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Abstract

A novel thrust measurement method for plasma rockets that employ magnetic

coils is presented. The validity and feasibility of the thrust measurement method is

analyzed using an analytic model of plasma flow through a magnetic coil as well as

an experiment where the interaction between a nozzle coil and an induced plasma

current is examined with two magnetic coils. First, the thrust on a coil is shown to

result from the interaction between diamagnetic currents in the expanding plasma

and the coil, and is found to be proportional to the induced radial field Bind,r in the

vicinity of the coil. Next, the scaling of thrust with plasma thruster parameters is

derived, indicating that the typical magnitude of Bind,r at the nozzle coil lies between

10−3 G - 1 G. Magnetic probes with the required sensitivity and dynamic range are

described. Third, the error in the Br measurement method due to the necessary

vertical offset in probe position is examined with an analytical model of plasma flow

through a magnetic coil, and is found to lie between 1%-10%, depending on the

initial radius of the plasma flow. Lastly, empirical thrust estimates from the Br

method and trusted thrust stand method are found to be highly correlated in a two-

loop approximation, with the percent error between them largely attributed to probe

positioning error in the Br method. Also included are the calibration procedure for

the Br thrust measurement method and predictions for the future experiment with a

plasma thruster that will further investigate the validity of the Br method.
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Chapter 1

Introduction

The field of electric propulsion began in the early to mid 1900s (Jahn and Choueiri

2002). Electric propulsion was recognized for its potential to accomplish high exhaust

velocities in comparison to chemical rockets. High exhaust velocities (specific impulses

on the order of 1000s of seconds) allow for a reduction of the propellant mass according

to Equation 1.1, drastically increasing the payload mass fraction relative to chemical

rockets (Jahn 3).

∆v = ve ln
m0

mf

(1.1)

Equation 1.1 is commonly referred to as the ideal rocket equation. Here, ∆v is the

change in speed of the vehicle, m0 is the initial total mass of the vehicle, mf is the

final total mass of the vehicle, and ve is the effective exhaust velocity, described by

the equation

ve = Isp · g0 (1.2)

(Jahn 3) where Isp is the specific impulse and g0 is the acceleration due to gravity.

Because of this capability, electric propulsion systems have great potential for inter-

planetary travel, both robotic and piloted, due to their ability to reduce the trip time

and propellant mass fraction (Longmier et al. 2011). However, electric rockets do
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not achieve as high thrust densities (thrust per unit exhaust area) as do chemical

rockets (Jahn and Choueiri 2002). Because of electric rockets’ low attainable thrust,

trajectories are more complicated compared to the relatively impulsive maneuvers

accomplished by chemical rockets. The large on-board power system necessary to

support electric propulsion systems is another drawback to their use on satellites and

spacecraft. Currently, electric propulsion systems are used for station keeping and

attitude control on commercial spacecraft. Current research focuses on the incor-

poration of electric propulsion systems on micro-spacecraft missions as well as large

interplanetary missions (Jahn and Choueiri 2002).

Some applications of electric propulsion employ ionized gas, or plasma, that re-

sponds to electromagnetic fields (neutral gases do not feel electromagnetic forces).

Plasma is made up of positively charged ions and negatively charged electrons, and is

made by breaking the molecular bonds of gas molecules. Electric propulsion research

has been conceptually subdivided into three categories (Jahn and Choueiri 2002):

Electrothermal propulsion: Liquid propellant is electrically heated, then expanded

through a gas-dynamic nozzle. Demonstrations of this concept include Resisto-

jets, Arcjets, and Radiatively Heated Thrusters.

Electrostatic propulsion: Ions in a plasma gas are accelerated to very high veloc-

ities by an electric field. Examples of electrostatic rockets include ion thrusters

and Field Emission Electric Propulsion thrusters.

Electromagnetic propulsion (Plasma propulsion): Plasma is accelerated using

both electric and magnetic fields. Magnetoplasmadynamic Thrusters (MPDTs),

Pulsed Plasma Thrusters (PPTs), and Hall thrusters all employ the electromag-

netic propulsion technique of producing thrust.
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1.1 Plasma Propulsion

Plasma propulsion devices are the focus of this paper. In contrast to electrother-

mal and electrostatic rockets, there are many different practical implementations of

electromagnetic acceleration: various types of propellant, both liquid and solid, can

be used; the applied fields and currents can be static or pulsed; there are numerous

channel geometries; electric power can be supplied in multiple ways; there are several

means by which propellant can be supplied, ionized, and ejected (Jahn and Choueiri

2002). MPDTs, Hall thrusters, and PPTs are currently some of the most efficient,

reliable, and systemically compatible applications of plasma propulsion.

Plasma propulsion devices sometimes employ magnetic coils and permanent mag-

nets to construct a magnetic field contour on which ions and electrons exit the cham-

ber. A coil positioned at the point where the plasma exits the chamber is referred

to as a magnetic nozzle, as the magnetic field lines it creates resemble the throat of

a rocket nozzle. Examples of plasma rockets that use magnetic coils include helicon

double layer thrusters (Takahashi et al. 2011a), the Variable Specific Impulse Magne-

toplasma Rocket (VASIMR) (Longmier et al. 2011), the Gasdynamic Mirror (GDM)

Thruster (Tang et al. 2009), and the Electron-Cyclotron Resonance (ECR) thruster

(Sercel 1988).

1.2 Thrust of Plasma Devices with Magnetic Coils

The thrust of plasma propulsion devices that employ magnetic coils results from two

forces: the axial force on each magnetic coil due to induced currents in the plasma

and the axial force on the wall of the chamber due to electron pressure (Charles et

al. 2012). The ions are much cooler than the electrons, so ion pressure is generally

neglected (Fruchtman et al. 2012). Charles et al. 2012 found that the magnetic

nozzle imparted half of the thrust produced by a low-pressure conical radiofrequency
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magneto-plasma thruster (2.5 mN out of the total 5 mN for an effective radiofrequency

power of 650 W and a maximum magnetic field of 0.018 T). The fraction of thrust due

to the magnetic nozzle was found to be constant with radiofrequency power (Charles

et al. 2012).

One-dimensional and two-dimensional models have been used to characterize the

expansion of a plasma through a diverging magnetic field (Ahedo and Merino 2011,

Lafleur et al. 2011, Fruchtman et al. 2012, Takahashi et al. 2011b). These studies

conclude that the thrust on a magnetic coil results from the interaction between

the current in the coil and currents induced in the plasma. This is expanded upon

by Little and Choueiri (2011) who found analytically that surface and volumetric

currents that are induced in the plasma confine the expanding plasma and transfer

momentum from the expanding plasma to the magnetic coil through their mutual

interaction. Induced currents in the plasma that flow opposite to the direction of the

magnetic coil current (diamagnetic currents) decrease the magnetic field and repel the

coil, producing positive thrust. In contrast, currents that flow in the same direction

as the coil current (paramagnetic currents) attract the coil, and therefore produce a

drag force. Charged particles in space exhibit a helix-shaped trajectory, with a vz

along the external B-field and also a circular orbit that generates a B-field opposite to

the external B-field. These diamagnetic currents reduce the magnitude of the B-field

(Chen Ch. 2).

Figure 1.1 shows a comparison of the momentum transmission in a conventional

chemical rocket to the momentum transmission in a plasma source due to the mag-

netic nozzle (Little and Choueiri 2011). In a conventional nozzle, thrust results from

pressure on the inner nozzle wall. In a magnetic nozzle, the induced currents in the

plasma interact with the nozzle coil current, transmitting the momentum from the

expelled plasma to the magnetic nozzle and therefore to the thruster on which the

nozzle is mounted.
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Figure 1.1: A comparison of the momentum transmission in a conventional chemical
rocket to the momentum transmission in a plasma source due to the magnetic nozzle.
From Little and Choueiri 2011.

1.2.1 Thrust Measurement Methods

Thrust measurements are essential to propulsion research, but unfortunately are eas-

ily compromised by facility background effects (Haag 1991). These effects include

facility induced vibrations and structural distortions due to pumping down to vac-

uum (Haag 1991, Sovie and Connolly 1970). There are several ways that thrust of

plasma thrusters can be measured. Some of these methods involve the use of a pen-

dulum thrust balances, the calculation of the Maxwell stress tensor, and the use of a

momentum flux sensor, all of which have distinct limitations.

Pendulum Thrust Balances

A variety of pendulum thrust balances are commonly used to measure the force

of electric thrusters (Charles et al. 2012, Takahashi et al. 2011a, Takahashi et

al. 2011b, Pottinger et al. 2011). The device is mounted at the end of a vertical

or horizontal pendulum arm. When the device is fired, the arms displacement is

precisely detected with a high sensitivity displacement sensor; this displacement is
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Figure 1.2: Inverted Pendulum Thrust Stand from Haag 1991.

related to the thrust of the device through the effective restoring spring coefficient.

There are multiple types of displacement sensors, including laser displacement sensors

and electrical sensors such as a Linear Variable Differential Transformer (LVDT). The

restoring force due to gravity and other restoring springs present in the system is equal

to the thrust achieved by the device.

A popular type of pendulum thrust balance uses an inverted pendulum. An in-

verted pendulum thrust stand has the pivoting axis located below the center of mass

(Figure 1.2). The deflection (D) is determined by the thruster weight (mg), the length

of the pendulum arm (L), and the flexure stiffness (k). Flexure stiffness is tailored

to achieve the desired sensitivity and range of displacement. Thrust measurements

are backed out using the relation D=T/(k - mg/L). Displacement is detected pre-

cisely with a displacement sensor. The typical error for inverted pendulum thrust

stand measurements is 2% (Longmier et al. 2011, Haag 1991). The drawbacks to

these thrust measurement apparatuses include their impracticality for use with large

thrusters (e.g., VASIMR) and their expensiveness.
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Maxwell Stress Tensor

Etherington and Haines 1965 found the axial thrust on the nozzle coil of a linear

plasma Hall thruster by integrating the Maxwell stress tensor around the cross section

of the coil (see Figure 1.3). Magnetic probes were used to detect the magnetic field

components around the closed path (abcd) to construct the tensor. This method

yielded a value of the thrust accurate to 7%. Unfortunately, constructing the Maxwell

stress tensor is tedious – one must measure the Br and Bz components of the B field

at many points along the surface (the contribution to the thrust by Bθ is equal and

opposite along ad and cb, so Bθ does not contribute to the thrust and need not be

measured). The Maxwell stress tensor method is not typically used because it is not

a developed technology and because of its tediousness.

Figure 1.3: Maxwell Stress Tensor thrust measurement method (Etherington and
Haines 1965).
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Plasma Momentum Flux Sensor

Plasma momentum flux sensors (PMFSs) can be used for larger thrusters, as they do

not require mounting the thruster on a measurement apparatus. A PMFS constructed

by Longmier et al. 2009 consists of a graphite target disc hanging from an alumina

shaft (see Figure 1.4). The alumina shaft is connected to a small bar of titanium

that contains four strain gauges. When plasma flows into the graphite disc, the force

of the impact strains the titanium beam, and the thrust can be inferred from the

readout of the strain gauges.

Figure 1.4: Plasma Momentum Flux Sensor used to measure thrust (Longmier et al.
2009).

The PMFS is low-cost compared to pendulum-type thrust stands. The force

resolution of the sensor can be controlled by changing the length of the alumina

moment arm. Longmier et al. 2009 report a higher resolution compared to the

inverted pendulum thrust stand method, and thrust measurements of a Hall effect

thruster agree with inverted pendulum measurements with 2-6% error. However, the

PMFS thrust measurement technique is indirect and invasive. Chavers and Chang-

Diaz (2002) found that the plasma density upstream of the target disc is significantly

affected by the presence of the target. Additionally, some of the plasma recombines

at the target surface, and electrons are reflected in the upstream direction when they
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experience the sheath electric field that forms at the target surface (Chavers and

Chang-Diaz 2002). Lastly, Longmier et al. 2009 verified the agreement of the PMFS

method and thrust stand method for a Hall thruster, which has distinct differences

from other thrusters such as VASIMR. For example, the mass flow rate is lower in

a Hall thruster than in VASIMR. Because of the different properties of the plasma

flow in a Hall thruster and VASIMR, the agreement found by Longmier et al. 2009

for the Hall thruster could be less valid for VASIMR.

1.3 Hypothesis and Motivation

In light of the limitations of and complications surrounding present thrust measure-

ment devices and machinery, we are motivated to devise a thrust measurement tech-

nique that addresses these issues. We hypothesize that thrust can be estimated from

a simple measurement of the magnetic field near each magnetic coil of a plasma

thruster. The repulsive force of the induced currents in the plasma on the nozzle

coil and other coils present on the device produce part of the thrust of the device

– physically similar to the repulsive force between two current loops with opposite

directions of current flow. If the component of thrust due to the magnetic coils can

be easily calculated, this would greatly simplify characterization of plasma thrusters

with magnetic nozzles and other coils. The axial force on a coil with current I2 due

to induced plasma currents can be expressed as

F2 =

∫
J2 ×Bind · dV (1.3)

where J2 is the current density in the nozzle coil and Bind is equal to the induced

magnetic field. This is approximately equal to

F2 ≈ I2

∫
Bind · r̂ · dl ≈ 2πaI2Bind,r (1.4)
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where a is the radius of the coil.

So we see that the thrust on a coil is proportional to the radial component of the

induced magnetic field at the coil. Ideally, we would like to be able to measure Br at

the center of the coil, but this is invasive and would be difficult to achieve. Therefore

the Br measurements must be taken near the coil, on the inner and outer edges (see

the placement of the probes in Figure 1.5), adding some error.

Figure 1.5: Proposed setup for a Br thrust measurement technique. There are five
coils creating the desired magnetic field contour in the source region along with a sixth
source coil on the left, which confines the plasma to the source region on the left side.
The nozzle coil creates a diverging magnetic field on the right side, expanding the
plasma along the magnetic field lines as it exits. Figure adapted from Little and
Choueiri 2011.

Table 1.1 reviews the Pros and Cons of the two conventional thrust measure-

ment techniques and compares these with the pros and cons of a Br measurement

in the vicinity of the magnetic nozzle. In summary, the Br measurement method

would be suitable for large thrusters, is non-invasive and simple to carry out, has a

simple calibration procedure, and is inexpensive as it does not require an extensive

infrastructure – the only cost involved is that of the magnetic field probe used. In

addition, this method has potential for in-flight use, whereas the pendulum thrust

balance method and PMFS require such large infrastructures that they could not

feasibly be used in-flight. The drawbacks to using the Br method are that it involves

an indirect measurement and only measures the thrust on the current-carrying coils
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Table 1.1: A Comparison of Pros and Cons For Three Thrust Measurement Tech-
niques

Pros and Cons of Thrust Measurement Techniques
Method Pros Cons

Pendulum thrust balances

+Direct measurement -Impractical for large thrusters
+Easy calibration -Must minimize outside torques
+Trusted -Extensive infrastructure
+Wide range of sensitivity -Expensive
+Non-invasive

PMFS

+Easy calibration -Indirect measurement
+Cheaper than thrust balance -Invasive
+Wide range of sensitivity -Somewhat expensive
+Suitable for larger thrusters -Extensive infrastructure

Br measurement

+Suitable for large thrusters -Indirect measurement
+Non-invasive -Sensitivity limited by probe
+Simple, quick measurement -For some thrusters, only
+Potential for in-flight use measures part of total thrust
+Inexpensive
+No extensive infrastructure
+Easy calibration
+Outside torques ok

present in the thruster, which, for some thrusters, is only part of the total thrust (see

Chapter 4 for a full discussion). Additionally, the sensitivity of the measurement is

limited by probe capabilities (see Chapter 2 for an overview of instrumentation).

We address several questions in this paper. First, how does Bind,r scale with

thruster parameters? What magnetic field probes could be used to detect Bind,r with

the required resolution and dynamic range? Next, how sensitive are these measure-

ments to errors in probe positioning? Also, how do thrust measurements made with

the Br method compare with those made using the trusted thrust stand method?

And lastly, what experiment could be constructed to test these results with a plasma

thruster?

Chapter 2 discusses the B-field scaling with plasma thruster parameters and feasi-

ble B-field measurement methods. Chapter 3 investigates the issue of probe position-

ing errors by developing an analytical model of a plasma. Chapter 4 gives the results

of a proof of concept experiment where the interaction between the induced plasma
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currents and the nozzle coil is simulated with two electromagnetic coils and compares

these with direct thrust stand measurements. Lastly, the design of an experiment

with a plasma source is presented in Chapter 5.
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Chapter 2

Br Scaling and Measurement

Methods

In examining the feasibility of a Br measurement, we derive order-of-magnitude re-

lationships between the magnitude of Br and the thrust per unit area of the throat

or power input per unit area of a plasma device. Based on the results, we provide an

overview of magnetic probes for potential use.

2.1 Scaling of Br with design parameters

For a plasma to be confined by magnetic field lines, the magnetic pressure must exceed

the gas dynamic pressure:

β =
gas dynamic pressure

magnetic pressure
=

p0

B2
0 · 1

2µ0

< 1 (2.1)

Here, p0 is the gas dynamic pressure, equal to n0kT0, where n0 is the number density

of the plasma, k is the Boltzmann constant, and T0 is the temperature of the gas.

The magnetic pressure is equal to B2
0 · 1

2µ0
, where B0 represents the magnitude of

the external magnetic field – in the case of the plasma thrusters with which we are
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concerned, this is the magnetic field of the nozzle coil. We assume that β is very small,

and because of this induced magnetic fields in the plasma flow may be ignored (Little

and Choueiri 2011). In practice, typical values of β range from 10−7 − 1 (Takahashi

et al. 2011b, Little and Choueiri 2011), so a more in-depth model would have to

account for the perturbation to the external field in the plasma flow due to induced

currents to be applicable to thrusters with higher values of β.

Next, during the expansion of the plasma out of the throat of the rocket, the

pressure is converted into thrust:

F = ṁvex + p0At = CFAtp0 (2.2)

(Sutton and Biblarz 63) where F is the thrust, ṁ is the mass flow rate, v is the

exhaust velocity (vex = Ispg0), At is the throat area, and CF is the thrust coefficient.

CF has contributions due to the flow entering the throat (C0) and also due to the

diamagnetic and paramagnetic currents, which produce positive and negative thrust,

respectively. CF is greater than C0 for propulsion applications but also less than the

maximum thrust coefficient CF,max. To find a range of feasible CF values, we calculate

C0 and CF,max. C0 is given by

C0 =
γ + 1

γ
g(γ) (2.3)

(Little and Choueiri 2011) where γ is equal to the (dimensionless) effective electron

specific heat ratio, assumed to be γ = 1.2 (Little and Choueiri 2011) from empirical

electron temperature measurements in a plasma plume, and g(γ) is given by

g(γ) = γ

(
γ + 1

2

)− γ
γ−1

(2.4)

The maximum thrust coefficient is expressed by equating the thrust power with the
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flow power at the entrance to the nozzle throat (Little and Choueiri 2011). CF,max is

given by

CF,max = g(γ)

√
γ + 1

γ − 1
(2.5)

These two constraints provide a range for the value of the thrust coefficient: taking

γ = 1.2 we see that 1.24 < CF < 2.25. We later take CF ≈ 2.

The field of the nozzle coil at its center is

B0 =
µ0I

2a
(2.6)

where I and a are the current and radius of the nozzle coil, respectively. Additionally,

an estimate of the magnetic field due to induced currents in the plasma (Br) as a

function of thrust can be obtained from Equation 1.4 and Equation 2.6:

Br ≈ µ0F

4AtB0

(2.7)

where At = πa2.

Now let us calculate the the power efficiency of a rocket η. This is expressed as

the ratio of power converted into thrust (PT ) to the input power (Pin):

η =
PT
Pin

(2.8)

To get a range of reasonable η values, we neglect all efficiency losses up to the throat

entrance, and find that η ≈ CF
2/CF,max

2 (Little and Choueiri 2011). Because C0 <

CF < CF,max, for γ = 1.2 we find that 0.3 < η < 1.0. We later take η ≈ 0.5.

The thrust of a rocket relates to its power through the relationship PT = 1
2
Fvex.

So

F =
2ηPin
vex

(2.9)
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Figure 2.1: Order-of-magnitude estimate of Br vs. Isp for various values of β·(P/At)

and from Equations 2.7 and 2.9, we see that

Br ≈ 2µ0ηPin
4AtvexB0

(2.10)

Through manipulation of equations 2.1-2.6, we achieve order-of-magnitude rela-

tionships between Br and typical thruster parameters Pin/At, T/At, Isp, and β:

Br ≈
(
µ0ηCF
16g0

· βPin
AtIsp

) 1
2

(2.11)

Br ≈
(
µ0CF

32
· βT
At

) 1
2

(2.12)

Equations 2.7 and 2.8 can be used to approximate the magnitude of the magnetic

field due to induced diamagnetic currents in a plasma at the location of the magnetic

nozzle. Figures 2.1 and 2.2 show the respective plots of these functions for η = 0.5

and CF = 2.

Based on these order-of-magnitude estimates, what capabilities are we looking for
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Figure 2.2: Order-of-magnitude estimate of Br vs. β·(T/At).

in a magnetic field probe, i.e., how sensitive would a probe have to be to detect the

magnetic field due to induced plasma currents in the vicinity of the magnetic nozzle

coil? A probe would have to have a sufficiently large dynamic range and also high

resolution. The typical magnitudes for Br based on this estimate lie between 10−3 G

- 1 G. There are not many publications that include the necessary dimensions and

plasma parameters of thrusters to carry out this calculation. Takahashi et al. 2011b

provide dimensions and plasma parameters of their Argon plasma thruster that allow

us to calculate the expected magnitude of Br at the magnetic nozzle coil as .06 G.

2.2 Instrumentation

Several types of magnetic field probes exist that have wide dynamic ranges and high

sensitivity in the order of magnitudes that the Br thrust measurement technique re-

quires. We require instruments that operate in steady-state for the measurements

investigated in this paper, though pulsed measurements are also a possibility, and
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there is a wide range of instrumentation that could be used in pulsed mode. All of

these types of devices are commercially available. Table 2.1 compares the fluxgate

magnetometer, magnetoresistive gaussmeter, and the Hall effect gaussmeter with re-

gards to dynamic range and resolution. A review of how these three devices work is

provided in the sections that follow.

Table 2.1: The Dynamic Range and Sensitivity of Relevant Magnetic Field Probes

Type of probe Dynamic range (G) Resolution (G)
Fluxgate Magnetometer 0.001 - 5 10−6

Magnetoresistive Gaussmeter 0.01 - 50 10−4

Hall Effect Gaussmeter 1 - 3·105 10−3

2.2.1 Fluxgate Magnetometer

In a fluxgate magnetometer, a transducer called the fluxgate converts a magnetic

field into an electric voltage (Macintyre 2000). One popular design is the ring core

fluxgate (Figure 2.3), in which a thin ribbon of Permalloy is wrapped around a bob-

bin to form a toroid. A coil with alternating current is wound around the toroid,

creating a changing magnetic field that circulates around the magnetic core. Because

Figure 2.3: The ring core fluxgate sensor. The excitation field is at right angles to
the axis of the signal winding to minimize coupling between the two. The toroidal
ring core is also labeled. From Macintyre 2000.
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of this changing magnetic field, the flux in the Permalloy periodically saturates in

the clockwise direction and then in the counterclockwise direction, etc. The toroid is

wrapped in a pick-up winding, which outputs a voltage pulse with an amplitude pro-

portional to the magnitude of the external magnetic field and a phase that indicates

the magnetic field’s direction (Macintyre 2000).

2.2.2 Magnetoresistive Gaussmeter

The resistance of a ferromagnetic material changes when it experiences a magnetic

field – this is described by the magnetoresistance effect. A magnetoresistive gauss-

meter detects the magnetoresistive effect in a strip of Permalloy (a 80% Ni – 20% Fe

alloy) by running a current through the material, as the resistivity is dependent on

the magnetic field (see Figure 2.4). A higher magnetic field increases the resistivity;

at high enough magnetic field the material approaches saturation, and resistivity no

longer changes with increasing magnetic field (Macintyre 2000).

Figure 2.4: The dependence of resistivity of Permalloy or another ferromagnetic mate-
rial on the magnitude of the applied magnetic field. A maximum value of resistivity is
reached at magnetic flux saturation. A magnetoresistive gaussmeter uses this relation
to calculate an external magnetic field. From Macintyre 2000.
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2.2.3 Hall Effect Gaussmeter

The Hall effect device is a high-field vector gaussmeter that uses the Lorentz force

relation to detect magnetic fields (Macintyre 2000). The Lorentz force law dictates

that a moving charge q in an external magnetic field will experience a magnetic force

that is perpendicular to both the magnetic field vector and the particle’s velocity

vector. A Hall effect device consists of a flat conductor or semiconductor strip through

which an applied electric current flows (NDT Resource Center). When placed in an

external magnetic field, there is a force on the moving electrons that pushes them

to one side of the conducting strip, resulting in a buildup of charge on the sides of

the strip (see Figure 2.5). The voltage is then measured between the two sides of

the conducting strip and related back to the magnitude of the magnetic field (NDT

Resource Center).

Figure 2.5: A schematic of the Hall Effect from the NDT Resource Center showing
the applied current, external magnetic field, and resulting voltage difference in a strip
of conducting or semiconducting material.
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Chapter 3

Probe Positioning Errors

Another important factor to consider in the feasibility of the Br thrust measurement

technique is how sensitive it is to probe positioning errors. The coils that experience

thrust have finite width, and though we ideally would place a magnetic field probe

at the center of each coil’s cross section to estimate the magnetic field at the coil,

we must place the probe(s) at the outer and inner edges (see the position of these

measurements in Figure 3.1). To quantify the error associated with this measurement,

we form an analytic model of the plasma flow through two magnetic coils and solve

for the magnitude of Bind,r everywhere in space; from this we examine the error that

results from probe positioning errors.

Figure 3.1: Position of measurements taken at aouter and ainner.
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First we calculate the pressure profile of the plasma pe(r) as it expands through

two magnetic coils. Figure 3.2 shows the setup and magnetic field topology for the

plasma source. From this we obtain a formula for the current density in the plasma

jθ(r). Finally, we use jθ(r) to find the total induced magnetic field Bind,r(r) due

to the plasma flow. We present contour plots of Bind,r(r) in the vicinity of the

magnetic nozzle (the rightmost coil in Figure 3.2) to estimate the error in our B-field

measurements associated with the finite width of the coil.

We make several assumptions. First, the radius of the plasma for z ≤ 0 is said

to be the same radius as the source tube (see Figure 3.2). Once the plasma exits

Figure 3.2: Setup and topology of the magnetic field lines created by two coils (Frucht-
man et al. 2012). There are two coils located at z ≈ −18cm and z ≈ −5cm. For this
configuration, rp0 = 4.5 cm because the radius of the source tube is given as 9 cm.

the source tube (z > 0), the plasma flow is assumed to be attached to the magnetic

field lines. The electron temperature is assumed to be isotropic. We also assume the

electron pressure profile stays the same shape throughout expansion (i.e., is of a self
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similar form). This pressure profile can be expressed as:

pe(z, r) = pe(z0, 0)pen(z)f{[r/rp(z)]2} (3.1)

(Fruchtman et al. 2012) where pe(z0, 0) is the maximal electron pressure, pen(z) is

the normalized electron pressure along z ≥ 0, f(ξ) = 1− ξ(a1/2) for ξ ≤ 1, rp(z) is the

radius of the plasma as a function of z (this shape function was empirically found by

Takahashi et al. 2011b), and a1 is a fitting parameter of the electron pressure radial

profile measured at z0 (the location of maximal electron pressure). Fruchtman et al.

2012 verified that the thrust on a plasma imparted by two magnetic coils calculated

using this pressure profile is a good estimate of the thrust measured experimentally.

We derive the normalized electron pressure profile pen(z) from isentropic, com-

pressible flow equations. pen(z) describes the evolution of the flow in the z-direction.

We begin with the formula for the vector potential of a current loop:

Ψ(r, z) =
2B0a

2r

π

(2− k2)K(k2)− 2E(k2)

k2
√

(a+ r)2 + z2
(3.2)

(Little and Choueiri 2010) where

k2 =
4ar

(a+ r)2 + z2
(3.3)

and K(k2) and E(k2) are the complete elliptic integral functions of the first kind and

and second kind, respectively (Little and Choueiri 2011). The non-dimensional flux

is given by

Ψ̂(r, z) =
Ψ(r, z)

B0a2
(3.4)

When Ψ̂(r, z) is expanded about r = 0, this simplifies to

Ψ̂(r, z) =
r2

2(1 + z2)3/2
(3.5)
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to second order in r. Because we have assumed the flow is field-aligned (the plasma

is attached to the magnetic field lines), and because magnetic field lines are lines of

constant flux, we can express the flux along the field line corresponding to the edge

of the plasma flow as

Ψ̂(rp0, 0) = constant =
r2
p0

2
(3.6)

where rp(z = 0) = rp0 is the radius of the plasma when it exits the source tube (in

Figure 3.2, rp0 = 4.5 cm). From this, the radius of the plasma as a function of z can

be written as

rp(z) = rp0(1 + z2)3/4 (3.7)

and the area of the expanding plasma flow is equal to

A(z) = πrp(z)2 = πrp0
2(1 + z2)3/2 (3.8)

Because we have assumed an isentropic, compressible flow, the ratio of A(z) to A∗

(the area at the throat) is related to the Mach number as a function of z by

rp(z)2

rp02
=
A(z)

A∗
=

1

M

{
1 + γ−1

2
M2

γ+1
2

} γ+1
2(γ−1)

(3.9)

(Sutton and Biblarz 50) where A∗ is equal to the throat area of the nozzle, or πrp0
2.

Our aim is to find the ratio of the pressure to the chamber pressure as a function of

z (this is p
p0

(z)) and then use this to find the normalized pressure profile pen, equal

to the ratio of the pressure to the throat pressure. The pressure normalized by the

chamber pressure is

p

p0

(z) =

[
1 +

γ − 1

2
M(z)2

]− γ
γ−1

(3.10)

(Sutton and Biblarz 50). To calculate p
p0

(z), we must solve Equation 3.9 for M
(
rp(z)

rp0

)
,

use Equation 3.10 to find p
p0

(z), and then renormalize p
p0

(z) by the pressure at the
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rp0
(red). The

points are presented with a fit curve in black. This fit becomes our analytic expression

for M
(
rp(z)

rp0

)
.

throat to obtain pen. Because Equation 3.9 is an implicit equation for M , we solve

for M
(
rp(z)

rp0

)
iteratively in Mathematica taking γ = 1.2 to obtain the approximation

M

(
rp(z)

rp0

)
= −11.84 + 13.30

(
rp(z)

rp0

)0.1

(3.11)

or, from Equation 3.7, the Mach number can be expressed as

M(z) = −11.84 + 13.30(1 + z2)0.075 (3.12)

This approximate analytic expression (Equation 3.11) was obtained from solving

Equation 3.9 for a given value of rp(z)

rp0
, plotting the pairs of points

(
rp(z)

rp0
,M
)

, and

fitting a curve to the set of points. The points and fit are shown in Figure 3.3. From

Equations 3.10 and 3.12, we now have an expression for p
p0

(z). However, we are

trying to solve for pen, which is normalized by the value of pressure at the throat of

the nozzle. To correct for this we simply divide p
p0

(z) by p
p0

(z = 0):
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pen =

p
p0

(z)
p
p0

(z = 0)
(3.13)

This normalized pressure profile is plotted in Figure 3.4 along with the normalized

pressure for fixed values of z from before we made an approximate analytic expression

for M
(
rp(z)

rp0

)
. Pressure drops sharply with increasing values of z, as expected, and

the pressure at z = 0 is equal to p0. The agreement of our approximate analytic

pressure profile with the exact values of pressure for fixed values of z is strong for low

values of z but weakens for larger values of z. However, most of the force is transferred

by the diverging magnetic field at low values of z, so this analytic expression is still

a very good approximation.

Now that we have pen we know the full expression for pe(z, r) (Equation 3.1). We

use pe(z, r) to express the induced diamagnetic current density in the plasma:

jθ(r) =
|∇pe(r)×Ba|

B2
a

(3.14)

where Ba is the applied magnetic field due to the nozzle coil. The magnetic field due
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to the induced current density jθ is obtained from

∇×Bind = µ0jθ(r) (3.15)

where Bind is the induced magnetic field. Now we find the total radial magnetic

field at any radius from the axis of the nozzle coil by integrating the field due to the

induced current density over the area of the plasma flow:

Bind,r(r) =
−µ0

r

∫
jθ(r

′)Gz(r, r
′)dA′ (3.16)

where Gz is the derivative of the Green’s function, which we will define in the next

chapter, with respect to z. Contour plots of Bind,r(r) relative to Bind,r at the center

of the coil (r = 1, z = 0) for varying values of rp0 provide insight into the effect of

probe positioning errors on the validity of the Bind,r measurement technique.

Figure 3.7 shows contours of Bind,r(r, z) for 90%, 95%, 100%, 105%, and 110%

of the value of Bind,r at the center of the coil, which we assume is the value that

we would measure to calculate thrust if such a measurement were not invasive. The

cross section of the coil with a width equal to 25% of the radius is shown in dashed

lines. We see that for increasing values of rp0, the field lines become more vertical,

which would increase the accuracy of a Br measurement taken at the center of inner

edge and outer edge of the coil, either taken individually or averaged. For lower

values of rp0, a measurement of Br centered at the inner edge or outer edge of the

coil would be less accurate, though for rp0 = 0.3a, a single measurement of this type

would still be within 5-10% error, and an averaged measurement would have less

than 5% error due to probe positioning. Also, if rp0 is known, the B-field probes

can be placed at the inner and outer edges of the coil on the contour line along

which Bind,r(r, z) = Bind,r(1, 0), which can further reduce probe positioning error.

In general, the contours of Br in the vicinity of the magnetic nozzle show that the
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magnetic field does not drastically change around the area that we will be measuring,

which is a good indicator of the validity of the Br measurement method.
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Figure 3.5: Contour plots of Bind,r(r) in the vicinity of the magnetic nozzle for rp0 =
0.3a, 0.5a, and 0.7a, respectively, where a is the radius of the coil. The nozzle coil
is centered at the origin. The coil is assumed to be square with a width of 0.25a.
Contours are shown for 90%, 95%, 100%, 105%, and 110% of the value of Br at the
center of the coil cross section.
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Chapter 4

Indirectly Measuring Thrust from

Br Measurements

It is important to show that the Br thrust measurement technique gives similar results

to those obtained using a trusted method. To compare the results of the Br technique

with those of a thrust stand, we turn to the two-loop approximation, which we soon

show will suffice. We also examine the effect of probe positioning errors in the two-

loop approximation. Lastly, we discuss the use of the Br measurement technique for

different types of plasma propulsion devices.

4.1 A comparison of thrust estimates from the Br

method and thrust stand method in the two-

loop approximation

The two-loop experimental setup is shown in Figure 4.1. Two loops of equal size are

lined up such that they are concentric and placed a distance z apart. When currents

I1 and I2 flow through the “plasma coil” and nozzle coil, respectively, the loops either

experience an attractive or repulsive force. (If I1 and I2 flow in opposite directions,
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Figure 4.1: Proof of concept setup. The “plasma coil” roughly represents the induced
currents in the plasma. In our setup, the “plasma coil” and the nozzle coil are
identical.

the force is attractive; if I1 and I2 flow in the same direction, the force is repulsive.)

The “plasma coil” represents induced currents in the plasma flow; the nozzle coil

represents the magnetic nozzle coil on which we wish to measure thrust.

First we derive the magnitude and direction of the magnetic field due to the

“plasma coil.” The magnetic field of a current loop located at (r1, z1) can be expressed

as

Bz(r, z) =
µ0I

aeff
Gz(r, z; r1, z1) (4.1)

Br(r, z) =
µ0I

aeff
Gr(r, z; r1, z1) (4.2)

(Little and Choueiri 2011) where I is the current through the loop, aeff is the effective

radius of the loop, and Gz(r, z; r1, z1) and Gr(r, z; r1, z1) are the derivatives of the

Green’s function (Equations 4.3-4.4) with respect to z and r, respectively.

G(r, z; r1, z1) =
1

2π

√
rr1
k

[(2− k2)K(k2)− 2E(k2)] (4.3)
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Figure 4.2: Contour plot of the magnetic field due to a loop centered at (0,0). The
axes are normalized by the coil radius.

where

k2 =
4rr1

(r + r1)2 + (z − z1)2
(4.4)

Figure 4.2 shows a contour plot of the magnetic field created by a current loop.

We are only concerned with Br, however, because this is the component of the

magnetic field that causes a force on the nozzle coil in the z-direction. The axial force

on the nozzle coil due to an induced magnetic field Bind is expressed as (Equation

1.4):

F2 ≈ I2

∫
Bind · r̂ · dl ≈ 2πaeffI2Bind,r (4.5)

Note that aeff (the effective radius) for our coil is slightly larger than aphy (the

physical radius). aphy is equal to the average radius of the coil with finite width

(aphy = aouter+ainner
2

), whereas aeff describes a coil of infinitely narrow width that
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Figure 4.3: Bz on axis due to one current loop. Experimental data for our coil of
finite width is plotted (circles), as well as the theoretical relationship between Bz and
z for a single, infinitely narrow current loop of radius aeff (curves). Green represents
I=15A; blue represents I=10A; red represents I=5A.

has the same total current as our coil of finite width, and therefore has a similar

magnetic field to our coil of finite width. In order to calculate F2, we must first solve

for aeff . To do this, we measured the magnitude of Bz at the center of the “plasma

coil” (r = 0, z = 0) for varying values of current. The effective radius of the coil was

calculated from the relation between Bz and aeff :

Bz =
µ0I

2aeff
(4.6)

The magnitude of Bz was measured for the single coil with the Hall probe for

varying values of z and three different values of I (Figure 4.3). Also plotted in Figure

4.3 are the theoretical curves for Bz(z) for a single current loop of radius aeff . The

agreement between the curves and the data indicate that the field of our coil of finite

width and radius aphy is sufficiently close to that of an infinitely narrow loop of radius

aeff , though there is some small error associated with this.
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Now that we know aeff , we can proceed to our comparison of the Br method

and thrust stand method. We simultaneously make direct measurements of the force

on the nozzle coil (Fj) with the trusted thrust stand apparatus and also indirect

measurements of Fj from the measured radial magnetic field just outside the coil

(Bj,r). The thrust stand is described in detail along with calibration procedures in

Appendix A. Bj,r is measured with a Hall magnetic field probe at the outer edge of

the nozzle coil.

Though the two-loop approximation may seem like a drastic simplification, it is

shown that the correlation between the force on the nozzle coil and the magnetic field

due to our single “plasma coil” holds for the force on the nozzle coil due to the total

induced magnetic field that results from many induced plasma currents. The total

induced magnetic field is the sum of the Bind of all the diamagnetic currents in the

plasma (at a range of z-values).

Bind,r =
n∑
i=1

Bj,r (4.7)

Therefore it seems sufficient to derive a relation between the force on the nozzle Fj

and Bj,r due to current flow in a single loop. If an accurate correlation between Fj

and Bj,r exists, the relation should hold for the total F2 and the total Bind,r, with

F2 =
n∑
j=1

Fj =
n∑
j=1

2πaeffI2Bj,r (4.8)

We derive our formula for nondimensionalized force from the radial magnetic field of

a current loop from Equations 4.2 and 4.5:

Fj = 2πµ0IjI2Gr(r, z; r1, z1) (4.9)
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And the normalized force on the nozzle coil is proportional to the Green’s function:

Gr(r, z; r1, z1) =
aeffBj,r

µ0Ij
=

107Fj
8π2IjI2

(4.10)

The nondimensionalized force (indirectly measured from Br or directly measured

from thrust stand measurements) vs. normalized distance (z/aeff ) is plotted in Figure

4.4. Sources of error for thrust stand measurements arise from calibration, variation

of the Linear Variable Displacement Transducer (LVDT) readout in steady-state,

and LVDT drift (see Appendix A for a full explanation). Sources of error for the

Br measurement are due to probe positioning and variation of the B-field readout in

steady-state.

From Figure 4.4, we see that the two methods of measuring force on the nozzle

coil due to a second “plasma coil” are closely correlated through the relationship
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quantified in Equation 4.10 and appear to agree closely with theoretical curve. From

Equation 4.8, we would expect this to be generalizable to many currents in the plasma

flow of a plasma propulsion device. However, it is necessary to directly compare the

Br measurements and thrust stand measurements.

In order to determine the degree of agreement between the Br and thrust stand

thrust measurement methods, we must look at the percent error between the mea-

surements shown in Figure 4.4. In doing so, we must recognize that there is already

a certain amount of error in the Br measurement due to probe positioning errors.

Though we have examined the probe positioning errors in the analytical model of

plasma flow through a magnetic nozzle coil in Chapter 3, we must also examine the

probe positioning errors in the two-loop approximation. Logically, we cannot measure

Br at the center of the nozzle coil as this would be invasive.

4.2 Probe Positioning Errors in the Two-Loop Ap-

proximation

We can use Equation 4.2 to calculate Br due to the “plasma coil” at the center of

the nozzle coil (r = aphy, z = 0) and compare that value with the predicted Br values

at the inner and outer edges of the coil. Figure 3.1 shows the location of aouter and

ainner.

Figure 4.5 shows the theoretical percent error in Br measurements taken at the

outer edge of the coil and at the inner edge of the coil. Also plotted is the percent

error in the average of the two measurements (this clearly provides the smallest error).

As the separation between the nozzle coil and “plasma coil” increases, the percent

error incurred by these three measurements decreases dramatically.

This simplified situation gives us an idea of how the percent error of a measurement

is affected by the vertical offset of the width of the coil. With this in mind, we can now
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Figure 4.5: Theoretical percent error for measurements at aouter (red) and ainner
(green). The percent error for the average of these measurements is plotted in blue.

examine the plot of percent error between the Br and thrust stand methods. Figure

4.6 shows the percent error between these measurements, as well as the theoretical

percent error in the Br measurement due to probe positioning errors when Br is

measured at aouter. We see that a large portion of the percent error between these

measurement methods is due to the percent error inherent in the Br measurement

method due to the offset in the probe’s position. Therefore we would expect the

percent error between the Br method and thrust stand method to decrease roughly

according to Figure 4.5 if an average of the fields detected by B-probes at ainner and

aouter is used to predict thrust.

4.3 Use of the Br measurement technique for plasma

propulsion devices

How can this thrust measurement technique be applied in plasma rockets? It depends

on the type of thruster. As we saw in Chapter 2, the magnitude of the magnetic field
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at the magnetic coils must be detectable, and this will depend on several variables. In

addition, the structure of the thruster will determine the usefulness and applicability

of the Br thrust measurement technique.

A device like that in Figure 1.5 employs two coils on either end of the source region,

producing a magnetic mirror that uses the total magnetic field to confine the plasma

in the source region on the left and accelerate the plasma out of the right “opening.”

The thrust of such a device is entirely due to the force of the induced plasma currents

on the current loops present, so one could place an appropriate probe at the edge of

each coil, calculate the force on that coil from the measured Br value, and simply

add to find the total thrust. In contrast, most devices have a physical source tube

that confines the plasma, and the tube has a back wall against which a pressure is

imparted due to the confined plasma (see Figure 4.7 for an example). In such a device,

the total thrust is

Ttotal = Ts + TB (4.11)
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Figure 4.7: Diagram of an example device with a source tube and two magnetic coils
(adapted from Takahashi et al. 2011b).

(Fruchtman et al. 2012) where Ts is the thrust due to the electron pressure on the

back wall of the plasma source tube and TB is the thrust due to the induced currents,

calculated in the previous chapters. Ts can be expressed as

Ts =

∫ rp(z0)

0

pe(z0, r)2πrdr (4.12)

In the case of a rocket with a source tube, the most useful application of the Br

measurement technique is for magnetic nozzle design optimization. If a designer of a

magnetic nozzle wants to achieve maximum thrust with a given set of parameters, he

or she can simply measure Br at the magnetic nozzle coil for a variety of configura-

tions to calculate this contribution to thrust. Maximizing Br at the nozzle coil also

maximizes the thrust on the nozzle coil (TB) according to Equation 4.8.
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4.4 Calibration procedure

As mentioned in Chapter 1, calibration procedures for the Br thrust measurement

method are simple. Probes should be placed at the inner and outer edges of each coil

in the device. Initially, all coils should be turned on, and Br at each coil should be

noted. Then, when the plasma source is on as well as the magnetic coils, the radial

field due to the coils’ own current flow should be subtracted from the detected field at

each coil. This is a simple way to “zero” the magnetic probes and account for radial

fields at each coil that are due to the presence of other coils or to accidental probe

misalignment.
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Chapter 5

Experimental Design

In this chapter we present the design of an experiment to study the thrust due a

plasma expanding through a magnetic nozzle. The experiment aims to quantify the

validity of the Br measurement with an empirical comparison of thrust measurements

from both the thrust stand method and the Br method. This is the logical follow-up

to the simplified experiment with two magnetic coils described in Chapter 4. The

type of source used by Takahashi et al. 2011b is a reasonable device to base our

experimental design on, as their thruster is small enough to be mounted on a thrust

stand.

5.1 Experimental setup and hypothesis

A schematic of the experimental setup that we aim to reproduce is shown in Figure

5.1. The Pyrex source tube is 25 cm long and has a 9 cm inner diameter (aS =

4.5 cm). Argon gas enters the source tube through a small ceramic tube. There

is a rf loop antenna with two turns and radius ≈ 5.5 cm located at z = -12 cm.

The antenna is powered through an impedance matching circuit with a 13.56 MHz

rf power generator (Takahashi et al. 2011b). The displacement of the magnetic coils

is measured with a laser displacement sensor. Thrust on the coils due to Bind,r is
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aS 

aL 

Figure 5.1: Schematic of experimental setup used by Takahashi et al. 2011b.

marked as TB; thrust on the source tube due to the gas dynamic pressure is marked

as TS.

There are two solenoids of radius aL ≈ 8 cm. In Mode A, the “downstream”

solenoid located at z = -5.5 cm has current IB,down. In Mode B, both the “down-

stream” solenoid and the “upsteam” solenoid located at z = -18.5 cm are turned on,

with currents IB,down and IB,up. The axial profiles of Bz on axis of the solenoids in

Modes A and B are shown Figure 5.2(a) for currents IB,down and IB,up equal to 6 A.

Topologies of the field lines for Modes A and B are drawn in Figure 5.2(b).

Because the solenoids are directly attached to the thrust stand, measurements of

TB and Ttotal = TS + TB could be obtained by attaching the source tube to either the

vacuum chamber or to the solenoids, respectively. Takahashi et al. 2011b measured

TB = 0.6 mN for the A mode and TB = 3 mN for the B mode. Ttotal was measured

to be approximately 2 mN and 6 mN for the A mode and B mode, respectively.

Magnetic probes will be placed at the inner and outer edges of the “upstream”

and “downstream” solenoids. The inner edge and outer edge Br measurements will

be averaged to find the radial field at each nozzle. The thrust on the coils (TB) will
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Figure 5.2: (a) Axial profiles of Bz on axis for both modes. Mode A,
where (IB,up, IB,down)=(6 A, 6 A) is shown in a dotted line and Mode B where
(IB,up, IB,down)=(0 A, 6 A) is shown in a solid line. (b) Topologies of the magnetic
field lines for Modes A and B. Adapted from Takahashi et al. 2011b.

then be calculated from the proportionality in Equation 1.4 and compared with TB

measured by the thrust stand. It is expected that there will be a small percent error

between these measurements.

5.2 Instrumentation and calibration

The type of probe we require can be determined from the estimated magnitude of

Bind,r as described in Chapter 2. Figure 2.2 allows us to calculate the order-of-

magnitude estimate of Bind,r given the plasma thruster parameters of β and thrust

per unit area. For Mode B of the thruster described by Takahashi et al. 2011b, β=

0.001 by Equation 2.1, the thrust TB ≈ 3 mN, and aS = 4.5 cm, so β · (T/At) ≈ 10−4.

From Equation 2.12 (and Figure 2.2), we can estimate the induced magnetic field at

the “downstream” solenoid to be equal to 0.06 G. We could easily detect this field
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with a fluxgate magnetometer, which from Table 2.1 can measure fields from 0.001−5

G with a resolution of 10−6 G.

Mode A is somewhat more complicated because both the “upstream” and “down-

stream” solenoids experience additional fields due to the presence of the other. To

measure the thrust on, for example, the “downstream” solenoid in Mode A, we must

separate the induced magnetic field due to diamagnetic currents in the plasma and

the magnetic field due to the “upstream” solenoid, because the detected field at one

solenoid is equal to

Btotal,r = Bind,r +Bloop,r (5.1)

Only Bind,r contributes to the thrust by Equation 1.4. For the experimental setup

in Takahashi et al. 2011b, the radial magnetic field Bloop,r at the “downstream”

solenoid due to the “upstream” solenoid (and vice versa) is approximately 0.09 G.

The magnitude of the induced radial magnetic field cannot be determined from Figure

2.2, because the derivation of the Br scaling with design parameters assumed only

one solenoid. However, the induced field at one of the solenoids in Mode A due to

induced currents in the plasma is likely of the same order of magnitude to that in

Mode B. This means the total field at one solenoid in Mode A would be on the order

of 0.15 G, so we again would want to use a fluxgate magnetometer to detect the field.

To calibrate the measurement in Mode B, we would measure the field at the

“downstream” solenoid with its current on, but before the plasma source is on. This

accounts for any error in probe positioning due to accidental misalignment (the probe

may be slightly removed from the center of the edge of the coil or may be slightly

tilted). Only if the probe is perfectly aligned will Br at the coil’s edge due to the coil’s

current be equal to 0. Once the plasma is flowing through the coil, we will average

Br at the coil’s inner and outer edges and subtract the radial field due to the coil’s

own current flow.

To calibrate the measurement in Mode A, we would do the same procedure with
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both solenoids turned on. The average value of Br at each coil before the plasma

starts to flow will simply be subtracted from the average value of Br at each coil

while plasma is flowing in steady-state.

5.3 Expected results and applications

We expect there to be a small percent error between thrust measurements made with

the Br method and those made with the thrust stand method. There will be some

error associated with the calibration and alignment of the thrust stand. The error in a

Br thrust measurement taken in Mode B is anticipated to be due to probe positioning

due to the finite width of the coil. The error in a thrust measurement taken in Mode

A is expected to arise from error in probe positioning as well, but because there are

two separate fields at each coil in Mode A, the total error due to probe positioning is

larger. This is because Bind,r = Btotal,r−Bloop,r, where there is probe positioning error

in both Btotal,r and Bloop,r. The probe positioning error in Mode A was examined with

some simplifying assumptions in Chapter 3 and is small for our value of rp0, equal to

the radius of the source tube normalized by the coil radius, or 0.56 for the setup in

Takahashi et al. 2011b. From Figure 3.5, the percent error due to positioning the two

B-field probes at the center of the outer and inner edges of the loops with rp0 = 0.56

would be ≈ 2%.

Due to the type of thruster we intend to experiment on (that with a source tube

and magnetic coils, so Ttotal = Ts + TB), the practical application of the Br thrust

measurement method would be magnetic nozzle design optimization. Simple, quick

measurements of the magnetic field at each coil could be made for varying arrange-

ments of solenoidal coils, and the arrangement that optimizes thrust could be chosen

by maximizing the Br measurements at the coils.
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Chapter 6

Conclusion

To conclude, we have shown that Br at the nozzle coil of a plasma rocket is propor-

tional to the thrust on that coil. This motivates the development of the Br mea-

surement technique, which is simpler and cheaper than other thrust measurement

methods such as the thrust stand and plasma momentum flux sensor methods. The

Br thrust measurement method also has potential for in-flight use. To investigate the

feasibility of the Br method, we examined how the magnitude of the magnetic field

at the nozzle coil scales with plasma parameters, and based on the results presented

three classes of magnetic probes that could reasonably carry out this measurement in

steady state. In examining the effect of finite coil width on the B-field measurement

at the coil, we developed an analytical model of a plasma flow through a magnetic

coil and saw that probes should be placed at the inner and outer edges of the coil and

their measurements should be averaged to minimize probe positioning error. Averag-

ing these measurements reduces error due to probe positioning to 1-10%, depending

on the initial radius of the plasma flow. Next, to investigate the validity of the Br

method, we examined empirical data and found that a large portion of the percent

error between the indirect Br measurement of thrust and the direct thrust stand mea-

surement was due to the position of the B-field probe’s location at the outer edge of

46



the coil. The percent error in the Br measurement taken at aouter roughly followed

the theoretical curve, and according to theory, the percent error would decrease dras-

tically if two probes were used and the average were taken from measurements at

ainner and aouter. Lastly, we have presented a brief design of an experiment with a

plasma thruster to verify these results experimentally with plasma expanding through

a magnetic nozzle.

There is certainly further work to be done. The results of the analytical model

(Chapter 3) and agreement with thrust stand measurements (Chapter 4) should be

verified with a plasma device in the lab as described in Chapter 5. The effects

of probe positioning errors should be examined for, if possible, multiple values of

rp0 in the lab as well. Additionally, the validity of the instrumentation discussed in

Chapter 2 should be verified empirically. The three classes of B-probes discussed here

would ideally be tested in the lab, and their limitations should be fully understood to

ensure accurate thrust estimates will be made. The full calibration procedure should

be investigated and taken into account when judging the practicality of each probe.

Lastly, based on how complicated the calibration procedure for each probe is, the

practicality of this measurement technique for in-flight use should be investigated.

The overall validity of the Br measurement technique seems high. As discussed

in Chapter 4, the application of this measurement could either be measuring the full

thrust of a plasma rocket that magnetically confines the plasma in the source region,

or it could be used for magnetic nozzle design optimization for plasma rockets that

have both magnetic coils and a physical source tube. For the best measurement of

thrust, the B-field measurement should be made at the inner and outer edges of any

magnetic coils present on the body of the rocket.
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INTRODUCTION 
  

This is a calibration manual intended for use of the thrust stand in the Orange 
Tank of the Electric Propulsion and Plasma Dynamics Lab (EPPDyL) at Princeton 
University.  Included in this manual are detailed calibration procedures for steady state 
and pulsed calibration.  Previous procedures are described elsewhere (Smirnov 2012, Lev 
2008); however, this manual describes the procedures more thoroughly and addresses 
several important problems with calibration and use of the thrust stand that were not 
explained previously. 
  

Much of the instrumentation (damper, trigger box, signal conditioner, high 
voltage probe) is described in detail in the Orange Tank Manual (Lev 2008).  In contrast, 
this manual focuses on four calibration procedures that must be done before any thrust 
measurements can be taken with the thrust stand.  It is advised that the user go through 
these before putting anything on the thrust stand for practice – this way the user gains an 
understanding of the physical mechanisms at work in the setup. 
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CHAPTER 1: INSTRUMENTATION, SETUP, AND ALIGNMENT 

 
1.1  Instrumentation 
 
1. The Linear Variable Displacement Transducer (LVDT) 

 
The LVDT (Figure 1) generates a signal in Volts that is proportional to the 

displacement from equilibrium of the swinging arm.  We find this proportionality 
factor K in Chapter 3.  Small impulses or steady state forces on the swinging arm can 
be observed and recorded on the oscilloscope connected to the LVDT.  However, this 
linear relationship is only valid for voltages between -13 V to +13 V, and past about 
15 V, the LVDT will saturate and additional displacements cannot be recorded.  For 
this reason, it is important to keep the equilibrium position of the LVDT at a voltage 
of 0 V (a position of 0 meters) so we can utilize the arm’s full range of motion. 

 
Figure 1: The LVDT 

 
If the thrust stand is at equilibrium and the LVDT is zeroed, when you tap the 

thrust stand you will observe a damped sine wave (Figure 2) because there is a 
magnetic damper on the opposite end of the arm.  There are two flexural pivots at the 
pivot point of the LVDT that perpetuate the sinusoidal motion. 

 

 
Figure 2: Distance vs. time from tapping the thrust stand. 
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There are two screws above the LVDT that can be screwed in or out to limit the 
motion of the swinging arm (see Figure 1).  Once the LVDT is zeroed, adjust these 
screws so that the arm can only move in a range of distances that give LVDT voltages 
of -13 V to +13 V.  Note that the LVDT signal drifts about 0.3 

€ 

V /hour , and this is 
quite significant if you set up an experiment that will last for several hours or if you 
leave the setup overnight to return the next day.  Therefore you must frequently zero 
the LVDT or risk getting bad output. 

 
2. The Chassis 

 
 The Chassis (Figure 3) is the big metal box in the cart outside the Orange Tank.  It 
takes the LVDT signal and the voltage applied on the damper as input through BNC 
cables.  To output the LVDT signal to the oscilloscope, simply connect the Chassis to 
the oscilloscope, again with a BNC cable.  There is an on-off switch and controls for 
Stability and Postion.  The Stability and Position of the metal supports change the 
equilibrium point of the swinging arm. 
 

 
Figure 3: The Chassis 

 
3. Oscilloscope 

 
 The oscilloscope (Figure 4) takes input through BNC cables and graphically 
displays the voltage readings from any electrical appliance on the screen.  It can take 
input from up to four devices, but we will only need two inputs for our calibration 
procedures, so we will only use Channels 1 and 2.   The oscilloscope can be 
confusing to master, but after playing with it for awhile it becomes intuitive. 
 
 To get a plot from the oscilloscope onto your computer, connect the back of the 
oscilloscope to your computer with an ethernet cable.  Open your web browser and 
type in the IP address of the oscilloscope.  Use the “Waveform transfer from the 
instrument” function (Figure 5).  Make sure to download the channel in 
“Spreadsheet” format.  This will save the data in a .isf file; simply change the format 
to .txt once the file is downloaded onto your computer. 
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Figure 4: The Oscilloscope Figure 5: Using the web browser to transfer data from 

the oscilloscope to your computer 

 
4. Power supplies 

 
 We will use two power supplies when doing the procedure to calculate meff in 
Chapter 4.  The large power supply (Figure 6, left) will be used for powering the 
hitting hammer; the small power supply (Figure 6, right) will be used for powering 
the force transducer. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

1.2  Setup 
 
 See Figure 7 for the simplified setup inside the orange tank.  The I-beams provide 
the support structure and can be adjusted using the Position and Stability motors.  The 
swinging arm has the thrust stand, LVDT, and force transducer on one end, and these 
devices are balanced across the pivot point by the counterweights at the far end. 
 

Figure 6: The large power supply (left) and the small power supply (right) 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Figure 7: The setup inside the orange tank (top view) 

 
1.3  Alignment 
  

You must ensure that the moveable screw inside the LVDT that is attached to the 
swinging arm is concentric with the hollow cylindrical LVDT channel (Figure 8).  If the 
screw rubs against the inside of the LVDT channel, the swinging arm’s motion will be 
impaired.  You will need to adjust many of the several screws holding the LVDT system 
in place to make this happen.  To zero the LVDT (set the equilibrium position of the 
LVDT to 0 meters) loosen the screw that holds the hollow cylindrical channel and move 
the channel in the positive or negative direction until the LVDT reads 0 V at equilibrium. 

 

 
Figure 8: The LVDT - Moveable screw inside the hollow cylindrical channel 

  
Likewise, ensure that the magnetic damper on the opposite end of the swinging 

arm is concentric with the moveable rod inside of it.  If the rod inside the damper is 
rubbing, the swinging arm’s motion will be slowed. 

 
Note: This alignment is as important as it is tedious.  Try only loosening and 

fiddling with one part of the LVDT setup at a time.  Zero the LVDT last, after you 
achieve concentric alignment in the LVDT cylinder.
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CHAPTER 2: meff AND keff  
 
2.1  keff   

 
The purpose of the calibration procedures to follow is to find the meff of the 

swinging arm and the keff  of the system.  These values will be needed to measure the 
thrust produced by any devices mounted on the thrust stand (Figure 9). 

 
The procedure to find the effective spring coefficient is outlined in Chapter 4.  We 

can solve for keff  from the formula 

€ 

F = keff x . 
keff  has contributions from the actual flexural pivots and from gravity (see Figure 10).  
When the swinging arm is at equilibrium, gravity does not exert a restoring force on the 
thrust stand; however, when the arm swings to either side, gravity acts to restore the 
equilibrium position. 
 

 
Figure 9: Thrust stand and swinging arm 

 

 
Figure 10: Diagram showing how gravity acts as a restoring force on the swinging arm and thrust stand 
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2.2  meff   
 
The procedure to find the effective mass of the thrust stand and swinging arm is 

described in Chapter 5.   We use the formula 

€ 

Δv =
F(t)dt∫
meff

 where ∆v is the difference 

between the swinging arm’s velocity at 

€ 

t = 0+  and 

€ 

t = 0−.  Because the arm is initially at 
rest at 

€ 

t = 0−, we can say that 

€ 

Δv = v(t = 0+) .  I will go through how to determine 

€ 

v(t = 0+)  later.  Once we know meff  of the thrust stand and swinging arm, for every 

€ 

Δv  
we measure from the damped sine wave motion, we will be able to calculate the impulse 
that occurred to cause the damped sine wave motion.  The meff  will change every time 
additional objects are mounted on the thrust stand or elsewhere on the swinging arm. 
 
 
CHAPTER 3: GENERAL CALIBRATION 
  
3.1  Proportionality factor of the LVDT (K) 
 

We already know that the LVDT can be used to measure the swinging arm’s 
displacement from equilibrium.  However, LVDT output is in Volts.  To find the 
proportionality factor of the LVDT, simply fix the swinging arm at different known 
displacements and measure the corresponding LVDT readout in Volts.  An easy way to 
do this uses the screw limits that normally mark 

€ 

±13 V.  Push the arm to arbitrary 
positive and negative displacements using one screw at a time (the displacement can be 
measured using a micrometer) and record the LVDT voltage output using the 
oscilloscope.   

It is a good idea to test a wide range of displacements here – I would recommend 
testing displacements corresponding to -15 to +15 V so you can observe the nonlinear 
behavior above 13 V and below -13 V.  When plotted, you will get a graph similar to 
Figure 11 (or with a negative slope).  The slope of this graph is the proportionality factor 
of the LVDT.  I got K = 2.2383 

€ 

m /V . 

 
Figure 11: Finding K of the LVDT 
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3.2  Rubber padding check 
 
 Before calibrating to find the effective spring coefficient and effective mass of the 
swinging arm, one must ensure that the rubber padding (circled in Figure 12) is not 
hitting the metal support when the arm swings back and forth and thus impeding the 
arm’s motion.  This is important because for the calibration to follow, as well as for 
experiments done using the swinging arm, the full range of the LVDT (-13 to +13 V) 
should be available. 
 

 
Figure 12: Swinging arm at the pivot point.  The problematic rubber padding is located below the two bolts. 

1. Set up the oscilloscope to record the LVDT output voltages on a long 
timescale (~2 seconds). 
 

2. Remove the screws that set the limits of -13 to +13 V (Figure 1). 
 

3. Set the LVDT equilibrium to 0 manually (not using Position/Stability). 
 

4. Tap the arm lightly with your fingernail.  Observe the resulting signal from 
the oscilloscope.  The response I saw is shown in the top panel in Figure 13. 
 
In the top panel of Figure 13, it is apparent that the rubber padding is hitting 
the metal support when the arm swings to the positive voltage side.  This is 
because the spike is sharp (compare it to the curve on the negative voltage 
side, which looks sine wave-like).   
 
Ideally, we want to see a sine wave between the limits of 

€ 

±13 V (see Figure 8, 
center panel). 
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If you see spikes on either the positive or negative voltage side, you need to 
adjust stability.  Refer back to Figure 7 for the geometry.  Adjusting stability 
will change the equilibrium position of the arm, and ideally we want that 
equilibrium position to be located such that when the arm is at rest at 
equilibrium, the rubber padding is parallel to the plane of the metal support.  
This way we get the full range of motion from -13 to +13 on the LVDT. 
 
If you see spikes on both the top and bottom of the response to a tap, the 
rubber is hitting on both the positive and negative voltage sides.  That’s okay, 
it just means you tapped the thrust stand too hard.  If this is the case you will 
likely see behavior like in the first two periods of the wave in the center panel 
of Figure 13. 
 
If you see saturation on one side, as in the center panel, the voltage is 
exceeding 

€ 

±13 V.  Change the equilibrium position of the LVDT manually. 
 

5. Repeat Steps 3-4 until the ideal plot (Figure 13, center panel) is achieved.  
Note that in the center panel and bottom panel, the response between 

€ 

±13 V is 
sinusoidal, indicating that neither screw limits, LVDT saturation, nor the 
rubber padding is interfering with the swinging arm’s full range of motion. 
 

Note that whenever you change Stability or Position, the equilibrium position of 
the swinging arm changes.  It may not be necessary to repeat this check every time those 
are changed, but keep this in mind if you do wish to use of the full 26 V range of the 
LVDT. 

 
Figure 13: A check to see if the rubber padding is interfering with the swinging arm's motion. 
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CHAPTER 4: STEADY-STATE CALIBRATION TO FIND keff  
  

To calculate the effective spring coefficient for a particular setup, one can apply a 
set of known forces on the swinging arm using the pulley system (Figure 14) and 
measure the resulting displacement from the LVDT voltage readout.  These data points 
can be used to solve for keff through the formula  

€ 

keff =
F
x

 

 
where F = applied force and x = displacement from equilibrium. 
 
 Use braided spider wire (Figure 15, left) instead of regular spider wire or other 
types of fibers (e.g. Trilene fishing line).  I found this to be the “limpest,” and you want 
the wire/string you use to have as little tension in it as possible.  Also, there is a set of 
fishing weights (“split shot”) in the lab with five different sizes of small weights (Figure 
15, right).  These are very handy because they are easy to attach to the spider wire and are 
easy to take off of the spider wire. 
 

 
  

  
 
 
 
 
 
 
 
 
 
 

 
 
 
To account for the LVDT drift, make sure to take a measurement with no applied force 
before every measurement.  Subtract the equilibrium voltage from your measured 
voltage. 
 

1. Make sure the rubber stops are not impeding the movement of the swinging 
arm and that there are no unnecessary wires/tubes pulling on the arm.  Also 
make sure the rubber padding is not hitting (see 3.2). 
 

2. Keep adding weights onto the spider wire until the LVDT reads 13 V.  Once 
you reach 12 or 13 V, that is your maximum weight. 
 

Figure 15: Spider wire (left) and split shot (right) 

 
Figure 14: Pulley system with hanging weights 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3. Remove the weights (I simply draped the spider wire over one of the metal 
supports – if you do this, you must ensure that there is no tension in the spider 
wire) and, from the oscilloscope, save the equilibrium position of the LVDT. 
 

4. Replace the spider wire and weights and, from the oscilloscope, save the 
LVDT readout.  Again, it should read about 12-13 V for this maximum 
weight. 
 

5. Take off one or a few weights and repeat Steps 2-3.  Do this until you only 
have one weight left.  The number of weights you should remove after each 
iteration will depend on how many weights you have initially – you want to 
test at least five different weights or forces. 
 

6. Convert the saved .isf files to .txt files. 
 

7. In an analysis program such as Matlab, take the average values of the LVDT 
readouts, convert them to displacement (

€ 

d =V ⋅K ), and force (

€ 

m ⋅ g) vs. 
displacement.  You should get a graph that looks like Figure 16. 
 

8. The slope of this graph is keff.  I got keff = 25.1318 

€ 

mN /V . 
 

Note that keff  changes when stability, position, or the position of the center of mass 
of the arm change.  So when a thruster is mounted on the stand, you will have to calculate 
a new keff. 

 

 
Figure 16: Finding keff 
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CHAPTER 5: PULSED CALIBRATION TO FIND meff  
  

To find the effective mass of the thrust stand and swinging arm, we will deliver 
impulses of varied magnitudes to the arm and observe the resulting initial velocity of the 
arm.  The impulse will be delivered by the hitting hammer apparatus. 

 

€ 

I = F(t)dt∫ = meffV  
 

1. Attach the blue cable (Figure 17, center and right) to the force transducer on 
the swinging arm inside the tank and to the small power supply outside the 
tank (refer to Figure 6, right).  Then attach a BNC cable from the small power 
supply to the oscilloscope.  The force delivered to the piezoelectric material 
will now be recorded by the oscilloscope. 
 
Note that when doing pulsed calibration, it is very important that you attach 
the necessary wires carefully such that they exert as small of a force as 
possible on the swinging arm in any direction.  Especially take care to provide 
as much slack as possible when attaching the cable that reads out the measure 
of the force on the piezoelectric material (causing a low tension in the cable).  
This cable attaches directly to the swinging arm. 
 

2. Install the hitting hammer (Figure 17) so that the end of the screw on the 
hitting hammer that is delivering the impulse hits the piezoelectric material 
(force transducer) on the swinging arm.  Check that it hits right on target, or 
the full amount of force will not be recorded by the force transducer and your 
measurements will be off.  Attach the long BNC cable to the hitting hammer 
apparatus inside the tank.  Attach the other end of the BNC cable to the big 
power supply outisde the tank.  The power supply powers the hitting hammer 
apparatus, which will pull the hitting hammer back.  When the power supply 
is turned off, the hammer will be released and will deliver the impulse to the 
swinging arm. 

 

 
 

Figure 17: Hitting hammer setup.  Left: mounting the hitting hammer apparatus; Center: hitting hammer 
alignment with swinging arm; Right: end of screw on hitting hammer aligns with force transducer on 
swinging arm 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3. Set up the oscilloscope to record both the output of the force transducer and 

the output from the LVDT.  Figure 18 is a picture of my oscilloscope screen – 
it can be tricky to choose the best horizontal scale correct to show the impulse 
while still seeing enough of the initial rise of the LVDT curve.  I advise a 
timestep of 10.0 ms. 
 

 

 
Figure 18: Oscilloscope screen 

 
4. Fix the initial height of the hitting hammer to the highest point you can that 

will not saturate the force transducer.  You will be able to tell when the force 
transducer is saturated because the impulse curve will look like a sine wave 
with a flat top. 
 

5. Turn on the power supply to the maximum voltage – this will pull the hitting 
hammer back in preparation of releasing and delivering the impulse. 

 
6. Release the hitting hammer by turning off its power supply.  Record the 

resulting force transducer curve (convert Volts on the oscilloscope to applied 
force in Newtons with the proportionality factor 4.9 V/N) and the resulting 
LVDT signal (convert to units of distance from Volts with the proportionality 
factor we found earlier).  Return the hitting hammer to the same position and 
record the impulse and LVDT curves four more times for a total of five 
points. 

 
7. Slightly decrease the initial height of the hitting hammer and record the force 

and LVDT curves five times.  Repeat this for a several different heights – I 
recommend at least four different heights. 
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8. In an analysis program like Matlab, plot impulse [

€ 

N ⋅ s] vs. velocity [

€ 

m /s] 
(see Figure 19).  To do this, you will have to integrate the force curve (this 
gives you impulse) and measure the slope of the LVDT readout at 

€ 

t = 0+  with 
a simple linear fit. 

 
The slope of this graph is equal to 1/meff.  I got meff = 1.4308 kg.  It is important 
to note that this meff  can only be used for impulses delivered on the force 
transducer.  If you want to measure the impulse delivered by an object on the 

thrust stand, multiply this meff  by the ratio 

€ 

l
d

(refer to Figure 7).  When I use 

€ 

l
d

=
34
55

, my meff  at the thrust stand is 0.8840 kg. 

 
Again, note that meff  changes when the position of the center of mass of the 
arm changes.  So when a thruster is mounted on the stand, you will have to 
calculate a new meff . 
 

 
Figure 19: Finding meff 

 
CONCLUSION 
 
 This manual has described calibration procedures necessary for taking 
measurements using the thrust stand in the Orange Tank.  Once you have mastered these 
calibration procedures without a device on the stand, you will be better prepared to re-
calibrate and solve for the new meff and keff.  Values of meff and keff  are necessary to take 
thrust measurements for a device on the thrust stand. 
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