measurements inside

the thruster chamber, where the harsh environment of a high current (1-10 kA) discharge and

condensing lithium render probing extremely difficult, further gives a motivation for relying on

realistic numerical simulations to understand the internal processes.

5.2 Boundary Conditions

The computational domain used for the simulation is shown inFig.(5.1). The dimensions were

obtained from the NASA-JPL version of the LiLFA[139] (shownin Fig.(5.2)), which itself is

based on the configuration of Ageyevet al.[40]. We will now discuss the evaluation of fluxes at

surfaces #1 to 8 in Fig.(5.1).
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Figure 5.1: Computational domain of the Lithium Lorentz Force Accelerator (LiLFA), whereRca=

5.0 cm,Rch= 11.0 cm,Ran= 13.4 cm,Rex= 20.0 cm,Lca= 26.0 cm,Lch= 26.0 cm,Lan= 26.5 cm,

andLex= 22.5 cm.

RcaRch

Dan

Lca= Lch Lan

Figure 5.2: Scaled engineering drawing of the Lithium Lorentz Force Accelerator (LiLFA) (from

ref.[139]), whereRca= 5.0 cm,Rch= 11.0 cm,Dan= 27.0 cm,Lca= 26.0 cm,Lch= 26.0 cm, and

Lan= 26.5 cm.
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5.2.1 Flow Properties

Inlet

Unlike gas-fed MPDTs, the propellant enters the LiLFA not through the backplate (surface #3)

but through the cathode exit (surface #1 in Fig.(5.1)). The LiLFA uses a multi-channel hollow

cathode[140, 141, 37, 40, 39, 142] inside which a stream of neutral lithium vapor is ionized effi-

ciently, and ejected uniformly into the thruster through the cathode exit. Describing the operation

of the hollow cathode[143] itself is beyond the scope of thiswork, which concerns only with what

happens to the plasma once it enters the thrust chamber. Therefore, in this code, a specified mass

flow rate (typically 0.25 g/s) of the ionized lithium plasma (Z = 1) enters at a specified temperature

(Te = Th = 0.75 eV) through surface # 1.

Solid Boundaries

A standard solid-body boundary condition,n · u = 0, is applied at the cathode outer surface (#2),

backplate (#3), chamber inner surface (#4), and the anode nozzle (#5). Note that at the anode,n

andu have both radial and axial components.

Anode Exit Freestream

After the plasma exits the thruster, it expands downstream as a plume because the exit pressure

is greater than the ambient pressure. At the anode exit plane, the plume could expand upstream

(through surface #6 in Fig.(5.1)). The flow through this plane could be either subsonic or super-

sonic. If the flow is subsonic, one needs to specify pressure,density, or temperature outside of the

domain. In this code, an outside temperature ofTout = 300 K is specified. If the flow through sur-

face #6 is supersonic, information out of the domain cannot affect the solution inside the domain.

In that case, normal gradients of all relevant quantities are set to zero.
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Freestream

At the other freestream boundaries, #7 and #8 in Fig.(5.1), all normal gradients of the flow proper-

ties are set to zero.

Centerline

At the axis of symmetry, all convective fluxes and radial gradients are set to zero.

5.2.2 Field Properties

The magnetic field is computed from Faraday’s law, which through Stokes theorem can be written

as,
∫

A

∂B

∂t
· dA = −

∮

C

E · dl . (5.1)

In the cell-centered scheme used in this work, eqn.(5.1) implies that the evolution of the magnetic

flux is specified by the contour integral of the electric field around a cell. Therefore, the only

information required is the electric field along the boundaries.

Inlet

As described earlier, all the propellant enters the thruster through the cathode exit (surface #1

in Fig.(5.1)). Consequently, all the current attaches there. Faraday’s law requires estimation of

electric field at this boundary to compute the evolution of magnetic field in the plasma adjacent to

this boundary. This can be estimated as,

Er|zca
= Er|zca+∆z + ∆z

(

µo

2πr

dJ

dt
−
(

Ez|r+∆r − Ez|r
∆r

))

, (5.2)

whereEr|zca+∆z, Ez|r+∆r andEz|r are computed self consistently in the plasma adjacent to this

boundary.
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Cathode Outer Surface

In reality, the outer surface of the cathode (surface #2 in Fig.(5.1)) is made of a refractory metal

(typically tungsten). But because there is little or no propellant upstream of the cathode exit,

there is no current attachment on the outer surface of the cathode. So, in this code, this surface is

modeled as an insulator to prevent current attachment in thenear-vacuum region. Estimation of

electric field at an insulating boundary is described in the following part.

Chamber Inner Surface

The thruster designs in ref.[40] and in Fig.(5.2) have a shield in the inner surface of the chamber

(surface #4 in Fig.(5.1)), and there is no current attachment on it. So, as at the cathode outer

surface, there is a need to evaluate the electric field at an insulating surface. Since all the current is

downstream of these insulators, the electric field is

Ez(Rch, z) = Ez(Rch − ∆r, z) + ∆r

(

1

r

∂ψ

∂t
+
∂Er

∂z

)

. (5.3)

Anode Nozzle

Due to the no mass flux condition, the electric field at the anode is entirely resistive, and is given

by,

Ew = ηwjw . (5.4)

The surface current,jw, is computed from Ampère’s law in the usual manner.

Freestream

The freestream region was chosen far enough down stream (22.5 cm) of the thruster exit that all

the current was enclosed within the domain. Thus, from Ampère’s law, the magnetic field at the

free stream boundaries is zero.
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Centerline

Due to symmetry, the inductive component of the electric field is zero, because there is no flow

across it. However, the resistive component is finite. This can be obtained from the value of the

magnetic field at a point close tor = 0, through a simple Taylor series expansion [144],

Ez|r=0 = E ′
z|r=0 = ηjz|r=0 = η

4 Bθ|∆r/2

µo∆r
. (5.5)

With the abovementioned boundary conditions, all the pieces are in place for the simulation of

the flowfield in the LiLFA.

We will simulate three cases that correspond to operation atnominal condition (ξ = 1, J =

4.5 kA, ṁ = 0.25 g/s), above that condition (ξ = 1.34, J = 6.0 kA,ṁ = 0.25 g/s) and below it

(ξ = 0.67, J = 3.0 kA,ṁ = 0.25 g/s).

5.2.3 Electron Density

The electron number density contours within the thruster are shown in Fig.(5.7-I) for three current

levels. In all cases, it can be seen that the highest density is at the inlet, as expected. The notable

decrease ofne at the anode, with increasingξ, is discussed in§5.3. Asξ increases, the plasma

column in front of the inlet becomes more pronounced. This, in conjunction with the depletion

of propellant near the anode, points to the increasing effect of the electromagnetic pinch with

increasing current. The density in the column in front of theinlet varies from3.5× 1020m−3 at the

inlet, to5.0× 1019m−3 at 15 cm downstream of the inlet, for the J = 4.5 kA (ξ=1.0) case. Radially,

there is a sharp drop in density, since the expanding plasma is constricted by the pinch. At the

cathode plane, the density drops sharply from2.0 × 1020m−3 at r = Rca to 1.0 × 1019m−3 just 3

cm away. It is apparent that the pinch affects both the radialand the axial density distribution in

the thruster.

There is also an indication in theξ = 0.67 case that there is a weak shock present in the nozzle
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Figure 5.3: Calculated Mach number contours forξ = 1.0 (J = 4.5 kA andṁ = 0.25 g/s).

near the exit. This is seen more clearly in the velocity plotsshown in Fig.(5.7-II).

5.2.4 Velocity

The contours of axial velocity are shown in Fig.(5.7-II), and the contours of Mach number for theξ

= 1.0 case are shown in Fig.(5.3). At the exit plane, velocityranges from 16.0 to 24.0 km/s for the

ξ = 1.0 case. The fact that the calculated value of thrust for this case is within 2% of the prediction

of analytical models (see Fig.(5.8)) gives more credibility to the simulated values.

It is evident from the velocity plot of theξ = 0.67 case (Fig.(5.7-II-a)) that there is a weak

shock, denoted by the dotted line, which decelerates the flowin the thruster. This adverse effect

only occurs for the sub-nominal conditionξ = 0.67. Forξ ≥ 1, Figs.(5.7-II-b,c) show no such

deceleration of the flow.

5.2.5 Current and Potential

The calculated contours of enclosed current are shown in Fig.(5.4) for three different current levels.

It is evident that with increasingξ the current lines get increasing blown downstream, as has been

observed in numerous MPDT experiments[14, 18, 23]. This is to be expected because as the current

increases the magnetic Reynolds number grows, leading to increased downstream convection of

the magnetic field.
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Figure 5.4: Calculated enclosed current contours (% of total) for, a.) ξ = 0.67, b.) ξ = 1.0, and c.)

ξ = 1.34.
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The calculated values of the potential are shown in Fig.(5.5) for three values ofξ. For the

nominal operating condition (ξ = 1.0, J = 4.5 kA,ṁ = 0.25 g/s), this simulation predicts a plasma

voltage drop of 17.4 V. It is important to note that our MHD model does not include the non-

quasineutral electrode sheaths, and therefore the calculated voltage corresponds to the drop across

the quasineutral plasma only. Anode fall could be a significant energy sink in the MPDT, where

they have been quantified experimentally. However, they have never been studied directly in the

LiLFA variant. Tikhonovet al.[145] estimate the anode fall to be 8 V and the cathode fall to be

3 V over a wide range of operating conditions for a similar thruster, and compare these numbers

to experiments. Thus, adding these estimates of electrode falls (8 + 3 = 11 V) to our calculated

value of plasma drop (17.4 V atξ = 1.0) results in a total voltage drop of 28.4 V. This compares

favorably to the measured value of 25 V atξ = 1.0. It is useful to note that the monotonic increase

of voltage with current predicted by the code is consistent with measurements[40].

5.2.6 Electron Temperature

The calculated values of electron temperature are shown in Fig.(5.6) for three current levels. For

theξ = 1.0 case, in the bulk of the chamber,Te ranges from 2.0 to 3.5 eV. For theξ=1.34 case, the

electron temperature reaches 7 eV. This is significantly higher than the corresponding temperature

of the argon plasma in the FSBT[146]. This can be explained bythe differences in the electronic

structure between argon and lithium. Argon has many electronic energy levels available to absorb

energy without increasing the temperature much - a fact reflected in the low value of the ratio

of specific heats (γ ' 1.15). However, lithium does not have sufficient electronicenergy levels

available to absorb energy at these temperatures. Consequently, its ratio of specific heats (γ ' 1.6)

is very close to the ideal value (5/3) at these temperatures.

It is evident from Fig.(5.6) that, with increasingξ, the region of highest temperature moves

upstream towards the cathode exit plane (Rca < r < Ran atL = Lca). This is the result of high
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Figure 5.5: Calculated potential contours (V) for, a.)ξ = 0.67, b.) ξ = 1.0, and c.)ξ = 1.34.
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anomalous collision frequency and heating in this region, and will be discussed in the next section.

As seen in Fig.(5.7-I), there exists a low density plasma (ne ∼ 1019/m3) in the non-divergent

part of the channel. Since there is no current attachment andOhmic heating, the temperature is low

(≤ 0.5 eV) here. The simulation shows that the upstream flux of plasma into this region decreases

with increasingξ, and consequently the density and the temperature also decrease.

5.2.7 Anomalous Transport

Enhanced energy dissipation in plasma thrusters, due to exchange of momentum between parti-

cles and waves induced by microinstabilities, has been documented[96, 97] in gas-fed MPDTs

with argon as propellant[146]. However, this effect has never been investigated in lithium plasma

thrusters.

The ratio of anomalous resistivity to classical resistivity in the LiLFA is shown in Fig.(5.7-III).

For theξ = 0.67 case (Fig.(5.7-III-a)), the overall effect of anomalous transport is limited because

operation at this condition is below the threshold for predominantly electromagnetic acceleration.

For the higherξ cases (Fig.(5.7-III-b,c)), anomalous resistivity exceeds classical resistivity at the

cathode exit region and throughout the rear of the anode. This is to be expected because that

is the region of highest magnetic field (Fig.(5.4)) and low density (Fig.(5.7-I)), and therefore the

region of high Hall parameters that mark the escalation of anomalous transport. In the upstream

and downstream regions of the anode, anomalous transport isnegligible because theude/vti ≥ 1.5

threshold is not satisfied due to lack of sufficient current[96, 97].

As discussed earlier, the highest values of anomalous resistivity occur at the cathode exit plane,

and this leads to the high temperatures observed in this region seen in Fig.(5.6-c).
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Figure 5.7: Panel I shows the calculated values of electron number density (m−3). Panel II shows

the calculated values of axial velocity (m/s), and the dotted line in II-a indicates a weak shock.

Panel III shows the calculated ratio of anomalous to classical resistivity. Panel IV shows the

calculated effective ionization fraction. In each panel, the calculated values are shown for three

different values of current: a.)ξ = 0.67, J = 3.0 kA, b.)ξ = 1.0, J = 4.5 kA, and c.)ξ = 1.34, J =

6.0 kA. The mass flow ratėm = 0.25 g/s in all cases.
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5.2.8 Ionization

The effective ionization fraction is shown in Fig.(5.7-IV). It is important to bear in mind that this

simulation uses an equilibrium ionization model, and henceZ = Z(n, Te) (see Fig.(2.10)), and

therefore an understanding ofTe distribution (shown in Fig.(5.6)) is important to understanding

the distribution of ionization levels.

Two features stand out when observing these plots: i) there is significant amount of second

ionization whenξ ≥ 1, and ii) there is a rapid change in ionization structure after ξ exceeds 1.

First, though the second ionization level of lithium is veryhigh (75.6 eV), the equilibrium

ionization model predicts doubly ionized lithium at temperatures above 5 eV. This is because the

high-energy electrons at the tail, and not the bulk electrons, of the Maxwellian distribution are

responsible for ionization. It is also important to note that the ionization of lithium at this temper-

ature (Z = 2.0) is much less than the corresponding ionization level of argon (Z ' 5.0). For the

ξ = 1.0 case, the correspondence between Fig.(5.7-IV-b) and Fig.(5.6-b) is clearly seen.

Second, a notable difference in ionization structure is seen between theξ = 1.0 case and

the ξ = 1.34 case. As we mentioned earlier, the upstream plasma flux into the non-divergent

part of the channel surrounding the cathode decreases with increasingξ, consequently decreasing

the temperature levels there (see the region upstream of theanode in Fig.(5.7-I) and Fig.(5.6) for

increasing current levels). The equilibrium ionization model shown in Fig.(2.10) indicates that the

ionization level changes rapidly with temperature (high∂Z/∂Te) atTe ' 4 eV. The 4 eV threshold

is crossed in going from theξ = 1.0 case to theξ = 1.34 case.

5.3 Insight into Physical Processes

Having described the main features of the simulation results, we now turn our attention to extract-

ing physical insight into the underlying physical mechanisms in the LiLFA. Unless explicitly stated
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otherwise, the focus will be on the operation at J = 4.5 kA (atṁ = 0.25 g/s), since this corresponds

to the nominal operating condition ofξ = 1.

5.3.1 Thrust Composition

The numerical simulation allows unique insight into the breakdown of thrust, and the scaling of its

various components. The calculated values of thrust from the simulation are compared to predic-

tions by the analytical models of Tikhonovet al.[145, 77], and the results are presented in Fig.(5.8)

(the Tikhonov scaling law relies on an estimate of upstream value of the speed of sound,ao, which

is usually evaluated at a temperature between 1 eV to 2 eV).

Over a range of conditions, with36.0 ≤ J2/ṁ ≤ 144.0 kA2/g/s (0.67≤ ξ ≤ 1.34), the

code’s predicted thrust agrees well with the analytical model. At ξ ≥ 1, the agreement is within

2%. Below the nominal operating current, atξ = 0.67, the code under predicts thrust by 5%, which

is likely due to the existence of a velocity-reducing shock in the simulation (see Fig.(5.7-II-a)) that

is not accounted in the analytical model.

The thrust produced by the LiLFA can be broken down into threecomponents,

T =

∫

in

ρuz (u · dA) +

∫

V

j× B dV +

∫

A

p (ẑ · dA) . (5.6)

The first term is the thrust produced by the jet of plasma entering the thruster from the multi-

channel hollow cathode. In our simulation, the entire mass flow rate of the propellant (̇m = 0.25 g/s

in this simulation) enters uniformly at the sonic condition, with Te = Th = 0.75 eV, and therefore

the first term in eqn.(5.6) accounts for 1.37 N of thrust for all current levels.

The second term, the volume integral of the Lorentz body force, can be treated as the surface

integral of the magnetic stress tensor[2, 76],

∫

V

j× B dV =

∫

V

∇ · ¯̄BM dV =

∫

S

¯̄BM · dS. (5.7)
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Figure 5.8: Thrust components and the total thrust from the simulation are compared to the analyti-

cal value of total thrust, for a.)ξ = 0.67, b.) ξ = 1.0, and c.)ξ = 1.34. The part labeled
∫
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is the so-called “blowing” contribution. The relative sizeof each pie is in direct proportion to its

total thrust.

Because we are interested in the axial component of force (commonly referred to as “blowing”[2]),

this term has to be integrated over the inlet surface and the backplate between the cathode and the

anode. The blowing contribution from the inlet surface increases from 6% atξ = 0.67 to 14% at

ξ = 1.34, while that from the backplate increases from 20% atξ = 0.67 to 43% atξ = 1.34. This

scaling, as well as that of other components, is representedin the pie charts of Fig.(5.8).

The third term represents the thrust produced by gasdynamicpressure acting on the surfaces

of the thruster. The radial component of the Lorentz body force contributes to thrust through

unbalanced pressure distribution of the pinched gas on the surrounding surfaces. As before, this

has to be integrated over the inlet surface and the backplatebetween the cathode and the anode.

At the inlet surface, its relative contribution to total thrust decreases from 25% to 20%, though it

increases in absolute magnitude. At the backplate, its relative contribution decreases from 5% at

ξ = 0.67 to less that 0.1% atξ = 1.34, and so does its absolute contribution. This is consistent
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Figure 5.9: Calculated power deposition fractions at, a.)ξ = 0.67, b.) ξ = 1.0, and c.)ξ = 1.34,

with the total input power for each case given below. Power expended in radiation is< 0.1% in all

three cases. The relative size of each pie is in direct proportion to its total power.

with the decrease in plasma density with increasingξ at the backplate (cf. Fig.(5.7-I)).

At ξ = 1.0, the fraction of the total thrust that is associated with electromagnetic blowing

(
∫

jrBθdV ) is 44%. This is noticeably smaller than the corresponding case for the Full-Scale

Benchmark Thruster (FSBT), where that fraction is 75%[146], and conversely the electromagnetic

pinching (
∫

jzBθdV ) is less significant than in the LiLFA.

The effect of operation atξ ≥ 1 is a significant increase the importance of electromagnetic

blowing, and a decrease in the importance of gasdynamic and pressure contributions to thrust.

5.3.2 Energy Deposition

The breakdown of various energy sinks, and their scaling with ξ, are shown in the pie charts of

Fig.(5.9), where each pie chart shows the relative contribution of the thrust power (calculated as

T 2/2ṁ), undirected kinetic power (calculated as
∫

(ρu2) urdA), enthalpy and ionization power

(calculated as
∫

p
γ−1

u ·dA), and electrode thermal conduction power (calculated as
∫

k∇Te ·dA).

The power lost in heating, electronic excitation, and ionization of the propellant stream amounts to
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27% of the total power for theξ = 0.67 case, but reduces to 20% for theξ = 1.34 case. Tikhonov

et al.[145] suggest that this number drops to 12% at higher currentlevels. Some of this power

could possibly be recovered as directed kinetic energy. It can be observed from Fig.(5.9) that some

20% of the power is carried away in the form of undirected kinetic energy over the range ofξ

that was considered here. The simulation also indicates that the fractional power conducted to the

electrodes increases from 5% atξ = 0.67 to 15% atξ = 1.34. This can be attributed to the increase

in temperatures, especially near the anode, over that rangeof ξ (see Fig.(5.6)). The magnitude and

scaling of the actual power lost to the electrodes could wellbe affected by the electrode sheaths that

were not included in the simulation. The fraction of the total power expended in thrust increases

from 45% atξ = 0.67 to 51% atξ = 1.34. Since our simulation does not include electrode drops,

which could be a significant energy sink, that fraction is notthe same as the thrust efficiency of the

device.

The above observations, especially the pie charts in Fig.(5.9), lead us to the following qual-

itative conclusions: with increasingξ, the input power becomes approximately equipartitioned

between thrust power and losses, as shown in pie chart ’c’ of Fig.(5.9). Furthermore, the lost

power itself becomes approximately equipartitioned between the three loss mechanisms, which

are undirected kinetic power, enthalpy and ionization, andelectrode thermal conduction.

In order to visualize the spatial distribution of the usefulpower (work expended by the electro-

magnetic blowing force), we calculate

Pblow = jrBθuz dV, (5.8)

and show it in Fig.(5.10) atξ = 1.0. The figure indicates that the outer edge of the cathode is the

region in which most of the work done by the electromagnetic blowing force is expended. This

can be explained as follows: the magnetic field, which drops as 1/r betweenRca < r < Ran, is

maximum along the outer surface of the cathode. Since the current attaches only at the cathode tip

(see Fig.(5.4)), the product of current and magnetic field ishighest in this region.
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Figure 5.10: Contours of blowing power expenditure (in watts) atξ = 1.0.

5.3.3 Anode Starvation and Current Conduction Crisis

Several experimental studies[16, 22, 19] of high-current plasma accelerators have confirmed the

occurrence of performance-limiting oscillations that areonset above a particular value of current,

called the “onset current” (J∗). Operation above this onset current results in notable increase in

electrode ablation and a shift from a steady terminal voltage to one with high-frequency oscillations

of substantial amplitude that can reach up to 100% of anode voltage. It is known[147, 148, 30, 149]

that the onset phenomenon is related to the depletion of propellant near the anode. The results of

our code can be used to shed some light on this phenomenon.

Theoretically, the ratio of gasdynamic to magnetic pressure, β, equals 1 at the boundary of a

pinched plasma enclosing all the mass and all the current[74] (see Fig.(5.11)) (̇m = ρ = p = 0

outside). At the inlet, the current is axial and the plasma isenclosed in a free-boundary cylinder, as

in the case of a classical pinch, of radiusRca, and expands further downstream. Korsun[150] and

Tikhonovet al.[145] calculate the radius of the free boundary,R(z), which encloses all the propel-

lant mass using quasi-1D ideal MHD theory (β = 1 on this boundary). Above the onset current (J∗),

the pinching force causes this free boundary to move away from the anode (R(z) < Ran), prevent-

ing current conduction to the anode. This is illustrated in Fig.(5.12). It is believed[148, 30, 149]

that this anode-starvation crisis is resolved by the discharge through a transition from diffuse arc

attachment at the anode to a mode in which the current attaches in spots. These spots are be-
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Figure 5.11: Schematic of plasma constrained by magnetic pressure.
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Figure 5.12: Schematic of the “free boundary” (which encloses all the mass), and its variation with

discharge current.

lieved to supply, through material evaporation, the required mass for current conduction, and their

high-frequency motion is reflected as high-amplitude oscillations in the terminal voltage.

We now present, for the first time, a quantitative illustration of the role theβ = 1 line plays

in the anode starvation mechanism that leads to onset. It is important to note that in a real plasma

pinch with finite resistivity and transport, theβ = 1 line may not contain 100% of the mass.

Fig.(5.13) shows that in our simulation, theβ = 1 line coincides to the line enclosing approx-

imately 95% of the mass, over the investigated range ofξ. This is especially the case for the

region immediately downstream of the cathode where the pinch is expected to occur. Therefore,
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Figure 5.13: Relative location of theβ = 1 line to the 95% enclosed mass flux line is shown for, a.)

ξ = 0.67, b.) ξ = 1.0, and c.)ξ = 1.34.
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Fig.(5.13) shows that with increasingξ, the downstream end of theβ = 1 line slides further

downstream along the anode, thus leading eventually to an anode starvation crisis, as could be

anticipated for operation at a value ofξ > 1.34 (see Fig.(5.13-c)). This is a clear illustration of

the anode starvation mechanism and the role theβ = 1 line plays in the onset phenomenon - a

role that had been suspected through analytical theories ofKorsun[150] and Tikhonovet al.[145].

Another interesting observation, obtained by comparing Fig.(5.13) and Fig.(5.4), is that only 70%

of the current is enclosed by theβ = 1 line, implying that some 30% of the current is conducted

by only 5% of the propellant. This underscores the importance of anode starvation in the current

conduction crisis reached at a high value of total current.

Fig.(5.14) further illustrates, more quantitatively, therelationship between theβ = 1 line and

anode starvation. The figure shows a plot of electron densityprofile along the anode at three

values ofξ, with an asterisk on each curve denoting the location of the point where theβ = 1 line

intersects the anode. When that point meets the downstream end of the anode, as almost the case

for theξ = 1.34, the current conduction crisis is expected to occur. At thatcondition, Fig.(5.14)

shows that the electron density has dropped a factor of five with respect to the maximum density

for ξ = 0.67.

In the experiments by Ageyevet al.[40], the discharge voltage was observed to increase sharply

above J = 6.5 kA at this mass flow rate. Our simulations show that at J = 6.0 kA, theβ=1 line in the

simulation extends to the downstream tip of the anode (see Fig.(5.13c)), indicating that the current

will be prevented from attaching to the anode at a current notmuch higher than 6.0 kA. This has

implications for thruster design. Since theβ=1 line encompasses 95% of the propellant, it roughly

delineates the free boundary of the plasma inside the LiLFA,and can be used to design an anode

contour that delays onset for a given set of conditions. The design exercise, however, is beyond the

scope of this paper.
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5.4 Summary

A specialized axisymmetric plasma-fluid simulation code using the state of the art numerical

techniques[132] was previously validated[146] using experimental data with an argon self-field

MPDT, and used here to simulate flows in the lithium Lorentz force accelerator. The goals were:

i) to provide detailed flowfields inside the thruster chamber, where internal probing is extremely

difficult, and, ii) to provide insight into the nature and scaling of thrust composition, energy depo-

sition, and the onset phenomenon. In particular, the following observations and conclusions can

be drawn:

• The flowfields of density, velocity, ionization, and anomalous resistivity show distinct fea-

tures that have strong qualitative dependence on the total current, as it is raised through the

nominal condition (0.67 ≤ ξ ≤ 1.34). In particular, for operation at a sub-nominal condi-

tion (ξ = 0.67), there exists a shock in the thruster that decelerates the flow. However, this

detrimental structure is not present atξ ≥ 1.

• For operation at and above the nominal condition (ξ = 1) the simulations show pinching

of the plasma towards the centerline, an increase in the importance of anomalous resistivity,

with an associated increase in electron temperature.

• The effect of operation atξ ≥ 1 is a significant increase the importance of electromag-

netic blowing, and a decrease in the importance of gasdynamic and pressure contributions to

thrust.

• With increasingξ, the input power becomes approximately equipartitioned between thrust

power and losses. Furthermore, the lost power itself becomes approximately equipartitioned

between the three loss mechanisms, which are undirected kinetic power, enthalpy and ion-

ization, and electrode thermal conduction.
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• Theβ = 1 line was shown to approximately correspond to the free boundary of a classical

pinch that gets exacerbated with increasing total current.The motion of this line with in-

creasingξ was shown to provide a clear illustration of the anode starvation mechanism that

leads to the current conduction crisis called onset.

With this all the three goals set forth in the introduction (§1.1) have been accomplished. Neverthe-

less, there are many topics to be pursued. These will be discussed in the next chapter.
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Chapter 6

CONCLUDING REMARKS

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

T. S. Eliot
Little Gidding

6.1 What are the contributions of this thesis?

One objective of this thesis was to develop a numerical simulation model that incorporates the

state-of-the-art in numerical methods and physical modelsgoverning plasma flows, in order to

study MPDTs and LiLFAs.

For this purpose, a new numerical scheme for the accurate computation of plasma flows of

interest to propulsion was developed and validated againststandard test problems. The scheme

treats the flow and the field in a self-consistent manner, and conserves mass, momentum, magnetic

flux and energy. The characteristics-splitting scheme, which was developed from concepts used

for the solution of Euler equations, was used to solve the ideal MHD equations. The ability of this

scheme to capture discontinuities monotonically was demonstrated. Flux-limited anti-diffusion
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was used to improve spatial accuracy away from discontinuities.

On top on the ideal MHD model, relevant diffusive and dispersive effects, such as resistivity

with Hall effect, and electron and ion thermal conduction were included. Furthermore, effects of

thermal non-equilibrium between electrons and ions were incorporated. Anomalous transport ef-

fects, which account for momentum transfer between waves and particles in finite-β MPD flows,

were included in the transport models. Real equation of state models, to account for energy deposi-

tion into internal modes, were developed for argon and lithium, and were found to have significant

effects on producing realistic and stable solutions. Multi-stage equilibrium ionization models were

used to obtain ionization levels and species densities for argon and lithium plasmas. With the

inclusion of anomalous transport effects and real equationof state models, the complexity of the

physical model in this code exceeds that of the most persistent efforts at other institutions to sim-

ulate MPDT flows. There is no documentation of any existing code that was validated against

standard MHD test cases. Furthermore, unlike many other previous MPDT flow simulation codes,

this one uses modern numerical methods for the solution of the governing equations.

These schemes were adapted to non-orthogonal mesh systems to allow for flexibility in mod-

eling various geometries. The resulting code was then modified to run on parallel computing

platforms, giving it the ability to tackle computationallychallenging problems.

The primary objective of this thesis was to then use this codeto obtain detailed flowfields for,

and gain insight into the operation of real high-power plasma thrusters. For this purpose, this

solver was then used to simulate the flowfields in a constant area coaxial MPDT, the full-scale

benchmark thruster (FSBT) and the lithium Lorentz force accelerator (LiLFA), at various operat-

ing conditions, withJ2/ṁ ranging from 24.0 kA2/g/s to 66.7 kA2/g/s for argon and 36.0 kA2/g/s

to 144.0 kA2/g/s for lithium. The resulting profiles of densities, velocities, species temperatures,

along with current and potential contours and were found to be realistic, when compared with exist-

ing data on MPDTs. The values of thrust predicted by the simulation were in excellent agreement
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with measurements and analytical models.

Based on the confidence gained from realistic simulations that compared well with experimen-

tal data and photographic observations, these results werethen used to analyze the underlying

acceleration and dissipation mechanisms in the FSBT and theLiLFA. The composition of thrust

was analyzed, insight into energy expenditure was gained, and the performance limiting current

conduction crisis caused by anode starvation was investigated in both the FSBT and the LiLFA.

With that, the goals stated in the introduction have been attained.

Nevertheless, there remains plenty of room for improvementin physical modeling and numer-

ical capabilities, as well as phenomena to explore. These are outlined in the subsequent section.

6.2 What remains to be done?

6.2.1 Computational Methods

In order improve the utility of this code for practical applications, some improvements can be made

to the computational methods described in this these.

Presently, due to the overhead cost associated with parallel computing, the CPU utilization

efficiency is only about 70%. With increasing number of processors, this efficiency drops to about

50%, as shown in Fig.(3.11). Though it is possible to get thisnumber closer to 100%, it is not clear

if it is worth the effort. This could be a topic of future investigation.

Presently, the time-dependent simulation goes throughO(106) time steps to reach steady state.

The time step is limited by the diffusive processes, namely resistivity and thermal conduction.

These can be treated implicitly, allowing for much larger time steps. However, this may interfere

will the effectiveness of the parallel computation process.

However, if only the steady state solution is needed, there is another alternative. It is possible

to sacrifice time-dependent solutions by resorting to “local time stepping”[151], where each com-
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putational cell uses a time step which is based on the local numerical stability criterion. Though

the intermediate solutions provided by this method will be unphysical, they will converge to the

correct steady state solution. The pros and cons of this approach have to be investigated.

6.2.2 Physical Models

The list of possible improvements to the physical model can be extensive.

The results presented here were obtained using a multi-level equilibrium ionization model for

both argon and lithium propellents. There have been other indications[59, 60, 56, 61, 62] that, for

the conditions of interest to gas-fed MPDT plasmas, the solution of flow fields using the seemingly

restrictive assumption of equilibrium ionization may yield results that are sufficiently close to real-

ity, at least for the case with argon as propellant. In the LiLFA simulations, however, the calculated

ionization levels were higher than expected. This could be an artifice of the inlet boundary con-

dition assumption, or could be due to the limitation of the equilibrium ionization model. Though

there have been attempts[31, 30] to model ionizational nonequilibrium in argon-fed MPDTs, there

has not been a detailed study of the state of ionization in theLiLFA. Given the importance of the

ionization levels on the energetics and other plasma phenomena, this warrants further study.

As mentioned earlier, in the simulation of gas-fed MPDTs, a specified mass flow rate of the

propellant enters at a specified temperature at sonic conditions at the inlet. In reality, the propel-

lant is injected as neutral gas at room temperature, and it gets almost fully ionized within a few

millimeters from the inlet[98]. Classical theory cannot explain this high rate of ionization, and it

has been proposed[127] that a non-Maxwellian electron energy distribution, resulting from plasma

microturbulence, is the cause for this. Since this process cannot be modeled by fluid theory, the

inlet temperature in our simulation is chosen to be high enough (1.0 eV) such that the propellant is

sufficiently ionized. Effectively, the backplate of the numerical model is not the true backplate of

the FSBT, but a region located few millimeters downstream ofit. Though this approach provides
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sufficiently realistic results of the flowfield, it will be useful to develop a self-consistent model of

ionization to incorporate into this code.

Since this code solves the governing equations in a time-dependent manner, it can be extended

to the simulation of pulsed plasma thrusters (PPT) as well. Without delving into the details of

physical processes in PPTs, it is clear that the most important additions to the code for this purpose

should be a finite-rate ionization model, and a model for circuit equation[152].

In the current model, viscosity is neglected because its effect was argued to be insignificant.

Given good physical models for the coefficient of viscosity,this effect can be introduced into

the code without much difficulty. As mentioned in§2.3.2, there are theories in the literature that

suggest that viscosity is important in thrust production[22] and energy dissipation[30, 29]. Incor-

porating viscosity into this code would enable it to test thepropositions. On a similar note, the

current model uses a scalar model for thermal conduction whereas it is a tensor in reality. There-

fore, it will be interesting to implement the tensor model tosee the effects of anisotropic thermal

conduction.

As briefly mentioned in§4.1.2, there are two issues that remain to be explored in the application

of boundary conditions: diffusion into the electrodes, andsheaths.

Ideally, a simulation would self-consistently and continuously compute the heat transfer from

the plasma to the wall, then the heat transfer within the metallic conductor, then calculate the

temperature distribution of the wall, and from that information recompute the heat transfer from

the plasma to the wall. Clearly, these calculations are computationally expensive, and may be

impractical. While the time-scale for the stabilization ofplasma processes isO(100µs), the time-

scale for equilibration of electrode thermal processes is∼ 10 minutes. Heiermann et al.[64] have

attempted to do these calculations, but give no indicators to usefulness of a full-blown simulation.

On that note, it might be interesting to model the diffusion of the magnetic field into the elec-

trodes as well. From the ratio of resitivities of the plasma (∼ 10−3−10−4 Ohm.m) and the electrode
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(∼ 10−8 Ohm.m), it can be shown that the time scale for the penetration of magnetic field into the

electrode is four to five orders of magnitude longer than in the plasma. For quasi-steady discharges

(with pulse lengths∼ 1 ms) discussed in§4 it was assumed that the field does not penetrate the

skin of the conductor. For the steady-state discharges (with run times of hours) discussed in§5

this work assumed the field had penetrated the conductor. Though these are perfectly reasonable

assumptions, it might be interesting to see the effect of thetime-dependent field diffusion into the

electrode on the plasma.

In reality, there exists a non-quasineutral sheath at the interface of plasma and a solid boundary.

For the plasma conditions of interest, the typical dimension of this quasineutral region, in which a

large fraction of the voltage drop occurs, is∼ O(10−5)m. Clearly, this cannot be self-consistently

computed because: i) the physical processes in this region are beyond the regime of MHD theory,

and ii) the dimensions are too small to be captured by grids. Therefore, the only way to include this

effect is to superimpose an analytical sheath model as a boundary condition. Though an attempt

was made by Boieet al.[56], it was later discontinued. Ideally, this model will incorporate the

effect of thermionic emission, and possible effects of magnetic field, on a high-voltage sheath in

an unsteady plasma.

While developing the equation of state model for lithium (§2.3.6), the effect of inter-particle po-

tential was ignored in the calculation of the translationalpartition function. It might be worthwhile

to investigate its effect of the plasma flowfield.

The most important, and the most urgent, improvement to thiscode should be to include applied

magnetic fields. Currently, this code handles only self-induced magnetic field in the azimuthal

direction. However, for many reasons, it is crucial to applymagnetic fields in the radial and axial

directions:

1. Many MPDTs and LiLFAs require an applied field to have high efficiencies at relatively low

power levels (< 250 kW). In fact, there has been far more experimental work done[153, 39,
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142, 154, 77] on the applied-field LiLFA than the self-field version. The mechanism of thrust

production in the applied-field thrusters is significantly different from the self-field version,

and one cannot simply extrapolate from the latter to the former.

2. In some cases[26, 40] it has been established that using anapplied magnetic field extends

the regime of stable operation of the MPDT/LiLFA. A properlydesigned external magnetic

field (Br, Bz) which intercepts the anode surface can minimize voltage by: a.) enhancing

electron mobility to the anode, since it is easier to conductcurrent along the field line (Br)

rather than across it, b.) a radial magnetic field can oppose the electromagnetic pinch by

reducing axial current and by creating a swirl that ameliorates the effect of the pinch[155].

3. Properly designed magnetic nozzles can be useful in recovering the power lost in enthalpy

at the exhaust. Magnetic nozzles are also prevalent in otherplasma applications, and other

plasma thruster concepts[156].

For the abovementioned reasons, adding applied magnetic fields to this code will immensely en-

hance its utility in practical thruster research. Self-field MPDTs and LiLFA in coaxial geometry

only have the azimuthal component of the magnetic field (Bθ). However, applied magnetic fields

in these devices are primarily in the radial and axial directions (Br, Bz), and this code must be

adapted to handle them. In addition, applied-field LiLFAs can have a substantial swirl velocity

(Vθ), rendering the flowfield three dimensional. However, Mikellides et al.[80, 81] have shown

that by assuming the swirl velocity to vary only in the radialand axial directions (Vθ(r, z)), it is

possible to get valuable insight into the operation of applied-field MPDTs. The feasibility of this

approach to simulating applied-field LiLFA has to be investigated.

Throughout the course of this research, the stumbling blockfor this code has been regions of

very low density. Quite often these regions also have substantial magnetic fields, resulting in large

values of the Hall parameter. In these regions, due to low collisionality, the underlying continuum

assumption breaks down. Simulating the flowfield entirely using a kinetic code is impractical, if
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not impossible. However, it is possible to develop a hybrid code that treats the electrons using a

fluid model and the ions using a kinetic model[157], and use itas a plug-in into this code when

necessary.

The utility of this code can be extended into studying various MPDT/LiLFA/PPT research is-

sues such as thermal modeling, near-electrode plasma characterization and electrode thermal man-

agement to understand erosion processes, propellant selection, active turbulence control, near-field

plume model as a source for far-field plume simulations that study the role of plasma interactions

and contamination of spacecraft, and other contentious issues in overall design optimization.

As a final note, it is worth noting that the code developed for this thesis can be used to study

plasma flows in other propulsion devices such as the VariableSpecific Impulse Magnetoplasma

Rocket (VASIMR) [156], railguns[158], as well as non-propulsive applications such as plasma

flow switch ciruit breakers[159] and Z-pinch devices for fusion[160].
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Appendix A

PROPULSION OPTIONS FOR

MISSIONS TO MARS1

A.1 Introduction

For the first time in over a decade NASA has been given the greenlight to pursue nuclear options

for spacecraft propulsion. The Nuclear Space Initiative (NSI), approved under NASA’s FY2003

budget, is a multi-year program expected to total $2 billionwith one goal being the development

of space nuclear systems capable of 10-100 kW of power in space over the next ten years[161].

This initiative promises to open up the outer solar system toexploration by reducing spacecraft

weight (propellant mass savings) and transit times (5 yearsversus 10 years to Pluto, with respect

to chemical thrusters, at high power levels ), and by providing a power supply to do science once

the spacecraft arrives at the destination. As a result, the surface of Mars may now be accessible

for long-term robotic and human exploration. The first-phase of a study comparing near-term

propulsion options for a two-stage (cargo & piloted) mission to Mars was described in ref.[162].

1The work in this text was the contribution of the author and L.Cassady, A. D. Kodys and E. Y. Choueiri of

Princeton University.
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A condensed form of that study is presented here.

Because of their high exhaust velocities, electric propulsion (EP) systems can provide signif-

icant propellant savings over chemical thrusters for high∆V missions[1] like this one, and have

been popular in such mission studies. With the success of theion thruster as the primary propul-

sion system on the Deep Space 1 mission[163], and other recent EP enabled missions, the field of

electric propulsion has now come of age as a reliable and efficient way of accomplishing relatively

low energy missions. Currently, various types of EP devices, resistojets, arcjets, ion thrusters, Hall

thrusters, and to a lesser extent, pulsed plasma thrusters,are routinely used for station keeping

and maneuvering satellites. However, research on high-power electric propulsion has stagnated

over the last two decades. As a consequence of the revival of interest in nuclear space systems,

high-power propulsion options, first investigated in the 1960s to early 1980s (cf. ref.[2]) and then

abandoned or continued at lower power levels due to lack of power in space, are receiving renewed

attention.

A.1.1 Review of Previous Studies

Since the dawn of the space age, many mission studies have been performed on expeditions to

Mars. Stuhlingeret al.[164] were among the first to propose the use of electric propulsion for

missions of this kind. In the last two decades, several noteworthy studies have examined the

advantages and disadvantages of various propulsion systems for a mission to Mars.

Coomeset al.[165] propose the use of a magnetoplasmadynamic thruster operating at a power

level of 6 MW for a piloted mission, and calculate a trip time of 600 days for Earth to Mars at this

power level. Kinget al.[166] also examine the use of a MPDT for a similar mission and propose

systems with input power up to 200 MW that can accomplish Earth-Mars round trip in less than a

year. It is also suggested that MPDTs can offer trip time savings over chemical thrusters at power

levels of 10 MW or higher. Gillandet al.[167] compare the use of MPDTs versus an array of
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ion thrusters for a similar mission, using a curve-fit forηth vs. Isp for the performance of these

thrusters. Clarket al.[168] examine a 8 MW piloted (35 mT) fast trajectory mission for trip time,

safety and reliability, abort options, and other costs. Pelaccio et al.[169] provide a technology

readiness assessment of various thrusters for such a mission.

Clark et al.[168] also consider 4 MW minimum energy trajectory for a Marscargo mission.

They estimate that an array of ion thrusters offer significant mass savings over nuclear thermal

systems, while maintaining comparable trip times. Frisbeeet al.[170, 171] assess the technology

readiness and development requirements for dynamic power conversion, power processing, and

thrusters for Mars cargo mission. Polket al.[172] examine the lithium Lorentz force accelerator

technology for reusable orbit transfer vehicle with a parametric study of required power level,

specific mass of power plant and performance to focus technology development. Nocaet al.[173]

consider robotic missions to outer planets with power levels ranging from 100 kW to 1 MW, using

ion engines. Woodcocket al.[174] consider three outer planetary missions with small payloads,

and consider the use of various propulsion systems.

As described above, a lot of work has been done on investigating propulsion options for mis-

sions to Mars. However, the abovementioned studies either perform the analysis withextrapolated

data, and/or look at the problem from the perspective of researchguidelines for aspecific thruster.

Therefore, there is a need for a comparison of multiple propulsion options for this mission using

measured performance data only, and that is the goal of this study.

A.1.2 Outline

The piloted mission to Mars mission, is described in detail in §A.2. As will be described in§A.3.1,

this study is limited to thrusters that have been successfully operated (thrust measured) in the

laboratory to keep with the near-term (10-20 years) spirit of the study and to perhaps provide some

insight into technology drivers. The results of the missionanalysis will be presented in§A.4.
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Following that, in§A.6, we will briefly discuss the propulsion options that werenot considered in

this analysis.

A.2 Mission Description

Though ref.[162] considers a two-stage mission to Mars, only the piloted mission is discussed here.

This mission involves transporting the crew and supplies, totaling 60 metric tons of payload from

a low-Earth orbit (LEO) to Mars orbit. The propulsion systems for this mission would have a total

power supply ofO(1 MW) available, and the trip time must be less than one year,due to human

health factors.

A.3 Propulsion Options

In this section, the propulsion systems that may be suitablefor this mission will be briefly de-

scribed. Because of their highIsp, EP systems are naturally attractive candidates for this type of

mission. Within the family of electric propulsion devices,several types of thrusters, conceptually,

have the ability to process 100s of kilowatts to megawatts ofpower at reasonably high efficiencies.

In table (A.4), the thrusters that have met the selection criteria§A.3.1 are listed. Further informa-

tion on these devices can be obtained from recent surveys, such as refs.[175, 5]. First, the criteria

used to select the thrusters will be described below.

A.3.1 Selection Criteria

While a variety of propulsion systems have been proposed forinterplanetary missions, this analysis

is restricted only to those that have:

1. been successfully characterized in a laboratory as a thruster (i.e., thrust and efficiency have
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been measured directly),

2. demonstrated apotentialfor attaining a significant lifetime (O(100 hours)),

3. the ability process at least 500 kW per thruster for the piloted mission, so that the number of

thrusters per spacecraft is reasonable.

Since, at present, there do not exist conclusive lifetime assessment tests ofany of the devices,

consideration is given only to those that have operated withtolerable erosion for 100 hours.

At high power levels, measured thrust and efficiency data is available for only three main

classes of thrusters, Hall thrusters, thermal arcjets, andmagnetoplasmadynamic thrusters (MPDT).

The only EP device to date to have demonstrated the ability tooperate at megawatt power levels

with a single (or reasonably small number of) thruster is theMPDT. For the MPDT two distinct

variations exists differing in propellant and electrode design, both of which have been operated in

the laboratory and will be discussed here.

Few thrusters have demonstrated performance at power levels ofO (MW), and have survived

many hours of laboratory testing. Consequently, the field narrowed down to gas-fed magnetoplas-

madynamic thrusters (MPDT) and lithium Lorentz force accelerators (LiLFA). They will be briefly

described in the subsequent sections.

Other promising thruster concepts, such as the ion thruster, Pulsed Inductive Thruster (PIT),

and the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR), that did not meet our se-

lection criteria are discussed in§A.6.

A.4 Mission Analysis

The mission simulation is accomplished with RAPTOR (RAPid Trajectory Optimization Resource),

an optimization program developed at NASA-Johnson Space Center for low-thrust, interplanetary

missions[176]. The code analyzes the three parts of an interplanetary mission: the spiral to escape
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from low Earth orbit, the heliocentric transfer, and the spiral to a circular orbit about the arrival

planet. In the spiral phase, the code merely propagates the position of the spacecraft, without op-

timizing the trajectory. Throughout the spirals, thrust isdirected along the velocity vector. The

escape spiral begins with a circular orbit and is propagateduntil the vehicle has acquired a posi-

tive energy. The capture spiral is modeled in the reverse manner. The heliocentric portion is an

optimization code based on the Davidon-Fletcher-Powell Penalty Function Method[177].

Thruster Power (MW) Thrust (N) Isp Efficiency (%) Reference

LiLFA 0.5 12 4077 60 [40]

H-MPDT-1* 1.5 26.3 4900 43 [178]

H-MPDT-2* 3.75 88.5 3500 43 [178]

H-MPDT-3* 7.5 60.0 6000 25 [43]

Argon MPDT 0.5 25.5 1099 28 [46]

Table A.1: Summary of performance of thrusters chosen for this study (* denotes quasi-steady

data.)

The position and velocity of the departure and arrival planets are the boundary conditions.

Given these, the code minimizes the total acceleration of the interplanetary trajectory. RAPTOR

contains a genetic algorithm to converge on the proper Lagrange multipliers, trip length and depar-

ture date for the heliocentric code.

More details of how the code was used for this mission analysis will be given in§A.4.2.

A.4.1 Assumptions

In order to simplify our analysis, we have made the followingassumptions for the present study,

some of which will be relaxed in future studies.
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1. The specific mass of the power supply,αp, is assumed to be 4.0 kg/kW for all the cases. This

is within the range of previous studies such as ref.[171] andref.[167].

2. The specific mass of the thrusters for the piloted mission were all assumed to be 0.35 kg/kW

[172]. Since many of the thruster considered in this study are still laboratory models, it is not

easy to arrive at an accurate estimate forαt. The influence of this assumption on the result

is yet to be determined, since the mass of the thruster is expected to be only a small fraction

of the total mass.

3. The arrival date on Mars orbit was fixed to be the same for allcases.

4. The piloted mission was analyzed at a power level of 7.5 MW,irrespective of the optimum

power level of the thruster.

A.4.2 Calculations

For the thrusters that met our selection criteria (§A.3.1), we selected the highest measured per-

formance data that was available and used it as input into theRAPTOR code. A summary of the

thruster data is presented in table (A.4). As noted there, the data for the three types of hydro-

gen MPDT were obtained in a quasi-steady mode of operation, and it is expected to be a good

indication of the steady-state performance as well[2].

For this study, we did not use the genetic algorithm to optimize the departure date due to the

large amount time required to calculate the shortest trip. The dates of 12/1/2016 for the cargo,

and 12/1/2018 for the piloted missions, were chosen as the arrival date at Mars (before the spiral)

because those dates are expected to be near the minimum for those missions. The genetic algorithm

was used to find the Lagrange multipliers and trip length thatbest satisfied the mission.

Given an initial mass in Earth orbit, the RAPTOR code can determine the final mass, or given

a payload to Mars, the code can find the initial mass required.Since we have chosen a payload,
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RAPTOR will be run in latter mode. First, RAPTOR executes thespiral in to Mars orbit to de-

termine that portion’s duration and the propellant the maneuver requires. The heliocentric code

then uses the mass of the payload and propellant to begin its optimizations. In this mode the date

of arrival in Mars’ sphere of influence is the only controllable date, all else is referenced to that

date. The heliocentric code optimizes “backward” in time tofind the minimum acceleration (i.e.,

minimum propellant) trajectory. Finally, the spiral to escape from Earth is executed and the mass

at escape is matched with that at the beginning of the heliocentric transfer. The genetic algorithm

is used only with the heliocentric portion of the code.

A.5 Results

The results of the RAPTOR code under the assumptions of this study are given in figure (A.1).

The results for the trip time can be considered accurate to within± 10 days, and for the propellant

mass within± 1 mT. The accuracy of the trip time is based on the sum of the round offs in the

convergence calculation of various phases of the trip, and the accuracy of the mass estimate is

based on the sum of the uncertainty associated with estimating the mass of the components such

as the tank mass, and other structural mass.

The RAPTOR code does not explicitly optimize for trip time, rather it finds the trajectory that

minimizes acceleration. This amounts to minimizing the required initial mass in nuclear-safe earth

orbit. Since the thruster mass, payload mass, and power supply masses were assumed to be constant

for each stage of the mission, the initial mass is a function of propellant mass alone. The minimum

acceleration trajectory will result in the minimum propellant used and hence the minimum initial

mass. For the piloted portion of the mission, the desired propulsion option would be the one which

accomplishes the mission in the least amount of time. Trip times ranged from 490 days for the H-

MPDT-3 ([43]) to just under 340 days for the LiLFA. The 3.75 MWH-MPDT-2 ([178]) had a trip

time of only about one month longer (380 days) than the LiLFA.However, the initial mass required
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was also higher than the LiLFA. Due to its high specific impulse, the MPDT-3 required the least

propellant mass fraction, 33% (45 mT), for the mission. However, its low efficiency (25%), and

its lower thrust-to-power (compared to other choices at thesame power level), prevented it from

being competitive because of long trip time.

The range of trip times (340-490 days) depends upon the powerlevel chosen (7.5 MW) for this

stage of the mission. At that power level, the LiLFA is the best option, with the minimum trip time

and a moderate propellant requirement (57% = 129 mT lithium)compared to other choices.

Figure A.1: Results of the piloted mission analysis (all setto arrive on 12/1/2018), with increasing

trip time from left to right.
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A.6 Other Viable Candidates

As mentioned in§A.3.1, we restricted our analysis to thrusters that have measured performance

data, and have demonstrated significant lifetime. This eliminated many thruster concepts that may

be promising for this mission.

Ion propulsion has demonstrated the in-space performance and lifetime necessary to be incor-

porated into future mission design and planning [179]. Goodpower throttling over a rather broad

power range make ion propulsion ideal for solar electric propulsion missions where the electric

power available varies with distance from the sun. In fact, the next-generation ion thrusters are be-

ing developed for such missions. NEXT, NASA’s EvolutionaryXenon Ion Thruster, will provide

higher power capabilities and lower specific mass with slightly increased exhaust velocities over

Deep Space 1 technology[180]. These advances will meet the requirements of several near-term

planetary missions including a Neptune orbiter and a Titan explorer[180].

Due to the electrostatic nature of ion propulsion, increased power (exhaust velocities) and

propellant throughput (thrust) require corresponding increases in thruster size. The 30-cm DS1

thruster was capable of operation at up to 2.5 kW. The NEXT thruster will increase the effective

area by 2, by moving to 40-cm diameter optics, and power capabilities near 10 kW. NASA’s long-

range goal for the development of ion engine technology is the demonstration of operation at 30 kW

and above [179]. Work in 1968 investigated the feasibility of much higher power (> 100 kW) ion

thrusters. Preliminary tests on a 150-cm engineering modelshowed that operation at 177 kW was

possible with exhaust velocities in excess of 7000s and calculated efficiencies of 76%. Thruster

conditioning and grid stability issues arose at this size and power, as well as a need for higher

power electron sources [181]. Lack of potential missions atthat time caused the research program

to end before these issues were solved or thrust measurements could be obtained. However, there

appears to be no fundamental limit on thrusters of this size and power[179].

Another thruster concept that could be promising is the pulsed inductive thruster (PIT) [182].
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Using ammonia as propellant, this thruster demonstrated 48% efficiency, with Isp of 4000 s at

discharge energy of 2 kJ per pulse. If this thruster can be operated at a pulsing frequency of

(O(100-1000 Hz)), it would be competitive with the LiLFA for the piloted mission. However, the

PIT has yet to show potential for lifetime of the order of the mission duration for it to be a serious

candidate.

In addition, there are other thruster concepts, such as the VAriable Specific Impulse Magneto-

plasma Rocket (VASIMR)[156], that may be suited for this mission. The VASIMR is a two-stage

plasma propulsion device: the production of the plasma is accomplished in the first stage, and the

heating and acceleration in the second. It is hoped that the separation of these two processes would

allow for better control of the exhaust velocity, while utilizing maximum available power. This de-

vice is intended to operate at power levels ranging from 10 kWto 100 MW. If proven, its ability to

vary specific impulse independent of power (which will likely require varying the propellant), can

reduce both trip time and propellant utilization. However,this device has not yet been successfully

operated in the laboratory as a thruster, and propulsive characteristics and performance have not

been directly measured.

A.7 Remarks

The goal of this study was to examine electric propulsion options for near-term (10-20 years) cargo

and piloted missions to Mars. Thrusters for the study were chosen from the highest performance

data available, subject to the following constraints: thatthey had demonstrated operation at power

levels of 25 kW (cargo) or 500 kW (piloted) in asingle laboratory thruster, that thrust measure-

ments at this power level had been published, and has demonstrated apotential for lifetimes on

the order of at least 100 hours. Power levels chosen for this study were 150 kW for the cargo mis-

sion and 7.5 MW for the piloted mission. Trajectory analysiswas performed by the NASA-JSC

RAPTOR code which optimized acceleration for the heliocentric portion of the mission.
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The cargo mission results showed that several of the thrusters we considered are promising

candidates. For a chosen power level of 150 kW, the AF-LiLFA and all three of Hall thrusters

considered could deliver the 9 mT payload with nearly the same mass in earth orbit.

For the piloted mission at 7.5 MW, the lithium Lorentz force accelerator (LiLFA) provided trip

times savings of at least one month over any of the MPDTs in thestudy. The initial mass required

to accomplish this was in the middle of the range of the thrusters considered. Overall, the LiLFA

seems to be a promising technology for high-power, high∆V missions of this type. Because the

power available for this mission is fixed at 7.5 MW, the range of trip times (340-490 days) is longer

than the estimates in other studies that consider much higher power levels.

This study provides a survey of electric propulsion optionsfor cargo and piloted Mars mis-

sions. In order to more completely determine the relative strengths and weaknesses of each system

considered, several of our assumptions need to be addressedin future work. So far, we have com-

pleted only the first phase of this study, with strong assumptions on specific mass of components,

and thruster operation at a single power level only. The nextstep would be to perform trajectory

analysis for each mission stage at a range of power levels. This would allow for the determination

on of the optimum thruster and power level for a given mission. In addition, the assumptions of

constant thruster and power supply specific mass for all thruster options might have influenced

our results, given the large variations in power requirements of each thruster. Obtaining better

estimates of these values would increase the relevance of our results. Finally, in the next phase of

this work, a parametric study of thruster efficiency and specific impulse will be undertaken, which

could provide guidelines for future research in thruster design and optimization.
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Appendix B

PHYSICAL MODELS

B.1 Equation of State

B.1.1 Lithium

Hill’s equation:

γ(T ) =



































1.17256 + ((1.68755 − 1.17256) ∗ T−4.16357

/(T−4.16357 + 5413.43−4.16357)) ;T ≤ 1.1 × 104K,

1.14211 + ((1.65640 − 1.14211) ∗ T 3.33299

/(T 3.33299 + 21389.13.33299)) ; 1.1 × 104K ≤ T ≤ 7.5 × 104K

.

(B.1)

B.1.2 Argon

Refer to Fig.(2.8).

For the 10Pa case:

γ(T ) =











C1 + C2e
−C3T ; 8000 < T < 10000

C4 + C5e
−((T−C6)/C7)2 ; 10000 < T < 40000 ,

(B.2)
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where,

C1 = 1.0846518 ,

C2 = 143654.2145 ,

C3 = 1.6201 × 10−3 ,

C4 = 1.096307595 ,

C5 = 0.0242730046 ,

C6 = 13643.43525 ,

C7 = 2175.419991 .

(B.3)

For the 100Pa case:

γ(T ) = A+Be−((T−C)/D)2 , (B.4)

where,

8000 < T < 10000 :

A = 1.112166458 ,

B = 0.5299556066 ,

C = 8050.606514 ,

D = 1318.851134 ,

10000 < T < 40000 :

A = 1.105400732 ,

B = 0.02526659335 ,

C = 15142.82094 ,

D = 2394.061632 .
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B.2 Collision Cross Section

Lithium:

Qea =























4.56166 × 10−18 + (8.13214 × 10−18 sin((39.972Te) + 4.85669)) ;Te ≤ 0.08eV,

1.17313 × 10−19 + (2.42048 × 10−18 exp (−1.00867Te))

+(2.82164 × 10−17 exp (−12.2009Te)) ;Te > 0.08eV

,

(B.5)

whereTe is in eV.

B.3 Radiation

L (Te) =























1.297 × 10−36 ;Te < 5.8 × 104K,

10−13 ((9.13296 × 10−22) + (9.09094 × 10−22

× sin((2.06274× 10−5Te) + 3.37656) ;Te ≥ 5.8 × 104K

. (B.6)
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Appendix C

MATHEMATICAL MANIPULATIONS

C.1 Vector Identities

The vector identities used in this chapter are available from the NRL Plasma Formulary[183]. In

this notation,A, B, U are vectors,̄̄I is the unit dyad and

(∇× B) ×B = (∇B) · B− (B · ∇)B (C.1)

∇ · (AB) = (∇ · A)B + (A · ∇)B (C.2)

(∇B) ·B = ∇ ·
[

B ·B
2

¯̄I
]

(C.3)

∇× [u ×B] = [u (∇ · B) + (B · ∇)u− B (∇ · u) − (u · ∇)B] (C.4)

∇ · A =
∂Ar

∂r
+
Ar

r
+

1

r

∂Aθ

∂θ
+
∂Az

∂z
(C.5)
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∇ · ¯̄T =













1
r

∂
∂r

(rTrr) + ∂Tzr

∂z
− Tθθ

r

1
r

∂
∂r

(rTrθ) + ∂Tzθ

∂z
+ Tθr

r

1
r

∂
∂r

(rTrz) + ∂Tzz

∂z













(C.6)

∇A =


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∂Ar
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∂Aθ

∂r
∂Az

∂r

1
r
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−Aθ

)

1
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(

∂Aθ

∂θ
+ Ar

)

1
r

∂Az

∂θ

∂Ar

∂z
∂Aθ

∂z
∂Az

∂z













(C.7)

C.2 Mathematical Manipulations

Using the definition,

¯̄j =
1

µo

[

∇B −∇B†] ,

and the Ohm’s law (without∇pe drift) written in the form,

E′ = ηoj +
j× B

ene
= ¯̄η · j , (C.8)

the resistive diffusion of the magnetic field can be written as the divergence of the tensor,

¯̄Eres =
[

¯̄η · ¯̄j
]

−
[

¯̄η · ¯̄j
]†

−
[

ηo
¯̄j
]

.

In other words,

∇×E′ = −∇ · ¯̄Eres . (C.9)

182



Appendix D

EIGENSYSTEM OF MHD

Alfvèn speeds: CA;r,θ,z =
Br,θ,z√

µoρ
,

Sonic speed: a =
√

γp
ρ

Normalization coefficients (based on the work in refs.[184], [185])

βr;θ,z =
CA;θ,z√

C2
A;θ

+C2
A;z

αr;f,s =

√

± a2C2
S,F ;r

C2
F ;r

− C2
S;r

βz;r,θ =
CA;r,θ√

C2
A;r

+C2
A;θ

αz;f,s =

√

± a2C2
S,F ;z

C2
F ;z

− C2
S;z

Fast and slow magnetosonic waves:

C2
F,S; r =

1

2

[

(
B · B
µoρ

+ a2) ±
√

(
B · B
µoρ

+ a2)2 − (4a2C2
A; r)

]

C2
F,S; z =

1

2

[

(
B ·B
µoρ

+ a2) ±
√

(
B · B
µoρ

+ a2)2 − (4a2C2
A; z)

]

The Jacobian of transformation between primitive and conservation variables:
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dU

dW
=















































1 0 0 0 0 0 0

u ρ 0 0 0 0 0 0

v 0 ρ 0 0 0 0 0

w 0 0 ρ 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

u·u
2

ρu ρv ρw Bx

µo

By

µo

Bz

µo

1
γ−1















































D.1 r̂ Direction

D.1.1 Eigenvalues

(in non-decreasing order):

[u− CF ;r, u− CA;r, u− CS;r, u, u, u+ CS;r, u+ CA;r, u+ CF ;r]

D.1.2 Ortho-normalized eigenvectors

L1r =
[

0,
−αr;fCF ;r

2a2 ,
αr;sCS;rβr;θSgn[Br]

2a2 ,
αr;sCS;rβr;zSgn[Br]

2a2 , 0,
αr;sβr;θ

2a
√

µoρ
, αr;sβr;z

2a
√

µoρ
,

αr;f

2ρa2

]

L2r =
[

0, 0,−βr;z√
2
,

βr;θ√
2
, 0,− βr;z√

2µoρ
,

βr;θ√
2µoρ

, 0
]

L3r =
[

0,
−αr;sCS;r

2a2 ,
−αr;fCF ;rβr;θSgn[Br]

2a2 ,
−αr;fCF ;rβr;zSgn[Br]

2a2 , 0,
−αr;fβr;θ

2a
√

µoρ
,
−αr;fβr;z

2a
√

µoρ
,

αr;f

2ρa2

]

L4r =
[

1, 0, 0, 0, 0, 0, 0, −1
a2

]

L5r = [0, 0, 0, 0, 1, 0, 0, 0]

L6r =
[

0,
αr;sCS;r

2a2 ,
αr;fCF ;rβr;θSgn[Br]

2a2 ,
αr;fCF ;rβr;zSgn[Br]

2a2 , 0,
−αr;f βr;θ

2a
√

µoρ
,
−αr;fβr;z

2a
√

µoρ
,

αr;f

2ρa2

]

L7r =
[

0, 0,−βr;z√
2
,

βr;θ√
2
, 0, βr;z√

2µoρ
,− βr;θ√

2µoρ
, 0
]

L8r =
[

0,
αr;fCF ;r

2a2 ,
−αr;sCS;rβr;θSgn[Br]

2a2 ,
−αr;sCS;rβr;zSgn[Br]

2a2 , 0,
αr;sβr;θ

2a
√

µoρ
, αr;sβr;z

2a
√

µoρ
,

αr;f

2ρa2

]
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R1r =
[

ραr;f ,−αr;fCF ;r, αr;sCS;rβr;θSgn [Br] , αr;sCS;rβr;zSgn [Br] , 0, αr;saβr;θ
√
µoρ,

αr;saβr;z
√
µoρ, ρa

2αr;f

]

R2r =
[

0, 0, −βr;z√
2
,

βr;θ√
2
, 0,

−βr;z
√

µoρ√
2

,
βr;θ

√
µoρ√
2

, 0
]

R3r =
[

ραr;s,−αr;sCS;r,−αr;fCF ;rβr;θSgn[Br],−αr;fCF ;rβr;zSgn[Br], 0,−αr;faβr;θ
√
µoρ,

−αr;faβr;z
√
µoρ, ρa

2αr;f

]

R4r = [1, 0, 0, 0, 0, 0, 0, 0]

R5r = [0, 0, 0, 0, 1, 0, 0, 0]

R6r =
[

ραr;s, αr;sCS;r, αr;fCF ;rβr;θSgn[Br], αr;fCF ;rβr;zSgn[Br], 0,−αr;faβr;θ
√
µoρ,

−αr;faβr;z
√
µoρ, ρa

2αr;f

]

R7r =
[

0, 0, −βr;z√
2
,

βr;θ√
2
, 0,

βr;z
√

µoρ√
2

,
−βr;θ

√
µoρ√

2
, 0
]

R8r =
[

ραr;f , αr;fCF ;r,−αr;sCS;rβr;θSgn[Br],−αr;sCS;rβr;zSgn[Br], 0, αr;saβr;θ
√
µoρ,

αr;saβr;z
√
µoρ, ρa

2αr;f

]

D.2 ẑ Direction

D.2.1 Eigenvalues

(in non-decreasing order)

[

w − CF ;z, w − CA;z, w − CS;z, w, w, w + CS;z, w + CA;z, w + CF ;z

]
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D.2.2 Ortho-normalized eigenvectors

L1z =
[

0,
αz;sCS;zβz;rSgn[Bz]

2a2 ,
αz;sCS;zβz;θSgn[Bz]

2a2 ,
−αz;fCF ;z

2a2 , αz;sβz;r

2a
√

µoρ
, αz;sβz;θ

2a
√

µoρ
, 0,

αz;f

2ρa2

]

L2z =
[

0,
−βz;θ√

2
, βz;r√

2
, 0,

−βz;θ√
2µoρ

, βz;r√
2µoρ

, 0, 0
]

L3z =
[

0,
−αz;fCF ;zβz;rSgn[Bz]

2a2 ,
−αz;fCF ;zβz;θSgn[Bz]

2a2 ,
−αz;sCS;z

2a2 ,
−αz;fβz;r

2a
√

µoρ
,
−αz;fβz;θ

2a
√

µoρ
, 0, αz;s

2ρa2

]

L4z = [0, 0, 0, 0, 0, 0, 1, 0]

L5z =
[

1, 0, 0, 0, 0, 0, 0, −1
a2

]

L6z =
[

0,
αz;fCF ;zβz;rSgn[Bz]

2a2 ,
αz;fCF ;zβz;θSgn[Bz ]

2a2 ,
αz;sCS;z

2a2 ,
−αz;fβz;r

2a
√

µoρ
,
−αz;f βz;θ

2a
√

µoρ
, 0, αz;s

2ρa2

]

L7z =
[

0,
−βz;θ√

2
, βz;r√

2
, 0,

βz;θ√
2µoρ

, −βz;r√
2µoρ

, 0, 0
]

L8z =
[

0,
−αz;sCS;zβz;rSgn[Bz]

2a2 ,
−αz;sCS;zβz;θSgn[Bz]

2a2 ,
αz;fCF ;z

2a2 , αz;sβz;r

2a
√

µoρ
, αz;sβz;θ

2a
√

µoρ
, 0,

αz;f

2ρa2

]

R1z =
[

ραz;f , αz;sCS;zβz;rSgn[Bz], αz;sCS;zβz;θSgn[Bz],−αz;fCF ;z, αz;saβz;r
√
µoρ,

αz;saβz;θ
√
µoρ, 0, ρa

2αz;f

]

R2z =
[

0,
−βz;θ√

2
, βz;r√

2
, 0,

−βz;θ
√

µoρ√
2

,
βz;r

√
µoρ√
2

, 0, 0
]

R3z =
[

ραz;s,−αz;fCF ;zβz;rSgn[Bz],−αz;fCF ;zβz;θSgn[Bz],−αz;sCS;z,−αz;faβz;r
√
µoρ,

−αz;faβz;θ
√
µoρ, 0, ρa

2αz;s

]

R4z = [0, 0, 0, 0, 0, 0, 1, 0]

R5z = [1, 0, 0, 0, 0, 0, 0, 0]

R6z =
[

ραz;s, αz;fCF ;zβz;rSgn[Bz], αz;fCF ;zβz;θSgn[Bz], αz;sCS;z,−αz;faβz;r
√
µoρ,

−αz;faβz;θ
√
µoρ, 0, ρa

2αz;s

]

R7z =
[

0,
−βz;θ√

2
, βz;r√

2
, 0,

βz;θ
√

µoρ√
2

,
−βz;r

√
µoρ√

2
, 0, 0

]

R8z =
[

ραz;f ,−αz;sCS;zβz;rSgn[Bz],−αz;sCS;zβz;θSgn[Bz], αz;fCF ;z, αz;saβz;r
√
µoρ,

αz;saβz;θ
√
µoρ, 0, ρa

2αz;f

]
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