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The conditions under which an ion can be significantly accelerated through a non-
linear interaction with a pair of beating off-resonance electrostatic waves are explored.
They are shown to differ substantially from the well-known criteria conditioning non-
linear ion acceleration by a single wave, which require that the initial ion velocity be
above a certain threshold. The promise of this acceleration mechanism for propulsion
applications stems from its capability of energizing ions from arbitrarily low initial
velocity. A numerical investigation led to the identification of critical points on the
reduced phase diagram whose positions characterize the motion. A second-order per-
turbation analysis of the location of these critical points was carried out to derive the
criterion defining the allowed acceleration domain. It is shown that for an ion to be
significantly energized, its initial total energy (Hamiltonian) must be above a critical
value corresponding to the value of the Hamiltonian at the hyperbolic critical point.
The resulting domain of allowed acceleration is significantly larger than that of ion

acceleration by non-beating waves.

I. INTRODUCTION

Stochastic heating of a magnetized ion in presence
of a single obliquely as well as perpendicularly prop-
agating electrostatic (ES) wave has been extensively
studied [1-4]. Using first-order perturbation theory
Karney [5] was able to derive analytical expressions
approximating overall dynamics of ions interacting
with such a wave. Skiff et al. validated these findings
experimentally [6]. Another important result shown
by Karney was the existence of an ion energy thresh-
old below which the particle cannot gain energy from
the ES wave. This threshold is essentially the lower
bound of a nonlinearly broadened resonance condi-
tion between the ion thermal and wave phase veloc-
ities. Also this threshold was found to separate two
regions of the phase space: a regular (or coherent)
motion region of low energies below the threshold
and a stochastic one - above the threshold. Non-
linear ion acceleration (or energization) by a single
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wave is therefore always a stochastic process.

In 1998 Benisti et al. suggested a radically new
scheme for nonlinear ion acceleration by ES waves
[7, 8]. The scheme requires pairs of ES waves such
that their corresponding frequencies differ by an in-
teger number of the cyclotron frequency of the gy-
rating ion. In essence these waves create a beating
wave that interacts with the ion. Under such con-
ditions the single-wave theory threshold disappears
and regular and stochastic regions become connected
allowing ions with arbitrary small initial velocities to
obtain high energies through coherent acceleration
followed by stochastic energization. Consequently,
this nonlinear interaction may result in a more effi-
cient acceleration mechanism than is possible from
the ion’s interaction with a single wave. This new
acceleration scheme has been advanced as a possi-
ble explanation for the ionospheric ion acceleration
observed during the Topaz 3 rocket [9] experiments.

An acceleration mechanism that promises to ener-
gize a larger portion of the ion distribution function
may be promising to many applications where the
efficiency of ion acceleration is of prime importance,
such as in plasma propulsion applications.

In this paper we study the nonlinear interaction

between a magnetized ion and a pair of beating
waves by considering a large number of ion trajec-
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FIG. 1: A single ion of charge ¢ and mass m in a con-
stant homogeneous magnetic field BZ interacts with a
spectrum of electrostatic waves whose wavenumber and
electric field direction is parallel to the x-axis.

tories (each representing a different initial condi-
tion) in the generalized phase space (Poincaré cross-
section) instead of only looking at a single ion tra-
jectory as was done in Refs. [7, 8] and our previ-
ous work [10]. This approach allows us to improve
our understanding of ion dynamics by finding the
critical points[11] of the motion, as well as to de-
fine particle’s dynamics in terms of the location of
these critical points. With that in mind, we use
second-order perturbation theory and combine an-
alytical and numerical solutions to investigate the
nature of ion motion for a wide range of parame-
ters involved. Specifically we focus on finding the
criteria for the transition to stochastic acceleration
which amounts to a definition of the domains of al-
lowed and forbidden acceleration.

In section II we overview the analytical formula-
tion of the problem. Then in section III we summa-
rize the better-known results of the single wave case.
We introduce multiple wave interaction in section
IV. In section IV A we explain the ion dynamics in
such an interaction when no beating wave is created
and in section IV B we contrast that with the case
of a beating pair of waves and derive the governing
criterion defining the allowed acceleration domain.

II. ANALYTICAL FORMULATION

We first proceed to mathematically define the
problem. Fig. 1 shows the coordinate system setup.
Here we have a single ion of mass m and charge ¢ in a

constant and homogeneous magnetic field, BZ. This
ion interacts with a spectrum of electrostatic waves
that propagate in the positive = direction. The wave
number k; as well as the electric field direction of
each of these waves is parallel to the x-axis. The
motion of the single ion in Fig. 1 is described by the
following equation of motion, [7]

d2x+2 qEE'(k t+ @), (1)
5 L= — i SINK; T — wy i)y
dt2 wcx m i S X w Y2}

where w. = ¢B/m is the ion cyclotron frequency,
k is the wavenumber, and ¢; is the phase angle of
each wave. The corresponding Hamiltonian for the
system is [7]

H=p2/2+ Z % cos(kipsind — ;7 + ;). (2)

In writing Eq. (2) we have used the fact that the
system is periodic, and transformed the Hamilto-
nian into normalized action-angle coordinate system
[12] where R = ki/kl, v, = wi/wc, T = wct, g =
(k1qE;)/(mw?), p> = X2+ X%, and X = kjz, X =
dX/dr, so that X = psin, X = pcosf. The action-
angle coordinate system is a special case of polar
coordinates[11]. In our context § corresponds to the
cyclotron phase angle measured clockwise from the
y-axis, as indicated on Fig. 1, while p is the nor-
malized Lamor radius which, in a constant magnetic
field, represents the normalized velocity (perpendic-
ular to the magnetic field) of the magnetized particle
undergoing cyclotron motion in the zy plane.

Benisti et al. [7] defined a criterion for particle ac-
celeration by multiple ES waves. They showed that
for regular and stochastic regions to be connected it
is necessary (but, as we shall see, not sufficient) to
have at least one pair of ES waves such that

Wy — W1 = NWe, (3)

where n is an integer. Consequently, for the sake
of simplicity, we reduce our analysis to the case of
a single pair of beating waves. In addition, Ref.[7]
reports that the maximum acceleration is achieved
when all waves are of the same amplitude. There-
fore we set ¢; = ¢; =€ and k; = k; = 1. As stated
in Ref.[7], the phase angles, ¢;, do not play a funda-
mental role in the acceleration process so we set all
p; = 0. With these simplifications the Hamiltonian
(2) becomes

H = p?/2 + ¢[cos(psin @ — v;7) + (4)
cos(psinf — v;7)].
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Adopting the criterion described by Benisti et al. for
the two wave frequencies, we note that the Hamilto-
nian (4) could be viewed either as a time-dependent
system with one degree of freedom or as an au-
tonomous system with two degrees of freedom, since
the system is periodic [12]. We adopt the latter
approach. In this view the Hamiltonian represents
two coupled oscillators: one is the gyrating ion and
the other corresponds to the ES waves. When the
frequency ratio of these two oscillators equals p/q,
where p and g are relatively prime integers, the sys-
tem is said to be in resonance [5, 11].

Two approaches are taken in this paper for analyz-
ing the system above. Eq. (4) is integrated numer-
ically and the solutions are then compared to the
analytical solutions derived by applying a second-
order perturbation technique in conjunction with Lie
transformations [11].

A convenient way of representing both numerical
and analytical solutions is by plotting the result-
ing trajectories on a Poincaré cross-section (which
is a reduced phase space diagram). In this paper
Poincaré cross-sections are plots in the p-6 plane at
(VT)mod 2r- Since the magnetic field is constant p,
the normalized cyclotron radius, is a direct measure
of the perpendicular ion velocity. Therefore Poincaré
cross-sections give direct visual insight into the ac-
celeration process.

To construct a Poincaé cross-section we plot the
point intersections of the ion trajectory in three
dimensions (p,6,7) with the p-6 plane. Random
point distribution on the Poincaré cross-section cor-
respond to stochastic motion while regular patterns,
such as lines and ellipses, will tell us that the ion dy-
namics is regular (sometimes called coherent). For
example, if the wave amplitude, €, is zero, Eq. (4)
reduces to a simple harmonic oscillator and for ir-
rational v its Poincaré cross-section shows a set of
horizontal lines, indicating constant velocity (which
corresponds to a free ion gyrating in a constant mag-
netic field.) Each of these lines represents an invari-
ant of motion for a given set of initial conditions [11].
When ¢ is not zero we can treat the ion motion as a
perturbation of these invariants.

The detailed derivation of the analytical solution
of a single wave-particle interaction could be found
in Ref.[5]. However, a more generalized solution
for multiple waves is obtained [7, 13, 14] through
Deprit’s modified Lie transformation in Ref. [11].
The resulting autonomous Hamiltonian derived from
Eq. (4) for v = integer to the second order in the

perturbation, ¢, is

H

{1, (p) c03(148) + J, (p) cos(v;6)}
{57 (p) + 57’ (p)
Se " (p) cos[(v; — v)0]}, (5)

where,
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and where J,, is the Bessel function of the first kind
of order m, and J’ represents the derivative of the
Bessel function with respect to its argument. When
v; is an integer, the summations are performed over
all m # v; to avoid singularities. When v #integer,
the first order terms in Eq. (5) disappear [7].

The Hamiltonian in Eq. (5) is autonomous and
therefore itself is an invariant of motion. By plot-
ting curves of constant H we obtain a Poincaré cross-
section which gives us the complete analytical solu-
tion of the problem to the second order.

We wish to compare the Poincaré cross-sections
of the analytical solution to those obtained through
numerical integration of Eq. (4). To obtain the nu-
merical solution we have developed a code based
on the fourth order symplectic integration algorithm
derived by Candy and Rozmus [15] who showed its
superiority over Runge-Kutta algorithm for Hamil-
tonian periodic problems.

As with most phase diagrams, critical (or fixed)
points define the dynamics of motion. Since the sys-
tem is not dissipative we expect to find two types of
critical points: elliptic and hyperbolic. Moreover,
these critical points represent the nonlinear reso-
nances described above. As we will show later, crit-
ical points play the key role in determining whether
ion motion is regular or stochastic. The task before
us is to find these critical points.

That task can be achieved by setting the time
derivative of p and 6 to zero simultaneously [11, 16].
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FIG. 2: Poincaré cross-section showing numerical solu-
tions for a particle interacting with a single on-resonance
wave (¢ = 10, v = 24). The threshold derived in Ref.[5]
and given by Eq. 9 represents the boundary between the
regular and stochastic domains and is shown as a hori-
zontal thick dashed line.

Utilizing Hamilton’s equations of motion we get

p = % = e{vidy, (p) sin(v;0) (7)
+ vjdy, (p)sin(v;0)}
+ & (vi — ;)57 (p) sin[(v; — v3)0] = 0,

0 =~ = <UL () cos(30) ®)
+ J,,(p) cos(v;0)}
+ e2{8 (p) + S;Vj (p)
+ S5 (p) cos|(vi — v;)0]} = 0.

When both wave frequencies are off-resonance
(vi,vj # integer), the equations above simplify be-
cause the first order terms drop out, and we are able
to obtain the position of critical points analytically.

We now explore particle dynamics as a function
of wave amplitude and frequency, and in terms of
the location of critical points on the Poincaré cross-
section. Using numerical solutions we will demon-
strate that when critical points are absent in the
regular region of the Poincaré cross-section (as in
the single wave-particle interaction), the particle will
not gain energy.

III. SINGLE WAVE INTERACTION

In this section, in order to create a context for our
study, we summarize the results obtained by Kanrey
[5] for the interaction of a magnetized particle with
a single wave. When the wave frequency is exactly
an integer number of the ion cyclotron frequency it
is said to be an on-resonance wave, otherwise it is
an off-resonance wave. In both cases Karney found
that a threshold value of p, given by

p:yf\/g’ (9)

separates the regions of regular and stochastic mo-
tion [5, 17], as shown Fig. 2. Below the threshold,
indicated by the horizontal thick dashed line, we ob-
serve smooth lines representing the invariants of mo-
tion. This is where the ion motion is regular and we
can predict its behavior well by means of pertur-
bation theory. However, as long as the ion’s initial
velocity, pg, is in that region it is clear that the ion
will not gain much energy from the wave. Therefore,
in the case of interaction with a single wave the ion
gains energy only chaotically when its initial velocity
po exceeds the threshold, i.e.

po > v — /e (10)

This is an important point and will be contrasted
later with the case of beating waves where, as we
shall see, the two regions of the phase space become
connected and a particle with an arbitrarily small
initial velocity in the regular region can be accel-
erated through the threshold to high values of p.
Motion in the stochastic region of phase space can
be approximated by perturbation solutions when the
wave amplitude (perturbation strength), ¢, is small
enough [5, 7].

IV. MULTIPLE WAVE INTERACTION

One of the early investigations of two ES waves
interacting with ions was done by Chia et al. [13]
(1996) who conducted an analytical study of the in-
teraction to the first order in the perturbation and
came close to discovering the new acceleration mech-
anism by noting that, for the waves with even-even
or odd-odd combinations of frequencies (v), there
existed a radial separatrix allowing “infinite” heat-
ing. In 1998 Benisti et al. [7, 8] showed that to
observe particle acceleration through the threshold
boundary one needs to use perturbation theory to at
least second order. Then, the condition for the new
acceleration mechanism already given by Eq. (3) is

Vi — Vv =M. (11)
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FIG. 3: Poincaré cross-section showing numerical so-
lutions for a particle interacting with two non-beating
waves (e = 10, v; = 24, v; = 25.5). Particles with initial
velocity below the threshold defined by Eq. (9), shown as
a dashed line, are seen not gain energy from the waves.
This picture is qualitatively similar to that in Fig. 2.

where n is an integer. This amounts to a wave beat-
ing condition.

A. Non-Beating Waves

We start with the case of a particle interacting
with multiple waves, when Eq. (11) does not hold.
Fig. 3 shows a typical Poincaré cross-section ob-
tained with numerical solutions for ¢ = 10, v; = 24,
and v; = 25.5. The picture is qualitatively very
similar to that of the single wave-particle interac-
tion shown in Fig. 2. Tons with energies below some
threshold do not gain much energy. Extrapolating
from a single particle picture to the case of a plasma
with a velocity distribution one expects that parti-
cles lying below the threshold will remain unaffected.
This picture changes qualitatively if condition (11)
is satisfied.

B. Beating Waves (Off-Resonance)

As we already mentioned above, in the case of the
off-resonance beating waves (both v1 and v, are not
integers) we can make approximations that greatly
simplify our analysis. Consequently, we will focus
our attention on such cases. Some qualitative analy-
sis of the on-resonance beating waves is still possible
and will be done in the next section.

FIG. 4: Poincaré cross-sections showing numerical so-
lutions for a particle interacting with two beating off-
resonance waves (v; = 24.3, v; = 25.3). The stochastic
region occupies a greater fraction of the phase space as
the wave amplitude is increased.
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We show typical Poincaré cross-sections for differ-
ent values of € in Fig. 4 where numerical solutions
for v; = 24.3 and v; = 25.3 illustrate the effect of
increasing wave amplitude. The phase diagram con-
sists of two regions, stochastic and regular, just as
for the single wave interaction, with the important
feature that the two regions are ”connected”. An
ion with low initial velocities can undergo first reg-
ular and then stochastic acceleration, reaching high
energies. We explored this behavior and its depen-
dence on the wave energy in Ref. [10] using a single
trajectory.

At low perturbation (low values of €) the regu-
lar region extends to values of p approximately pre-
dicted by Eq. (9). However, as ¢ is increased the
regular region quickly shrinks to the vicinity of the
elliptic critical point (designated E on Fig. 5.) Even-
tually, as the wave amplitude is raised above values
shown on Fig. 4, chaotic motion dominates the phase
diagram.

Eq. (4) can be rewritten as

2

H= % + ECOS(%T) cos[psinf — (2v; + n)7]. (12)
The argument of the first cosine term tells us that
the frequency of the beating wave is half an integer
times the ion cyclotron frequency (w.). It is not
surprising perhaps that we will later find a critical
point corresponding to the resonance between the
ion’s gyro motion and the waves at p ~ v/2, as can
be gleaned from Fig. 5. We defer the discussion of
critical points to section IVB2. For simplicity we
will now limit our discussion to n = 1.

Let’s now gauge how well the second-order pertur-
bation analysis compares to the numerical solutions.
Fig. 5 indicates a good degree of agreement between
the two. Even though the detailed structure of the
regular motion lines is not captured with the ana-
lytical solution, the latter does predict the position
of the lower elliptic (E) as well as that of the hyper-
bolic point (H) rather well. In the analytical solu-
tions shown in Fig. 5 we observe more critical points
at p > 20. These don’t appear in the numerical so-
lution, instead they are covered by points represent-
ing stochastic motion. However, as shown in Ref.[8],
even in that region of phase space the overall ion
motion could be approximated by first-order orbits,
for small e.

1. Topology of the Phase Diagram

As with any phase diagram, each line on the
Poincaré cross-section corresponds to a given set of

FIG. 5: Poincaré cross-section for a particle interacting
with two beating off-resonance waves (e = 10, v; = 24.3,
v; = 25.3). a) Analytical solution showing the existence
of hyperbolic and elliptic points marked by H and E re-
spectively. b) Numerical solution also showing the loca-
tions of the critical points.

initial conditions. In the case of a particle inter-
acting with beating waves we are mainly concerned
with the hyperbolic and an the elliptic critical points
designated H and E on Fig. 5. These points can indi-
cate whether or not the ion will gain net energy from
the waves. It is clear by tracing trajectories in Figs.
4 and 5 that an ion with an initial energy (Hamil-
tonian value) lying between the Hamiltonian values
corresponding to points E and H does not gain net
energy from the waves i.e. reach the stochastic re-
gion where it can be vigorously accelerated. Instead
the corresponding phase space trajectories venture
around the elliptic critical point E. (It is relevant to
note in this context that the Hamiltonians of various
trajectories increase monotonically from the Hamil-
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tonian value at point E to its value at point H.)
Therefore, for given values of v; and ¢, the inequal-
ity

defines the allowed acceleration domain. By “al-
lowed acceleration domain” we mean here the do-
main of initial conditions for which an ion can reach
the stochastic region of phase space where it can be
vigorously energized.

The acceleration criterion in Eq. (13) should
be contrasted with that for single-wave interaction
given by Eq. (10). It is clear that unlike the single-
wave case, an ion with initial velocity p, below the
threshold given by Eq. (10) can still be accelerated as
long as its Hamiltonian is above a certain thresh-
old (Hy).

From the point of view of plasma acceleration one
would like to limit the number of particles trapped
in the forbidden acceleration domain (Hgp < H <
Hpy). The rest of the ions gain much higher energies
through first regular (if their initial energy is low)
then stochastic acceleration, as shown in Figs. 4
and 5.

It is interesting to note that point E lies exactly at
@ = w. That corresponds to the moment when the
ion is moving in the negative = direction, against the
waves (see Fig. 1). At this resonance point the en-
ergy exchange is minimum and the situation is equiv-
alent to a ball bouncing between stationary walls at
constant energy. In the immediate neighborhood of
point E the ion energy cannot be altered sufficiently
to push it into the stochastic region. From numer-
ical analysis (Fig. 4) the value of p at point E can
be estimated to be roughly half of the single wave
threshold condition (9). This will be explored fur-
ther analytically in the next section.

When we choose v; and v; to be both on-
resonance, the overall behavior becomes much more
complicated. Fig. 6 shows the case with ¢ = 10,
v; = 24, and v; = 25. The major difference with re-
spect to the off-resonance cases is that now we have
two hyperbolic points which do not lie at 0 = 7.
Also, the analytical solution shows us much more
complicated chains of the critical points at large
p. This also indicates that the analytical treatment
of the on-resonance cases is more difficult. Conse-
quently we choose to study only off-resonance cases
in the next section.

2. Critical Points

Defining the domain of allowed acceleration de-
scribed by Eq. (13) therefore amounts to finding an

FIG. 6: Poincaré cross-section for a particle interacting
with two beating on-resonance waves showing a more
complicated picture than that of the off-resonance case
shown in Fig. 5. (¢ = 10, v; = 24, v; = 25). a.l and a.2)
analytical solution. b) numerical solution.
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expression for the location of the critical point H.
Knowing also the location of the elliptic point E
gives additional insight into the problem. We now
seek analytical expressions for both.

For v # integer, the S7%(p) term in Eq. (6) could
be simplified to[13]:

Slyi(P) = m[t]uiﬂ(ﬂ)]—(u,;ﬂ)(ﬂ)

= Jui1() -1y (P)]: (14)

Note that the above simplification does not hold
when v is an integer which is the case of the less-
tractable on-resonance interaction. As shown in the

™

appendix we can simplify the S; "/ (p) term down
to
Vi,Vj _ P 123 4 Vj
Se " (p) = =51 (p) + 51" (p)- (15)
v v;

We can therefore express the Hamiltonian (5) in
terms of the simplified S7?(p) function only,

H = 52{(1 + gcos[yi —v;]0)S7 (p)
+ (1+ yﬁ cos[v; — v4]0) Sy’ (p)} (16)
j
Here we dropped the first-order terms as they were
shown to be negligible by Benisti et al. 7, 8] in the
region p < v—,/e. Taking p/v; ~ p/v; and dropping
the subscripts in S7%(p) we have

H=¢? {1 + ﬁ cos(v; — uj)e} X

[5 W+sow]

Finally, we substitute Eq. (14) for each of the S7"(p)
functions. Recalling Eq. (11) with n = 1 and ex-
pressing everything in terms of v; we get

2
H=_-°" (1+p0059) (18)
8sinvm v

[ — Joa (D)) + Tu(p) T p)

+ Jur1(P) i1y (p) = Jur2(p) I (2)(p) |

where we have replaced v; with v.

We now proceed to find the position of points E
and H. From Figs. 4 and 5 we know that these points
lie at @ = 7. This reduces equations (7) and (8) to

0

87,0(1 - g)L(p) =0, where, (19)
L(p) = —Ju-1(p)J-(-1)(p) + Ju(p)J-0(p)

+ Jur1(P) w41y (p) = Ju2(p) T (v42)(p)-

0.2
v=55.2
0.1 -
Algebraic Approximation

% |
K=" 0.0 "
=

0.1+ First Root

(Elliptic Point) Second Root
(Hyperbolic Point)
-0.2

0.4 0.5 0.6 0.8 0.9 1.0 1.1

0.7
p/v

FIG. 7: Plot of the function F(p,v), given by Eq. (20),
showing the two roots corresponding to the two critical
points. The algebraic approximation to F(p,v), given
by Eq. (21), is also shown as a dashed curve.

From Eq. (19) we can express p as a function of L(p)
and L'(p), where the prime denotes the derivative
with respect to p, and arrange the resulting expres-
sion as

Fo) =L+ L(p)

LG =0 (20)

whose the first and second roots, pg and pg, for a
given value of v, correspond to the locations (with
6 = =) of the elliptic and hyperbolic points respec-
tively.

The expression in the above equation is plotted
as a function of p/v for v = 55.2 and shown as the
hard curve in Fig 7. The first root, pg, occurs near
p/v ~ 0.5 and the second root, pg, occurs in the
vicinity of p/v ~ 0.9.

The location of the elliptic critical point can
also be approximated by the root of the following
algebraic expression which does not involve Bessel
functions and which is obtained from Eq. (20) af-
ter some involved algebra using Bessel function re-
cursive relations and associated continued fraction
representations[18],

P
F ~=—1
(pv) == —1+
2
3(foc1 4 fow1) + fog2 + [-(42))

=0(21)

where the function f, = f,(p) = J./J, is given by
v 1 (p>2 v \*

p v+1 4\ v+ 2 (22)

! (/jV)_5<VﬂVL2>2

Jo =~




SPEKTOR AND CHOUEIRI: ION ACCELERATION BY BEATING ES WAVES

0.2
v =155.999
0.1 55.99
55.9
S /55.5
g 00 /
[
552
01 55.01
55.001
02 T T T T T T T
04 05 06 07 08 09 1.0 1.1
p/v

FIG. 8: Plot of the function F(p,v), given by Eq. (20),
showing how the second root (corresponding to the hy-
perbolic point) moves away from p/v = 1 as v changes
from 55.001 to 55.999.

The above approximation is valid for v > 1 and
p > /v(r+1) and is plotted as a dotted curve in
Fig 7 for the case of v = 55.2.

We evaluated the location of the first root for a
wide range of v values and tabulated the results in
the second column of Table I. It is seen that for
v > 1 this first root can be expressed as p/v ~ 0.5,
therefore the location of the elliptic point, according
to our second-order perturbation analysis, is at

v
PE = 95

The location of the hyperbolic critical point
corresponds to the second root of Eq. (20) and is
seen, in Fig 7, to be near the point at which the
function becomes oscillatory due to the oscillatory
behavior of the Bessel functions which is onset when
the argument of the Bessel function reaches the
“turning point” [18] pyp, = /(v + 1). We can there-
fore roughly approximate the location of the hyper-
bolic point by

(23)

pp = Vr(v+1) ~u, (24)

where the last inequality holds when v > 1.

It is relevant to note that a numerical evaluation
of the location of the second root of Eq. (20) over a
wide range of v values yielded values of py /v that
are less than unity as tabulated in the third column
of Table I. Indeed, the plot in Fig 8 of the func-
tion in Eq. (20) for values of v ranging from 55.001
and 55.999 shows that, while the location of the first
root is largely independent of v (for v >> 1), the lo-
cation of the second root depends on the difference

v_pe/v pr/v
9.7 048 0.65
12.1 0.49 0.88
24.3 052 0.9
33.8 0.52 0.84
43.9 0.52 0.84
55.2 0.51 0.95
62.4 0.51 0.94

TABLE I: Positions of the critical points, pg and pm,
normalized by v, corresponding to the roots of Eq. (20)
for a range v values.

between v and its nearest lower integer. Therefore a
more accurate representation of the location of the
hyperbolic point is
pPH = Y. (25)
where 1) is generally a function of v and the differ-
ence between v and its nearest lower integer
Y=y v—-Llv)~1 (26)
where Lv is the bottom (or floor) of v and the semi-
equality holds when (v — Lv) < 1.

V. SUMMARY AND CONCLUDING

REMARKS

A numerical investigation of the nonlinear acceler-
ation of a magnetized ion by a pair of beating elec-
trostatic waves led to the identification of critical
points on the reduced phase diagram whose positions
characterize the motion. A second-order perturba-
tion analysis of the location of these critical points
was carried out to derive the criterion defining the
allowed acceleration domain.

For a pair of off-resonance (v, v5 # integer), beat-
ing (11 —vy = 1), electrostatic waves interacting non-
linearly with a magnetized ion, significant ion accel-
eration can occur when the Hamiltonian satisfies the
following criterion

~

H(p;0) >Hyg = H(p~v;0 =)
(which strictly applies when v > 1 and (v — Lv) <
1). Under these conditions the ion can be acceler-
ated from arbitrarily low initial velocities from the
regular motion region of phase space to the stochas-
tic region where substantial energization can occur.
It is important to note that this criterion is in terms
of the (initial) Hamiltonian and not just the (ini-
tial) velocity (po).

(27)
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This criterion defines the allowed acceleration do-
main and since, unlike the single-wave criterion in
Eq. (10), it does not generally coincide with the
boundary between the regular and stochastic region
of phase space, these two regions become connected
allowing an ion to accelerate regularly (i.e. coher-
ently) from arbitrarily low velocity and be further
energized more vigorously through a stochastic in-
teraction with the waves.

The above criterion, along with the necessary
(wave-beating) condition stated in Eq. (11), repre-
sent two necessary and sufficient conditions for the
beating-wave ion acceleration mechanism to occur.

Finally, it is important to mention that the crite-
rion’s independence of the wave energy € is a con-
sequence of the second-order nature of the analysis.
In light of the albeit weak dependence on € in the
single-wave criterion in Eq. (10), we investigated nu-
merically the dependence of the location of the crit-
ical points on the energy and found that the same
dependence on € applies. Therefore we can rewrite
the criterion in Eq. (27) as

H(p;0) >Hy=H(p~v—+eb=m). (28)

A number of issues remain to be explored in-
cluding: 1) the explicit form of the function v in
Eq. (25) (which will allow us to relax the assumption
v — 1v) < 1; 2) the effects of wave dispersion and
oblique propagation, 3) the extension to a collection
of particles and the effects of particle collisions and
3) the experimental verification of the effect. These
questions are the subject of ongoing and future in-
vestigations.

APPENDIX A: S;"" (p) TERM
SIMPLIFICATION

Using Eq. (11) and substituting for J,,(p) and
J!(p) with the following identities [18]

%4w+%ﬂw=%ham

e can rowrite S g a0 (A
SV (p) = é {Z Jm+2£sz;:L+1(p)
-y Jm(f;)im;(p) -y Jm—1 1(/01'];;?2(/))
=S Jm(z)imnj(p) 'y Jm_lipZJZ_Q(p)
Py Imt1(p)Im—2(p) 3 Im (p)Im-1(p)

v—m vV—m

. Z J7n<P)Jm+1(p)

v—m

b

(A-2)

10

Now we use identity [19]

oo

Z Jerp(p)Jm(p)

v—m

™

Tp+v(P) T (p);

sin v
m=—0oc

which is valid for p > 0 to simplify Eq. (A-2) to

™

- 2/,

yp— y+2(P)J—(u+1)(P)
= 2J,(p)J—(w-1)(p)],

S (p)

which, with the help of identities (A-1), may be eas-
ily shown to equal to

P

> sy (0T (p)
—dJdy—1 (p)']f(ufl) (IO)]
p

+(1/ +1)sinw(v+1) [J.(p)J—-.(p)
~Jus2(p) - 2) (P)]-

S5 (p) =

Chia et al. [13] showed that S7?(p) can be simplified
as

™

S1(p) = m[JVi+1(p)J*(Vi+1)(p)

7‘]%‘,—1(9)‘]—(14—1) (P)]

It is then clear that

Vi, P qu;
Se 7 (p) = —5) (p)

(3

+ 250 (a)

Finally, we caution that the relation (A-3) holds
only for the special case of v; # integer and v; =
v; —|— 1
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