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Abstract

It has been shown that a pair of beating electrostatic waves (BEW) propagating perpen-

dicularly to a magnetic field can, under some conditions, accelerate ions from arbitrarily

low initial velocity, in stark contrast with the well-known nonlinear threshold criteria for

ion acceleration by a single electrostatic wave (SEW). Such a mechanism is believed to be

the cause of rapid ion acceleration from the Earth’s ionosphere. The goal of this disserta-

tion is to improve the theoretical understanding of the BEW ion acceleration mechanism

through analytical and numerical investigations, and to demonstrate ion heating by beating

electrostatic waves for the first time in a laboratory environment. It was found that the nec-

essary and sufficient conditions for the acceleration to occur may be described through the

Hamiltonian formulation. The elliptic and hyperbolic critical points on the Poincaré sec-

tion define a potential well, which an ion must overcome in order to be accelerated by

the beating waves. It is also found that in a collisional plasma the acceleration is further

enhanced by the ion-ion collisions, which also thermalize the energy. In a collisionless

plasma, appropriate wave frequencies may be chosen to optimize the heating efficiency.

An experimental study of ion heating by beating electrostatic ion cyclotron (EIC) waves in

a magnetized, radio-frequency sustained plasma has also been performed. Ion heating up to

35% was observed in the presence of the EIC waves excited by a two-plate antenna. It was

found that ion-neutral collisions significantly damp the backward branch of the EIC wave,

which is most effective in coupling with ions. Thus, ion-neutral collisions indirectly play a

detrimental role in the heating mechanism. Despite the damping effects of such collisions,

it was shown that the beating electrostatic waves can heat ions to a higher temperature

than a single electrostatic wave. This enhancement in ion temperature was found to be

15% for the particular conditions of the reported experiment, but is expected to be signif-

icantly higher in a less collisional plasma. This finding supports the theoretical prediction

that beating waves can produce more efficient heating by interacting with ions below the

single-wave velocity threshold.
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Nomenclature

⊥ Perpendicular to applied magnetic field

‖ Parallel to applied magnetic field

Jν(ρ) Bessel function of the first kind

Iν(ρ) Modified Bessel function of the first kind

Γ(ρ) Gamma function

me Mass of an electron

mi Mass of an ion

q Elementary charge

kb Boltzmann’s constant

γ Adiabatic index

E Electric field

B Magnetic field

v = (vx, vy, vz) Particle velocity in the laboratory frame

u = (ux, uy, uz) Relative particle velocity in the center of mass frame

vde Parallel electron drift velocity

vdi Diamagnetic ion drift velocity

vte Electron thermal velocity

vti Ion thermal velocity

cs Ion sound speed

vA Alfvén speed

c Speed of light

k = (k⊥, k‖) Wavenumber

f Frequency in Hz

ω Frequency in s−1

ωce Electron cyclotron frequency

ωci Ion cyclotron frequency
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ωpe Electron plasma frequency

ωpi Ion plasma frequency

rL Ion Larmor radius

Te Electron temperature

Ti Ion temperature

ne Plasma density

Z(ζj
n) Plasma dispersion function

fe(v) Electron velocity distribution function

fi(v) Ion velocity distribution function

V Electric potential

Vp Plasma potential

Vf Floating potential

I Electric current

Isat Saturation current

Zr, Zi Real and imaginary components of impedance

ε = k⊥qE/miωci Normalized wave amplitude

ν = ω/ωci Normalized wave frequency

κ⊥ = k⊥/k⊥,1 Normalized wavenumber, where subscript “1” refers to a ref-

erence wave

τ = ωcit Normalized time

ρ Normalized Larmor radius

θ Particle phase angle

H Hamiltonian

Ap Langmuir probe tip surface area

νl0 Laser frequency in the laboratory coordinate system

νl Doppler-shifted laser frequency

Il(νl) Light intensity
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Chapter 1

Introduction

Research is what I’m doing when I don’t know what I’m doing.

– Wencher Von Braun

1.1 Background and Motivation

Nonlinear wave-particle interactions in plasmas occur naturally in space plasmas, and are

harnessed in the laboratory for plasma generation and plasma heating for fusion applica-

tions. An example of such an interaction is ionospheric ion acceleration by electrostatic

waves that propagate perpendicularly to the Earth’s magnetic field. An electrostatic wave

is a wave with the oscillating electric field, E, aligned along the direction of wave prop-

agation, k. According to Maxwell’s equations such a wave does not have an oscillating

magnetic field component. The fundamental mechanism behind ion acceleration by a sin-

gle electrostatic wave (SEW) was first elucidated theoretically by Karney [1] in 1977. He

found that ion acceleration is inherently a stochastic mechanism that can only occur if the

particle velocity is within a nonlinearly broadened resonance with the wave, and is also

above a velocity threshold (v & ω/k⊥).

Ion acceleration by a spectrum of electrostatic waves propagating perpendicularly to the

magnetic field was proposed by Ram et al. [2] in 1998 as an explanation for ionospheric ion
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acceleration observed by the Topaz 3 rocket. In the same year Benisti et al. demonstrated

that ions with arbitrarily low initial velocity can be accelerated through a nonlinear inter-

action with the waves whenever the spectrum contains a pair of waves that obey a beating

criterion [3, 4],

ω2 − ω1 = nωci,

where ω1 and ω2 are the frequencies of the two waves, ωci = qB0/mi is the ion cyclotron

frequency, and n is a positive integer. As will be shown later in this dissertation, the above

criterion is necessary but not sufficient for acceleration to occur.

The main feature of ion acceleration by beating electrostatic waves (BEW) is the lack

of threshold for the initial ion velocity. This renders a plasma heating scheme based on

this effect a particularly efficient one, as compared to resonant wave heating, since a larger

portion of the ion distribution function can interact with the waves. Since the BEW ion

acceleration mechanism can energize ions whose velocity is well below the single-wave

threshold, we expect that in real plasmas the ion temperature will be enhanced, as com-

pared to the case of SEW heating. This is particularly appealing for electric propulsion

applications, where higher heating efficiency implies system benefits.

1.2 Dissertation Objectives

The goal of this dissertation is to investigate nonlinear interaction between beating elec-

trostatic waves and charged, magnetized particles. Theoretical works by Karney et al. and

Benisti et al. noted in the section above, serve as a starting point for this dissertation. While

many questions about the wave-particle interaction remain unanswered, this dissertation is

focused on three of these questions:

• What is the nature of the BEW acceleration mechanism?
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• What are the necessary and sufficient conditions for particle acceleration by beating

electrostatic waves?

• How can the beating electrostatic waves acceleration mechanism be demonstrated in

the laboratory?

In order to answer these questions we first review previous works on the subject of

particle interaction with electrostatic waves. In particular, we overview ionospheric rocket

observations pertaining to the Cleft Ion Fountain phenomenon and previous theoretical

and experimental investigations of electrostatic wave propagation and particle heating in

magnetized plasmas.

1.3 Ionospheric Rocket Observations

The work described in this dissertation was initially motivated primarily by the ionospheric

observation of the Cleft Ion Fountain (CIF) and related phenomena [5]. The CIF, shown

schematically in Fig. 1.1, is a large-scale outflow of energetic ions from the regions of the

low-altitude polar ionosphere, and serves as a major source of the Earth’s magnetospheric

plasma. It has been suspected that the Cleft Ion Fountain may be the result of the interaction

between ions and electrostatic waves propagating in the Earth’s ionosphere.

Most of the evidence toward the ionospheric origin of magnetospheric plasma comes

from a variety of satellite observations that point to high-energy ions streaming from iono-

sphere to magnetosphere [6]. In particular, it has been observed that vigourous ion ac-

celeration from the ionosphere takes place both parallel and perpendicular to the ambient

magnetic field at an altitude ranging from 400 km to 8000 km. The most detailed study of

ion acceleration was performed by the S3-3 (1976-65B) satellite that was launched in 1976,

and performed the first in situ measurements of electric fields in the auroral region [7, 8]. A

more comprehensive overview of ionospheric rocket observations is given in Appendix A.

A connection between ion acceleration and electrostatic waves was established by

3



Figure 1.1: An artist’s depiction of the Cleft Ion Fountain showing ions being accel-
erated out of the ionosphere in the Earth’s auroral region. This picture is taken from
http://pluto.space.swri.edu.

Mozer et al. [7], who investigated the plasma density and electric field fluctuation data

collected by the S3-3 satellite. They determined that the electric field structure observed

by the spacecraft in the region of ion acceleration was due to formation of Electrostatic Ion

Cyclotron (EIC) waves.

1.4 Previous Laboratory Experiments

While transverse ionospheric ion acceleration was observed in regions of electrostatic wave

activity, the satellite observations could not unambiguously point to the wave-ion interac-

tion mechanism as the source of acceleration. Laboratory experiments simulating iono-

spheric conditions were therefore conducted to investigate this interaction mechanism.

In 1963 Motley and D’Angelo [13] performed a series of experiments where they ex-

cited a single Electrostatic Ion Cyclotron (EIC) wave in a Q-machine (first described by

Rynn and D’Angelo in 1960 [14]) by drawing the electron current along the magnetic field

lines. Using similar experimental configuration Cartier et al. [15] measured perpendicular

4



Figure 1.2: Schematics of various experiments to study electrostatic waves in magnetized
plasmas. a) and b) Schematics of two experiments to study the waves in the lower-hybrid
range of frequency [9, 10]. c) Schematic of an experiment reported by Schmitt [11], who
studied propagation of the Pure Ion Bernstein wave. d) Experimental setup for studying
mode conversions [12].
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ion heating when the current exceeded a certain threshold. These experiments corroborated

the S3-3 data, which also showed that the electron field-aligned current in the ionosphere

was above the threshold necessary for the excitation of the hydrogen EIC wave [8]. Ad-

ditionally, Goree et al. [16] (1985) and Skiff et al. [17] (1987) used an electrostatic plate

antenna to launch a single electrostatic wave above the ion cyclotron frequency perpendicu-

larly to the magnetic field in argon and neon plasmas. Similar experiments were performed

in hydrogen and deuterium plasmas by Alba et al. [18]. These experiments also reported

significant ion heating. Figure 1.2 shows a few other experimental arrangements used to

study electrostatic waves in magnetized plasmas. A broader review of various laboratory

wave-particle interaction experiments is given in Appendix A.

1.5 Review of Previous Theoretical Work

The ionospheric and laboratory observations of particle heating by electrostatic waves that

were described in the previous sections did not fit within the existing theoretical under-

standing of plasma heating, and motivated the development of new theoretical approach.

A model developed by Zaslavsky and others [19, 20, 21, 22] showed that ion accelera-

tion results from the nonlinear interaction between the waves and ions. Since the resulting

particle motion is stochastic, as will be discussed in the next section, we will refer to this

type of acceleration as the stochastic acceleration. Also, because temperature is a statisti-

cal property of a particle aggregate, we will adopt the following convention: whenever we

refer to the wave interaction with multiple particles we will talk about stochastic heating,

however, when we investigate the wave interaction with a single particle we will talk about

stochastic acceleration instead.

6



1.5.1 Single-Wave Ion Acceleration

As was mentioned in previous sections, the theory of stochastic acceleration by a sin-

gle obliquely, as well as transversely, propagating electrostatic (ES) wave was primar-

ily developed to explain the ionospheric ion acceleration related to the CIF phenomenon

[23, 24, 1, 25, 22]. The theory showed that while the equations describing the particle

motion are completely deterministic, i.e. contain no random forces, the solutions to these

equations produce intrinsically stochastic particle dynamics. Smith and Kaufman [23, 25]

(1975) studied stochastic acceleration by an obliquely propagating wave. They derived the

threshold for the wave-particle interaction and found an analytical approximation that de-

scribed the particle dynamics. Their theory was applied to the problem of the ionospheric

ion heating by Singh et al. [26] and Menyuk et al. [27].

Karney [28] (1978) was able to derive analytical expressions approximating the dynam-

ics of an ion interacting with a single wave that propagates transversely to the magnetic

field. He found that, just like for oblique waves, there is a threshold condition for the wave

amplitude below which no stochastic heating is observed. Skiff et al. (1987) have validated

these findings experimentally [17]. Papadopoulos [29] applied Karney’s analysis to the

problem of ionospheric ion acceleration and Lysak et al. used a similar idea to show how

an ionospheric ion can gain energy in the presence of more than one wave [30].

Another important result shown by Karney was the existence of an ion velocity thresh-

old below which the ions cannot gain energy from an ES wave. This threshold is essentially

the lower bound of a nonlinearly broadened resonance condition between the ion and wave

phase velocities. If the initial velocity of an ion is below the threshold, then the ion is not

accelerated by the wave. This threshold was also found to separate two regions of the ion

motion: a regular (or coherent) motion region of low energies below the threshold and a

stochastic region – above the threshold. Nonlinear ion acceleration (or energization) by a

single wave is therefore always a stochastic process.

The intricacies of the nonlinear dynamics describing the interaction between a single

7



Figure 1.3: This figure demonstrates that the single-wave theory does not predict correctly
the ion energies observed in the ionosphere. Ion energies predicted by the single-wave
theory are shown by H+ and O+ “chaotic phase space”. The x axis is the phase angle of
the ions as described in Chapter 2. The figure is taken from Ref. [2].

wave and a charged particle, and stochastic acceleration in general are discussed in a book

by Lichtenberg and Lieberman [31] published in 1983. A more detailed approach with

specific emphasis on particle acceleration is taken in a book by Zaslavsky et al. [22].

1.5.2 Multi-Wave Ion Acceleration

While the investigations of a single wave ion interaction by Karney et al. and Smith and

Kaufman were successful in describing the single-wave interaction, they did not fully ex-

plain the CIF phenomenon. For example, as was pointed out by Ram et al. [2], the single-

wave theories either under- or over-predict the observed H+ and O+ ion energies, which

are shown in Fig. 1.3. In that figure, the observed ion energies are either above (for H+)

or below (for O+) the energies predicted by the single-wave theory, which are marked as

“chaotic phase space”. To improve upon the single-wave model, efforts were made to in-

clude multiple waves. Deeskow et al. [32] used both kinetic and Hamiltonian approaches
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to study the interaction of multiple waves with one common frequency but different wave

vectors. Zaslavsky et al. [20] studied interaction between a particle and a propagating wave

packet. Chia et al. [33] employed the Lie transformation technique to arrive to a general

second-order equation that described a system of one particle and multiple waves.

In 1998 Benisti et al. improved upon these works by suggesting that a particular com-

bination of multiple waves that propagate perpendicularly to the Earth’s magnetic field can

fundamentally alter the stochastic acceleration mechanism [3, 4]. The proposed scheme

required pairs of the ES waves such that their corresponding frequencies differ by an inte-

ger number of the ion cyclotron frequency, as shown in Eq. (1.1). In essence, these waves

create a beating wave that interacts with the ions. Under such conditions the single-wave

theory threshold is modified in such a way that the regular and stochastic acceleration re-

gions become connected, allowing ions with arbitrary small initial velocity to obtain high

energy through coherent acceleration followed by stochastic energization. Because the

beating waves can accelerate the slower ions, this type of nonlinear interaction may result

in a more efficient ion heating mechanism in a real plasma than the single-wave scheme.

It is important to note that because of the dispersion properties of electrostatic waves in

a real plasma, these waves do not propagate exactly at 900 with respect to magnetic field. In

recent years (2003) investigations by Strozzi et al. [34] have been conducted to extend the

theoretical BEW model introduced by Benisti et al. to include the effects of finite parallel

wavenumber. That work has shown that regular and stochastic acceleration regions remain

connected to each other as long as the beating waves have the same parallel wavenumber.

This condition can be achieved in the laboratory by launching beating electrostatic waves

simultaneously from the same antenna.

The BEW interaction allows acceleration of a larger portion of the ion velocity distribu-

tion than the single electrostatic wave (SEW) interaction, and may be promising for many

applications where the efficiency of ion heating is of prime importance. These applications

can range from fusion plasma heating to space plasma propulsion.
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1.6 Dissertation Outline and Approach

The series of papers published by Benisti et al. [35, 3, 4] serve as the starting point for the

work presented in this dissertation. The dissertation reports on theoretical, numerical, and

experimental investigations of ion acceleration and heating by beating electrostatic waves.

In order to address three dissertation objectives that were established in Section 1.2 we

focus this work on

1. Refining the previous theories by defining the necessary and sufficient conditions for

the ion acceleration by beating electrostatic waves,

2. Developing a numerical simulation of ion heating by beating electrostatic waves that

takes into account ion collisions,

3. Presenting experimental results that our support theoretical and numerical findings.

Chapter 2 of this dissertation contains a theoretical description, which is based on first

principles, that is used to describe the interaction between a single ion and beating elec-

trostatic waves (BEW). The description is similar in spirit to the approach developed by

Karney et al. [1] and Benisti et al. [3]. Using this approach we proceed to derive necessary

and sufficient conditions for the ion acceleration by beating electrostatic waves. In Chap-

ter 3 we build upon this theoretical framework with a numerical investigation of multiple

ions interacting with beating electrostatic waves. The investigation includes ion-ion colli-

sions through a Monte-Carlo technique. In Chapter 4 we overview the experimental setup

of the Beating Wave Experiment (BWX) and its diagnostics. The Beating Waves Exper-

iment at the Princeton’s Electric Propulsion and Plasma Dynamics Laboratory (EPPDyL)

was the first laboratory demonstration of the ion heating by beating electrostatic waves. In

Chapter 5 we present and analyze the results of the experimental investigation. Finally, in

Chapter 6 we offer concluding remarks and suggests future avenues for the research.
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Chapter 2

Theoretical Investigation

In theory, there is no difference between theory and practice. But, in prac-

tice, there is.

– Jan L.A. van de Snepscheut

This chapter describes theoretical investigation of the interaction between a charged, mag-

netized particle and two beating electrostatic waves. As was discussed in Chapter 1, the

interest in this problem arose from the ionospheric observations, as well as some theoretical

and experimental studies of ion acceleration by electrostatic waves. However, in principle

the equations described here can be applied to any magnetized charged particle, includ-

ing electrons, and in some cases waves that are not purely electrostatic, as discussed in

Section 2.3.

The approach undertaken in this chapter involves solving the equation of particle mo-

tion using a second-order perturbation theory to examine the dynamics of the interaction.

Additionally, we use a combination of analytical and numerical solutions to investigate the

nature of particle motion for a wide range of relevant parameters.

As a first step for describing our theoretical work we make some general comments

on the nature of stochastic acceleration and various analytical approaches taken to inves-

tigate it. We then overview the analytical formulation of the problem, and summarize the
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better-known results for the single wave case. Beating wave interaction is introduced in

Section 2.6. In that section we first describe the dynamics of an ion interacting with a

pair of non-beating waves, and then contrast that with the case of the beating electrostatic

waves. Next, for the case of beating electrostatic waves, we focus our analysis on finding

the necessary and sufficient conditions for stochastic acceleration to occur.

2.1 Resonance Overlap and Stochastic Motion

One of the most important concepts relevant to wave-particle interactions is the resonance

between the wave and the particle. A classical example of a resonant interaction is Landau

damping. When a large number of particles have velocity on the order of the wave phase

velocity, energy transfer between the wave and the particles can occur. Particles that move

slightly below the wave phase velocity gain energy from the wave, and particles that move

slightly faster than the wave loose energy to it.

Very often a situation arises when multiple wave-particle resonances are present. In

principle the appearance of extra resonances does not produce a fundamental difficulty in

finding the analytical solution. However, when the wave amplitude is large enough the

resonances might grow and eventually start to overlap [31]. In that case the particle mo-

tion may become random, or more precisely stochastic. Equations describing the particle

motion in those cases do not have an exact analytical solution, and need to be solved to

at least the second order. This is certainly true for the ions interacting with electrostatic

waves. Stochastic ion acceleration resulting from such an interaction requires at least a

second-order analysis.

Stochasticity refers to the process in which the trajectories of any two particles initially

infinitely close to each other diverge exponentially with time. It is important to note that

stochasticity in the particle motion does not come from any random forces. Indeed, the

equations describing the beating wave particle interaction contain no random terms and
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look deceptively simple at first glance. Neither does the stochasticity necessarily result

from any random particle-particle interactions. Stochastic behavior may even arise for a

simple system consisting of only one particle and one wave. Stochasticity in fact, is an

intrinsic property of some nonlinear equations. Furthermore, analogous to random motion,

one can define stochastic diffusion (Arnol’d diffusion) [20, 36, 37]. This concept serves as

a bridge between two types of the analytical models used to describe the stochastic wave-

particle interaction. These models are the subject of the next section.

2.2 Choosing the Analytical Model

One of the requirements necessitated by the nature of our investigation is that the analytical

model should be able to track individual particle trajectories in the field of the waves. This

condition makes fluid models inappropriate, leaving only two choices: kinetic and particle-

dynamic models.

Particle-dynamic models offer a more manageable approach to the problem of stochas-

tic acceleration by beating electrostatic waves. The approach is limited to dealing with a

single particle interacting with one or more waves, and thus produces a simple set of equa-

tions, derived directly from Newton’s and Lorentz’s equations. Furthermore, this method

can serve as a stepping stone to more complex models. For this reason, particle-dynamic

models were the methods of choice for Zaslavsky [19, 20, 21, 22], Karney [1, 28, 38],

Benisti [35, 3, 4], and others, who investigated nonlinear interaction mechanisms between

a single particle and electrostatic waves. Because of the existing body of knowledge, and

simplicity of the equations, the particle-dynamic model used by Karney and Benisti is

adopted for this chapter. While simple, this approach allows us to study the fundamental

nature the nonlinear interaction mechanism between a single, charged, magnetized particle

and beating electrostatic waves.

One the other hand, the kinetic approach treats multiple particles, and is generally a
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better way to model a real plasma. It is usually the tool of choice to tackle wave-particle

interaction problems that do not result in stochastic particle behavior, such as Landau damp-

ing. Additionally, propagation of some plasma waves can only be described using a kinetic

model. The dispersion relation for the backward branch of the Electrostatic Ion Cyclotron

(EIC) wave, given in Section 5.2 and in Appendix F, is a good example of kinetic model

application.

However, application of kinetic theories to the problem of stochastic particle accelera-

tion by beating electrostatic waves produces an extremely complex set of equations. Some

successful efforts in obtaining the nonlinear evolution of particle velocity distribution using

this type of models are reported in Refs. [19] and [39]. However, because of the complex-

ities involved in the kinetic treatment, we choose to investigate beating electrostatic wave

interaction with multiple particles through a Monte Carlo numerical simulation. This work

will be described in the next chapter.

2.3 Analytical Formulation

We start by defining the coordinate system as shown in Fig. 2.1. The figure shows a single

ion of mass m and charge q in a constant, homogeneous magnetic field B0ẑ. This ion inter-

acts with a packet of electrostatic waves that propagate in the positive x direction. While

in a real plasma electrostatic waves do not propagate precisely perpendicularly to magnetic

field, work by Strozzi et al. [34] has demonstrated that as long as the angle of propagation

is close to 900, and wavenumbers of the beating electrostatic waves are equal, particle dy-

namics is similar to the case of perpendicular wave propagation. Therefore, for the sake

of simplicity we will focus on the perpendicular wave propagation. Because the waves are

purely electrostatic the wavenumber k⊥j is parallel to the electric field Ej direction of each

of these waves, and hence lie in xy-plane. The x-y motion of the single ion in Fig. 2.1 is

described by the following equation of motion, which is given in Refs. [33] and [3], and is
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Figure 2.1: A single ion of charge q and mass m in a constant homogeneous magnetic field
Bẑ interacts with a spectrum of electrostatic waves whose wavenumber and electric field
direction is parallel to the x-axis.

also derived for completeness in Appendix B:

d2x

dt2
+ ω2

cix =
q

m

n∑
j=1

Ej sin(k⊥jx− ωjt + ϕj), (2.1)

where ωci = qB0/m is the ion cyclotron frequency and ϕj is the phase angle each wave.

As a footnote we should mention that similar analysis can be applied to other stochastic

heating problems. Alfvén wave heating is one such example [40, 41]. The similarity can

be demonstrated by considering a linearly polarized Alfvén wave propagating obliquely to

the external magnetic field such that magnetic field of the wave B = Bw cos(kx− ωt) and

its frequency ω = kzvA. Here kz is the z component of the wavenumber and vA is the

Alfvén velocity. The resulting equation of motion is [41]

d2x

dt2
+ x = x0 − vzBw cos(kx− ωt), (2.2)

where to the zeroth order both Bw and vz, which is the z component of the wave velocity,
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are assumed to be constant. The equation above is similar to Eq. (2.1). Therefore, the

subsequent analysis of the stochastic heating by Alfvén waves may follow along the path

described below in this chapter.

The corresponding Hamiltonian for the system is [3]

H̄ = ρ2/2 +
n∑

j=1

εj

κ⊥j

cos(κ⊥jρ sin θ − νjτ + ϕj). (2.3)

The derivation of the above equation of motion, as well as the Hamiltonian form, are de-

tailed in Appendix B. In writing Eq. (2.3) we have used the fact that the system is periodic,

and transformed the Hamiltonian into a normalized action-angle coordinate system [42],

where κ⊥j = k⊥j/k⊥1, νj = ωj/ωci, τ = ωcit, εj = (k⊥1qEj)/(mω2
ci), ρ2 = X2 + Ẋ2,

and X = k⊥1x, Ẋ = dX/dτ , so that X = ρ sin θ, Ẋ = ρ cos θ. The action-angle coordi-

nate system is somewhat similar to polar coordinates, where θ corresponds to the cyclotron

phase angle measured clockwise from the y-axis in the xy plane, as indicated in Fig. 2.1,

while ρ is the normalized Larmor radius. In a constant magnetic field the variations in the

Larmor radius correspond to the changes in the particle perpendicular velocity.

When νj is exactly an integer we speak of an on-resonance wave, otherwise we speak

of an off-resonance wave. This chapter focuses on the off-resonance cases because, as will

be demonstrated in Section 2.7, the analytical expressions for the off-resonance waves are

significantly simpler.

Benisti et al. [3] defined a criterion for vigorous particle acceleration by multiple ES

waves. They showed that for a particle with an arbitrary low initial velocity to undergo

stochastic acceleration it is necessary (but, as we shall shortly show, not sufficient) to have

at least one pair of ES waves such that

ω2 − ω1 = nωci, (2.4)

where n is an integer. They also reported that the acceleration is more vigorous for n ≤
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2, therefore for the sake simplicity we limit our analysis to the case of a single pair of

beating electrostatic waves, such that n = 1. In addition, Ref. [3] reports that the maximum

acceleration is achieved when all waves are of the same amplitude, εi = εj = ε. We also

set κ⊥i = κ⊥j = κ⊥1 to simplify our analysis, and since the phase angles, ϕj , do not

play a fundamental role in this acceleration process [3] we set all ϕj = 0. With these

simplifications the Hamiltonian (2.3) becomes

H̄ = ρ2/2 + ε[cos(ρ sin θ − νiτ) + (2.5)

cos(ρ sin θ − νjτ)].

This Hamiltonian represents two coupled oscillators: one is the gyrating ion and the other

corresponds to the beat wave composed of the two electrostatic waves. We therefore can

interpret ε as a coupling parameter between the two oscillators. The presence of this cou-

pling parameter induces perturbations in the particle gyro motion. Physically, one can see

that parameter ε is the normalized wave amplitude. Therefore, it makes sense that for a

small wave amplitude the particle motion reduces to the simple gyration around a magnetic

field line.

The detailed derivation of the analytical solution for a particle interacting with a single

wave can be found in Ref. [28]. However, a more generalized solution for multiple waves

is obtained in Refs. [3, 4] through Deprit’s modified Lie transformation [43, 33, 44]. The

details of this derivation are also given in Appendix C. The resulting autonomous Hamil-

tonian, derived from Eq. (2.5) to the second order in the perturbation strength, is

H = ε{Jνi
(ρ) cos(νiϑ) + Jνj

(ρ) cos(νjϑ)}

+ ε2{Sνi
1 (ρ) + S

νj

1 (ρ)

+ S
νi,νj

6 (ρ) cos[(νj − νi)ϑ]}, (2.6)
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where,

Sνi
1 (ρ) =

1

2ρ

∞∑
m=−∞

mJm(ρ)J ′m(ρ)

νi −m
,

S
νi,νj

6 (ρ) =
1

2ρ

( ∞∑
m=−∞

mJm(ρ)J ′νj−νi+m(ρ)

νi −m
+

+
∞∑

m=−∞

mJm(ρ)J ′νi−νj+m(ρ)

νj −m

)
, (2.7)

Jm is the Bessel function of the first kind, and J ′ is the derivative of the Bessel function

with respect to its argument. When νi is an integer, the summations are performed over all

m 6= νi to avoid singularities. When ν is not an integer, the first-order terms in Eq. (2.6)

disappear and equation becomes more tractable. This is one of the reasons why we choose

to focus on the non-resonant cases.

It should be noted that θ and ϑ in Eqs. (2.5) and (2.6) are two distinct variables, and

are related as ϑ = θ − τ , as described in Appendix C. However, for the purposes of

comparing numerical and analytical Poincaré sections they are equivalent, since both are

periodic variables. Furthermore, ϑ appears inside the “cos” terms in Eq. (2.6), and the

values of τ at the intersections with Poincaré sections are always an integer multiple of 2π.

Therefore, in this dissertation all figures with Poincaré sections (analytic and numeric) are

shown as ρ vs. θ without making the distinction between the two variables.

We now explore particle dynamics as a function of the normalized wave amplitude and

frequency, and in terms of the location of critical points on the phase diagrams. Solving

Eq. (2.5) numerically we will demonstrate that when critical points are absent in the regular

region of the phase diagram (as in the single wave-particle interaction case), the particle

will not gain net energy.
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X

t

mod 2π

Figure 2.2: Construction of a Poincaré section. The intersections of the particle trajectory
with the slices of X−Ẋ plane at a constant time interval are plotted together. If the motion
is integrable, the points form a well-defined curve. If the motion is stochastic, the points
are distributed randomly within some region on the Poincaré section.

2.4 Poincaré Section Construction

A convenient way of representing both numerical and analytical solutions of Eq. (2.1) is

to plot the particle trajectories on a Poincaré section [31]. Poincaré sections are special

types of phase diagrams that are very useful in analyzing periodic motion. A schematic

illustrating construction of a Poincaré section is shown in Fig. 2.2. For a simple exam-

ple of periodic motion one may think of a linear harmonic oscillator. To construct the

Poincaré section for this example we follow the trajectory of the oscillator in three dimen-

sional position-momentum-time (X− Ẋ− t) space, shown in the left panel of Fig. 2.2. We

then take slices of the X− Ẋ planes at some constant time intervals (usually 2π/frequency

mod2π) and collapse all the points where the trajectory intercepts the slices onto one 2-

dimensional plot, as shown by the arrows and the right panel of Fig. 2.2. Thus, for the

linear harmonic pendulum the points will form a circle if the frequency isn’t an integer. If

the frequency is an integer, then all the points on the Poincaré section will collapse to one.

One may also think of a grandfather clock. If one snaps a picture of the pendulum every
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second (i.e. once every period) then all pictures will show the pendulum to be in the same

position.

The visual interpretation of Poincaré sections is straightforward. If the particle motion

is integrable then all the intersection points will fall on some kind of well-defined curve

on the Poincaré section. For example, circles and ellipses form close to the elliptic critical

points, and hyperbolic lines form in the neighborhood of the hyperbolic critical points. One

the other hand, when the particle motion is stochastic the points produce a random pattern.

To construct a Poincaré section from the numerical integration of Eq. (2.3) we plot the

point intersections of the ion trajectory in three dimensions (ρ, θ, τ ) with the ρ-θ plane at

specific time intervals. For integer values of ν this reduces to plotting ρ vs. θ at τ = 2πj,

where j = 0, 1, 2, ... is a nonnegative integer. For noninteger values of ν the time interval

is chosen according to the least common period of the waves. Since the magnetic field

is constant, the normalized cyclotron radius ρ is a direct measure of the perpendicular

ion velocity. Therefore Poincaré sections give direct visual insight into the acceleration

process.

Poincaré sections can also be constructed from analytical solutions to the second-order

approximations, given by Eq. (2.6). In constructing the Poincaré sections from the analyti-

cal solution we note that the Hamiltonian in Eq. (2.6) is autonomous (i.e. not a function of

time τ ), and therefore is an invariant of motion. Curves of constant H in a Poincaré section

represent the complete analytical solution to second order. It should be noted that while

the numerical solutions to Eq. (2.3) give “exact” answers, the Poincaré section obtained

from Eq. (2.6) are the second-order approximations to the exact answer. For example, the

analytical Poincaré sections do not show any stochastic behavior.

Poincaré sections obtained from numerical integration of Eq. (2.3) for the SEW and

BEW cases are shown in Fig. 2.3b and Fig. 2.3d. It can be seen that for the SEW case

trajectories below some ρ form a set of horizonal lines. These represent the particles that

are not accelerated by the single electrostatic wave, as shown in Fig. 2.3a. Particles above
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the threshold move stochastically.

When a particle undergoes an interaction with beating electrostatic waves the

Poincaré section looks fundamentally different than that in the SEW case. Now some par-

ticles with arbitrary low initial velocity are accelerated by the BEW first through integrable

motion and then stochastic, as shown in Fig. 2.3c and d.

We also observe an elliptic point at (ρ, θ) ∼ (ν/2, π) in Fig. 2.3d. Critical points

define the local dynamics of the particle motion. Since the system is not dissipative, we

expect to find two types of critical points on the Poincaré section: elliptic and hyperbolic.

As we shall show later, the location of the critical points is key to determining which

initial conditions lead to acceleration or trapping in the BEW case. Defining the criteria for

stochastic acceleration therefore reduces to finding critical points. Our research is guided

by a comparison of the Poincaré sections obtained from the analytical solution and those

from numerical integration of Eq. (2.5). Again we note that analytical solution will not

display any stochastic behavior because Eq. (2.6) is a second-order approximation to the

exact solution.

2.5 Single-Wave Interaction

In this section, in order to create a context for our study, we summarize the results obtained

by Karney [28] for the interaction of a magnetized particle with a single electrostatic wave.

Using the first-order perturbation theory Karney [1, 28] was able to derive analytical ex-

pressions approximating the overall nonlinear dynamics of the ion motion. He showed that

stochastic motion occurs when the wave amplitude exceeds a certain threshold. The work

also revealed a threshold in the initial ion velocity below which a particle cannot gain net

energy from the single electrostatic wave. These two threshold conditions can be expressed
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in terms of the wave electric field and the ion velocity as

E/B =
1

4
(ωci/ω)1/3(ω/k⊥), (2.8a)

v =
ω

k⊥
−

√
qE

k⊥mi

, (2.8b)

where v,mi, q and ωci are the velocity, mass, charge, and the cyclotron frequency of the

ion, and ω, k⊥ and E are the frequency, wavenumber, and electric field amplitude of the

wave. The normalized version of the above equations is expressed as

ε = ν2/3/4, (2.9)

ρ = ν −√ε. (2.10)

Skiff et al. validated the wave amplitude threshold experimentally [17]. The signif-

icance of the wave amplitude threshold is clear. To produce stochastic acceleration, i.e.

resonance overlapping, the wave amplitude needs to be high enough to produce the nonlin-

ear behavior. The significance of the velocity threshold can be understood from a simple

surfer analogy that illustrates the physical meaning of the threshold as a velocity resonance

condition.

To ride an ocean wave a surfer laying on his board needs to start paddling toward the

beach as the wave is about to overtake him. If the surfer does not paddle then the wave will

pass him by without producing the desired acceleration. This is similar to stochastic ion

acceleration by a single electrostatic wave, where an ion needs to be moving at a certain

minimum velocity to be accelerated by the wave.

This idea is demonstrated in Fig. 2.3a. The figure shows the velocity evolution of

two test ions interacting with SEW (ε = 10,ν = 24.3), which is obtained through the

numerical evaluation of Eq. (2.3). Below the velocity threshold, indicated by the horizontal

dashed line, we observe that the ion motion is regular, and consequently we can predict
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its behavior well by means of the perturbation theory. More importantly, as long as the

ion’s initial velocity is in that region the ion does not gain net energy from the wave [28].

When the initial velocity of the ion is above the threshold, the ion moves stochastically,

and on average gains net energy, as shown by the upper trajectory in Fig. 2.3a. Thus, the

velocity threshold separates two regions of phase space: the regular motion region of low

energies below the threshold and the stochastic one – above the threshold. An important

observation is that an ion gains energy from a single electrostatic wave only through the

stochastic motion, when its initial velocity exceeds the threshold.

On the other hand, as shown in Fig. 2.3c, ions may be accelerated from below the single-

wave threshold into the stochastic acceleration region by beating electrostatic waves. The

figure shows particles interacting with two beating electrostatic waves (ε = 10,ν1 = 24.3,

ν2 = 25.3). The two particles are initially below the single-wave threshold, and gyrate

at the same Larmor radius, ρ = 1, but have different initial phase angles, θ. While the

trajectory of one of the particles remains below the velocity threshold, just like in the SEW

case, the second particle can be accelerated to high velocities through the single-wave

threshold. Describing this complicated behavior is the key to understanding the beating

wave acceleration mechanism.

2.6 Multi-Wave Interaction

The first hint of the BEW ion acceleration mechanism came from an investigation of two ES

waves interacting with a single ion conducted by Chia et al. [33] in 1996. They noticed that

for the waves with even-even or odd-odd combinations of frequencies ,ν, there existed a

mechanism that allowed some ions to move through the stochastic web region of the phase

space to high values of ρ, allowing “infinite” ion acceleration. In 1998 Benisti et al. [3,

4] determined a beating condition under which two electrostatic waves can pick a low-

energy ion and transport it through the single-wave velocity threshold into the stochastic
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Figure 2.4: Poincaré section showing numerical solutions for a particle interacting with
two non-beating waves (ε = 10, ν1 = 24, ν2 = 25.5). Particles with initial velocity
below the single-wave threshold defined by Eq. (2.10), shown as a dashed line, do not gain
energy from the waves. This picture is qualitatively similar to the SEW interaction shown
in Fig. 2.3b.

acceleration region, where it can be further accelerated by the waves. They demonstrated

this condition to be

νj − νi = n, (2.11)

where n is an integer. The equation above amounts to the wave beating condition. We

will shortly show that Eq. (2.11) specifies necessary but not sufficient condition for particle

acceleration from below the single-wave threshold given by Eq. (2.10).

2.6.1 Multiple Non-beating Waves

We start studying the particle interaction with multiple waves by demonstrating the impor-

tance of the beating criteria derived by Benisti et al. . Figure 2.4 shows a typical Poincaré

section obtained by solving Eq. (2.3) numerically for ε = 10, νi = 24, and νj = 25.5, i.e.

when Eq. (2.11) does not hold. The Poincaré section is qualitatively very similar to that of
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the single wave-particle interaction shown in Fig. 2.3b. The ions with energies below the

single-wave threshold do not gain energy.

The particle interaction with the “almost” beating waves such that ν2 − ν1 = n + δν,

where δν is small, was briefly discussed by Benisti et al. in Ref. [3]. They showed the

Hamiltonian (2.6) is transformed in this case into

H(νi − νj 6= n) = ε{Jνi
(ρ) cos(νiϑ) + Jνj

(ρ) cos(νjϑ)}

+ ε2{Sνi
1 (ρ) + S

νj

1 (ρ)

+ S
νi,νj

6 (ρ) cos[(νj − νi)ϑ] + S
νi,νj

6 (ρ) cos[nϑ− δντ ]}. (2.12)

The equation above is non-autonomous and thus does not have analytical solutions. Numer-

ical investigation of these cases is also difficult because the least common period becomes

longer and longer as δν approaches 0 and, hence it takes longer to construct a Poincaré sec-

tion. In order to investigate how close the two frequencies should be to produce the stochas-

tic acceleration of the low-energy ions we conducted a numerical study by decreasing δν

from 0.5 to 0.05. Figure 2.5 shows an example with ε = 10, ν1 = 24.3, and ν2 = 25.35.

The figure demonstrates that the beating criterion given by Eq. (2.11) is very strict, and

for δν as low as 0.05 the two wave interaction is qualitatively similar to the single-wave

interaction.

We further study the beating wave criterion by investigating the beat order n.

Poincaré sections obtained from the analytical solution to Eq. (2.6), as well as numeri-

cal solution to Eq. (2.1) for n = 2 are shown in Fig. 2.6. These figures demonstrate that for

n as low as 2 the two-wave interaction is qualitatively similar to the single-wave interac-

tion, and only the particles above the ρ = ν −√ε threshold are stochastically accelerated.

Therefore, we conclude that a particle with an arbitrary small initial velocity can only be
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Figure 2.5: Poincaré section showing numerical solutions for a particle interacting with
two “almost” beating waves (ε = 10, ν1 = 24.3, ν2 = 25.35). Similarly to the non-beating
case, the particles with initial velocity below the threshold (dashed line) do not gain energy
from the waves. The beating wave acceleration mechanism is destroyed for small δν.

accelerated by two beating waves such that

ν1 − ν2 = 1.

Consequently, we limit our investigations of the BEW interaction to that condition.

2.6.2 Two Beating Waves

We now gauge how well the second-order perturbation analysis compares to the numerical

solutions. Figure 2.7 shows the Poincaré sections obtained by plotting the curves of con-

stant H from Eq. (2.6) (panel a) and through numerical integration of Eq. (2.3) (panel b)

for ε = 10, ν1 = 24.3, and ν2 = 25.3. The comparison indicates a good degree of agree-

ment between the two Poincaré sections. Even though the detailed structure of the regular

motion curves is not captured by the analytical solution, the latter does predict the position

of the lower elliptic point (E) as well as the hyperbolic point (H) rather well. On the other

27



a)
ε

=
10

,ν
1

=
24

.3
,ν

2
=

26
.3

b)
ε

=
20

,ν
1

=
34

.3
,ν

2
=

36
.3

Numerical

5
0

4
0

3
0

2
0

1
0 0

ρ

6
5

4
3

2
1

0
θ

5
0

4
0

3
0

2
0

1
0 0

ρ

6
5

4
3

2
1

0
θ

Analytical

θ

ρ

0
1

2
3

4
5

6
0

1
0

2
0

3
0

4
0

5
0

θ

ρ

0
1

2
3

4
5

6
0

1
0

2
0

3
0

4
0

5
0

Fi
gu

re
2.

6:
Po

in
ca

ré
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Figure 2.7: Poincaré section for a particle interacting with two beating waves. a) Analyt-
ical solution showing the existence of hyperbolic and elliptic points marked by H and E
respectively. b) Numerical solution also showing the critical points. ε = 10, ν1 = 24.3,
ν2 = 25.3.
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hand, our analytical approach breaks down in the stochastic region, as should be expected.

However, as described in Ref. [4], even in that region of phase space the overall ion motion

could be analytically approximated by the first-order orbits, for small ε.

We now see that the beating wave interaction with the low-energy particles can be di-

rectly associated with the presence of the elliptic point E in the regular acceleration region,

and its counterpart, the hyperbolic point H, at the junction with the stochastic region. It is

clear by tracing trajectories emanating from the hyperbolic point and those that surround

the elliptic point in Fig. 2.7a that these two critical points bound the region where the

low-energy ions do not experience the stochastic acceleration. Instead their trajectories cir-

culate around the elliptic critical point E or cover the full range of cyclotron phase angles

(0 ≤ θ ≤ 2π) while remaining below point H.

Another way of describing the bound region is to make a three-dimensional plot, as

shown in Fig. 2.10a. We see that the bound region is a “potential well”. The extent of

the well can be found by determining the position of the two critical points. We note

that both points lie at ϑ = π. Figure 2.11 shows the Hamiltonian determined from

Eqs. (2.6) and (2.7) as a function of ρ for ϑ = π, and illustrates that the location of the

elliptic and the hyperbolic points could be found by determining the local minimum and

the maximum of the Hamiltonian H using Eq. (2.6).

Therefore, for given values of ν and ε, the inequality

HE < H(ρ0, ϑ0) < HH , with ρ0 < ν −√ε (2.13)

defines the forbidden acceleration domain. Here HE and HH are the Hamiltonian values

for the elliptic (E) and the hyperbolic (H) points, and the subscript “0” refers to initial

conditions. By “forbidden acceleration domain” we mean the domain of initial conditions

for which an ion cannot reach the stochastic region of phase space. This restriction shows

that not all ions can be accelerated by the waves, even when the beating criterion (2.4) is
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satisfied. All other ion trajectories then lie in the allowed acceleration domain of phase

space. The ions in the allowed acceleration domain are affected by the waves strongly. The

forbidden and allowed acceleration regions are schematically illustrated in Fig. 3.1b

The “trapping” criterion in Eq. (2.13) given in terms of the Hamiltonian should be con-

trasted with the threshold criterion for interaction with a single wave, given by Eq. (2.8b).

It is clear that, unlike the single-wave case, an ion with initial velocity ρo below the “thresh-

old” can still be accelerated to high energies if the corresponding Hamiltonian is outside

the range described by Eq. (2.13)

The physical implication of Eq. (2.13) to a real plasma experiment is this: by selecting

the appropriate wave and plasma parameters we can limit the number of particles trapped

in the forbidden acceleration domain (HE < H(ρ0, ϑ0) < HH). Ions outside of this region

gain much higher energies through first regular (if their initial velocity is low) and then

stochastic acceleration. However, even the trapped particles can escape into the stochastic

domain when collisional effects are introduced. We will explore this aspect in the next

chapter.

2.6.3 ε Dependence

In Fig. 2.8 we show typical Poincaré sections obtained by numerical integration of Eq. (2.3)

with ν1 = 24.3 and ν2 = 25.3. The panels in this figure illustrate the effect of increasing

wave amplitude. For low perturbation strength (low values of ε) the regular region extends

to the values of ρ approximately predicted by the single-wave threshold, which is given by

Eq. (2.10). However, as ε is increased the stochastic acceleration region extends to ever

lower values of ρ, and the regular acceleration region quickly shrinks to the vicinity of

the elliptic critical point. Notice that the location of the elliptic point E does not change.

Eventually, as the wave amplitude is raised above the values shown on Fig. 2.8, stochastic

motion dominates the Poincaré section, and the forbidden acceleration region disappears

completely.
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In other words, as the wave amplitude increases more ions are accelerated by the beating

waves, which makes sense physically. As we will demonstrate in Chapter 3 the maximal

energy obtained by a system of particles, i.e. temperature, is a strong function of the wave

amplitude.

2.6.4 ν Dependence

The wave frequency ν plays a more complicated role in the particle dynamics than the

wave amplitude ε. In Fig. 2.9 we demonstrate the changes in the Poincaré section as ν is

varied from 14.3 to 44.3 (for ε = 10). The four panels in the figure show that the entire

phase space scales with ν. For example, as will be shown in the next section, the vertical

coordinate of the hyperbolic and elliptic points varies as ν and ν/2 respectively.

The extent of the regular acceleration region also scales with ν. However, this depen-

dence is not as straightforward as might seem initially. For instance, panel a) in Fig. 2.9

shows that the stochastic domain reaches below the elliptic point for ν1,2 = 14.3, 15.3 while

the regular region in Fig. 2.9d (ν1,2 = 44.3, 45.3) reaches up to the SEW velocity threshold

value of ν−√ε. This behavior can be understood from Eq. (2.9), which describes the wave

amplitude threshold. Computations of Eq. (2.9) for the four panels in Fig. 2.9 show that for

ε/ν2/3 < 1 the regular acceleration region extends up to the single-wave threshold, while

for ε/ν2/3 > 1 the stochastic acceleration region reaches to lower values of ρ. The topic

of the ion heating dependance on the wave frequency will be further picked up in the next

chapter.

2.7 Critical Points

To define the domains of allowed and forbidden acceleration described by Eq. (2.13) we

need to find the location of the critical points E and H. We now seek analytical expressions

for both. Since both points are extrema of the Hamiltonian, given by Eq. (2.6), their loca-
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tions can be found by setting the time derivative of ρ and ϑ to zero simultaneously [31, 45].

Utilizing the Hamilton’s equations of motion in conjunction with Eqs. (2.6) and (2.7) we

get

ρ̇ = −∂H

∂ϑ
= ε{νiJνi

(ρ) sin(νiϑ) (2.14)

+ νjJνj
(ρ) sin(νjϑ)}

+ ε2(νi − νj)S
νi,νj

6 (ρ) sin[(νj − νi)ϑ] = 0,

ϑ̇ =
∂H

∂ρ
= ε{J ′νi

(ρ) cos(νjϑ) (2.15)

+ J ′νj
(ρ) cos(νjϑ)}

+ ε2{S ′νi
1 (ρ) + S

′νj

1 (ρ)

+ S
′νi,νj

6 (ρ) cos[(νi − νj)ϑ]} = 0.

When both wave frequencies are off-resonance (νi, νj 6= integer), the equations above sim-

plify because the first-order terms are absent (see Appendix C), and we can obtain the
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position of critical points analytically. For integer values of ν the position of the elliptic

point can also be computed with these equations.

Before we proceed to evaluate the positions of critical points we need to simplify the

expression for the Hamiltonian. For ν 6= integer, the Sνi
1 (ρ) term in Eq. (2.7) could be

simplified to an algebraic expression containing only a few Bessel functions of the first

kind [33],

Sνi
1 (ρ) =

π

8 sin νiπ
[Jνi+1(ρ)J−(νi+1)(ρ)

− Jνi−1(ρ)J−(νi−1)(ρ)]. (2.16)

As a result of this simplification we can reduce the S
νi,νj

6 (ρ) term down to

S
νi,νj

6 (ρ) =
ρ

νi

Sνi
1 (ρ) +

ρ

νj

S
νj

1 (ρ). (2.17)

The details of this derivation are given in Appendix D. We can therefore express the Hamil-

tonian given by Eq. (2.6) in terms of Sνi
1 (ρ) only,

H = ε2

{
(1 +

ρ

νi

cos[νi − νj]ϑ)Sνi
1 (ρ)

+ (1 +
ρ

νj

cos[νi − νj]ϑ)S
νj

1 (ρ)

}
. (2.18)

As we will show later, our analysis breaks down for small values of ν. Consequently we

take νi À 1, and remembering that n = 1, we approximate ρ/νi ∼ ρ/νj . Dropping the

subscripts in Sνi
1 (ρ) we have

H = ε2

[
1 +

ρ

νi

cos(νi − νj)ϑ

]
×

[
Sνi(ρ) + Sνj(ρ)

]
. (2.19)

Finally, we substitute Eq. (2.16) for each of the Sνi
1 (ρ) functions. Expressing everything in
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terms of νi we get

H =
ε2π

8 sin νπ

(
1 +

ρ

ν
cos ϑ

)
(2.20)

[
− Jν−1(ρ)J−(ν−1)(ρ) + Jν(ρ)J−ν(ρ)

+ Jν+1(ρ)J−(ν+1)(ρ)− Jν+2(ρ)J−(ν+2)(ρ)

]
,

where we have replaced νi with ν.

This simplified expression allows us to calculate the position of points E and H. From

Eq. (2.14) (as well as from Fig. 2.7) we see that both critical points lie at ϑ = π. This

reduces Eqs. (2.14) and (2.15) to one equation

∂

∂ρ

{
(1− ρ

ν
)L(ρ)

}
= 0, (2.21)

where

L(ρ, ν) = −Jν−1(ρ)J−(ν−1)(ρ) + Jν(ρ)J−ν(ρ)

+ Jν+1(ρ)J−(ν+1)(ρ)− Jν+2(ρ)J−(ν+2)(ρ).

From Eq. (2.21) we can express ρ as a function of L(ρ) and L′(ρ), where prime denotes the

derivative with respect to ρ, and arrange the resulting expression as

ρ

ν
= 1− 1

ν

L(ρ, ν)

L′(ρ, ν)
, (2.22)

or

F (ρ, ν) ≡ 1− ρ

ν
− 1

ν

L(ρ, ν)

L′(ρ, ν)
= 0. (2.23)

The first and second roots of Eq. (2.23), ρE and ρH , for a given value of ν, correspond to
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the locations of the elliptic and hyperbolic points respectively.

The solution to Eq. (2.15) is plotted as a function of ρ/ν for ν ∈ [55.001, 55.999]

in Fig. 2.12. It is now important to discuss the behavior of these solutions. As we dis-

cussed above, we are only considering the cases with ν 6= integer. Unfortunately, due to

the asymptotic behavior of the Bessel function near the “turning point” [46], defined as

ρtp =
√

ν(ν + 1), the solution approaches different limits as ν gets close to an integer

from different sides. Therefore, no simple analytical expression could be obtained for the

position of the hyperbolic point. Instead, Fig. 2.13 shows a range of solutions for the lo-

cation of this point. On the other hand, the elliptic point is very well defined. It can be

seen that for sufficiently large values of ν the location of the elliptic point, according to our

second-order perturbation analysis is at

ρE ' ν

2
, ϑE = π. (2.24)

Although no simple expression could be found for the location of the hyperbolic point,

we see from Fig. 2.13 that its location asymptotes (at large values of ν) to a value of

ρ/ν ∼ (0.8− 1.0), therefore we may approximate

ρH ' 0.9ν, ϑH = π. (2.25)

It is also important to mention that because of the asymptotic behavior of the Bessel

functions, the elliptic and hyperbolic points could not always be found for small values of

ν. For these cases while the expression for the Hamiltonian, Eq. (2.20), is still valid, our

analysis of the allowed and forbidden acceleration domains does not apply.

Another limitation is placed on our analysis by its independence on ε in locating the

critical points, as seen from Eq. (2.21). Extensive (ε = 5 − 100, ν = 10 − 50) numerical

exploration of the weak dependence of the critical point locations on ε suggests the follow-
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Figure 2.13: Solution to Eq. (2.22) as a function of ν. The range of positions for point H
(gray region) increases for small ν. In addition the elliptic and hyperbolic points, E and H,
could not always be found for ν < 9.
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ing corrections to expressions (2.24) and (2.25), which are reminiscent of the ε dependence

in the single wave interaction [28] given by Eq. (2.10),

ρE ' (ν −√ε)

2
, ϑE = π, (2.26a)

ρH ' ν −√ε, ϑH = π. (2.26b)

The physical interpretation and significance of these two points may be understood as

follows. As was discussed earlier, the difference in the Hamiltonian of the two points can

be thought of as an “energy barrier”, which an ion must overcome to be accelerated by the

wave. Another way to understand the importance of the two critical points is to realize that

at the elliptic point the energy exchange between the ion and the waves is at the minimum.

This is equivalent to a stable equilibrium for a pendulum. Any small perturbation from that

equilibrium will only cause small oscillations about it. This implies that in the immediate

neighborhood of point E the ion energy cannot be altered sufficiently to push the ion into the

stochastic region, as seen in Fig. 2.10. On the other hand, the hyperbolic point corresponds

to the unstable equilibrium of the pendulum and any small perturbation from it will cause

significant changes in the ion motion, i.e. escape into the stochastic region and subsequent

vigorous acceleration.

2.8 Particle Motion in the Regular Acceleration Region

Numerical solutions of Eq. (2.5) for various wave frequencies indicate that particle ac-

celeration in the regular acceleration region is approximately constant, as shown in

Fig. 2.14a and b. The solid curve, ρ(τ), in Fig. 2.14a was obtained with the following

initial conditions for the particle velocity and phase angle: (ρ0, θ0) = (1, 0). These initial

conditions place the particle in the lower left corner of the Poincaré section at τ = 0, as can

be seen from Fig. 2.3c and d as well as Fig. 2.15. Trajectories in the regular acceleration

region of the BEW Poincaré section move clockwise around the elliptic point. In other
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words, trajectories to the left of the elliptic point result in net particle acceleration, while

those to the right of the elliptic point result in net particle deceleration. We can thus see

that the particle acceleration in the regular acceleration region, shown in Fig. 2.14a and b,

depends, in part, on the choice of the initial conditions.

Using Eq. (2.14), with the simplifications made in Eq. (2.20), it is possible to derive

analytic expression for the particle acceleration in the regular acceleration region. The

results of this derivation are also useful for the interpretation of the multi-particle numerical

simulations undertaken in the next chapter. Specifically, we are interested in determining

the dependence of this acceleration on the wave amplitude, ε, and frequency, ν.

Since the regular acceleration region lies at ρ < ν, we can derive the analytic expression

for dρ/dτ by performing asymptotic expansion of the Bessel functions in Eq. (2.20) in

terms of the Gamma functions [47],

Jν(ρ) =
1

Γ(ν + 1)

(
ρ

2

)ν

, where Γ(ν) =

∫ ∞

0

tν−1e−tdt for ν À ρ > 0. (2.27)

Using these identities we express function L(ρ, ν) (see Eq. (2.21)) as,

L(ν) = − 1

Γ(ν)Γ(−ν + 2)
+

1

Γ(ν + 1)Γ(−ν + 1)

+
1

Γ(ν + 2)Γ(−ν)
− 1

Γ(ν + 3)Γ(−ν − 1)
.

We can further simplify these expressions using the following identities,

Γ(1 + ν) = νΓ(ν)

Γ(1− ν) = −νΓ(−ν) =
π

Γ(ν) sin πν
=

πν

Γ(1 + ν) sin πν
.

Notice that now L(ν) is a function of ν only. Finally we are able to write down the follow-
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ing expression for the particle acceleration

dρ

dτ
= −∂H

∂ϑ
=

ρ sin ϑ

ν

ε2π

8 sin πν
L(ν), (2.28)

and after some algebraic manipulations we obtain the following simplification,

dρ

dτ
= ε2ρ sin ϑ

[
2ν2 + 2ν − 1

4ν2(ν2 − 1)(ν + 2)

]
, (2.29)

which for ν >> 1 becomes

dρ

dτ
=

1

2
ρ
ε2

ν3
sin ϑ, (2.30)

While it may seem from the equation above that the overall acceleration is zero (because

the average of “sin ϑ” over one period is zero), we now show that this is not the case. To do

that we investigate the trajectory of a particle interacting with beating electrostatic waves

under the following conditions: ε = 10, ν1 = 24.3, ν2 = 25.3, and (ρ0, ϑ0) = (1, 0).

The non-integer wave frequencies have been chosen for the investigation since this was

one of the restrictions placed on our analysis (see previous section). However, as we will

demonstrate shortly, general dependencies that we will derive in this section are also valid

for integer frequencies, as well.

Time evolution of the particle velocity, ρ, for 0 < τ < 1500π is shown in Fig. 2.14a.

This trajectory was obtained by solving numerically Eq. (2.5) with the conditions given

above. Derivative of this trajectory with respect to τ is marked appropriately as dρ/dτ , and

is approximately constant, as expected. We check validity of Eq. (2.30) by substituting into

the RHS of that expression values of ρ (and corresponding values of ϑ) for this trajectory.

The dot-dashed curve in Fig. 2.14a shows that Eq. (2.30) also predicts an approximately

constant acceleration over most of the region. However, the absolute value of this accel-

eration is about an order of magnitude above that predicted by the numerical simulation.
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Figure 2.14: a) Particle acceleration determined from numerical solution to Eq. (2.5) is
matched well by the analytic solution to Eq. (2.20). b) Velocity evolution for a single
particle interacting with beating waves of various frequencies and ε = 10. For all cases the
initial conditions were the same: (ρ0, ϑ0)=(1,0). c) The RHS of the expression (2.31) (–) is
in good agreement with the slopes determined from numerically differentiating the curves
in b) for the same ε (◦).
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This difference is the result of all the approximations made in deriving Eq. (2.20) from

Eq. (2.30). Upon substituting the corresponding values of ρ and ϑ into the expression for

dρ/dτ evaluated with Eq. (2.20), we obtain a much better agreement, as demonstrated by

the curve marked as “Eq. (2.20)” in Fig. 2.14a.

However, the point of this exercise was not to obtain the exact analytic expression for

dρ/dτ , but rather to demonstrate that Eq. (2.30) approximates the overall particle behavior.

Once again, we are specifically interested in the ε and ν dependencies, and thus we may

conclude that

dρ

dτ
∼ 1

2

ε2

ν3
. (2.31)

Figure 2.14c shows the RHS of the expression (2.31) (solid line) together with the slopes

measured from numerical simulations, similar to the one shown in Fig. 2.14a, but with

various integer wave frequencies. These trajectories are shown in Fig. 2.14b. The wave

amplitude as well as the particle initial conditions are the same as those used in Fig. 2.14a.

For the specific initial conditions used in these simulations, quantitative agreement with

the RHS of (2.31) is good; however, we must note that while the scaling implicit in (2.31)

applies to all values of ν and ε, the close agreement shown in Fig. 2.14c may not hold for

a different set of initial parameters.

2.9 Two Beating On-resonance Waves

While we have focused on the off-resonance cases, a few words on the on-resonance cases

should also be added. When we choose νi and νj to be both integers, the overall behavior

becomes much more complicated and no simple analytical expression for the positions of

critical points can be found, as was the case in the previous section. Figure 2.15 shows a

typical on-resonance example with ε = 10, νi = 24, and νj = 25. One major difference is

the location of the hyperbolic point. There are two hyperbolic points in the regular accel-
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Figure 2.15: Poincaré section for a particle interacting with two beating on-resonance
waves showing a more complicated dynamics than that of the off-resonance case shown
in Fig. 2.7. (ε = 10, νi = 24, νj = 25). a-1) and a-2) analytical solution. b) numerical
solution.
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eration region in the on-resonance case, and these points do not lie at θ = π. Nevertheless,

we could still find their positions by solving Eqs. (2.14) and (2.15) numerically.

The elliptic point remains at θ = π. Therefore its location could be obtained from

the calculations identical to those done in the off-resonance case. The calculations are

simplified because the first-order terms in Eqs. (2.14) and (2.15) drop out for θ = π, as in

the off-resonance case. Therefore, Eq. (2.26)a is also valid for the on-resonance cases.

Figure 2.15 shows that the analytical solution exhibits a complicated chain of critical

points at large values of ρ. This partly illustrates why the analytical treatment of the on-

resonance case is more challenging. However, we note that the two hyperbolic points in

the regular acceleration region even in this case are very close to the hyperbolic point in the

similar off-resonance case, and thus their position may be approximated by Eq. (2.26)b.

Indeed, by studying numerically solutions to Eq. (2.5) for both on-resonance and off-

resonance cases we conclude that the locations of the elliptic and hyperbolic points for

both cases could be well approximated by Eqs. (2.26).

2.10 Chapter Summary

The beating criterion (ω1 − ω2 = nωc) proposed by Benisti et al. [3, 4] allows magnetized

ions to be accelerated by a pair of beating electrostatic waves. The importance of this

mechanism stems from its ability to accelerate ions with arbitrarily low initial velocity. It

has become clear however, (see Fig. 2.7) that this criterion is not sufficient for acceleration.

In order to better define the criteria for acceleration we investigated multiple ion tra-

jectories (multiple initial conditions) on the same Poincaré section. This analysis led to

the identification of critical points on the phase diagram. A vigorous ion acceleration now

can be explained in terms of the location of these points in the region of regular motion.

A second-order perturbation analysis of the equation of motion allowed us to derive the

criterion defining the allowed and forbidden acceleration regions in terms of the location
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of these points.

According to this analysis, for a pair of beating (ν1 − ν2 = 1) electrostatic waves

interacting nonlinearly with a magnetized ion, significant ion acceleration can occur as

long as the Hamiltonian of the system does not satisfy the following “trapping” criterion

H([ν −√ε]/2; π) < H(ρ0; ϑ0) < H(ν −√ε; π),

with ρ0 < ν −√ε, (2.32)

(which strictly applies when ν À 1). If the ion’s initial conditions do not satisfy the above

trapping criteria, the ion can be accelerated from arbitrarily low initial velocity through the

region of regular motion to the stochastic region where substantial acceleration can occur. It

is important to note that the trapping criterion is expressed in terms of the Hamiltonian and

not just the velocity (ρ0). Regular ion acceleration is a much slower process than stochastic

energization [48]. However, as the wave amplitude is increased, the region of stochastic

motion can extend down to low initial velocities.

The necessary (wave-beating) condition, stated in Eq. (2.4), along with the avoidance of

the trapping criterion, stated in Eq. (2.32), represent two necessary and sufficient conditions

for the beating-wave ion acceleration mechanism to occur.

While the above study offers insight into the fundamental problem of a single ion in-

teracting with two beating electrostatic waves, the relevance of the mechanism to practical

problems involving a real plasma rests on resolving the issues of: 1) the extension of the

study to collection of particles and the role of collisions and, 2) the wave propagation in a

real plasma. This first issue is the subject of the next chapter, while the discussion of the

second issue will be undertaken in Chapter 5.
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Chapter 3

Numerical Investigation

All models are wrong, but some are useful.

– George E. P. Box

This chapter presents a numerical model of ion heating by electrostatic waves that is based

on combining a Monte Carlo technique to describe Coulomb collisions between ions, and

solving a nonlinear 3-dimensional equation of ion motion between collisions. Using this

model we conduct a parametric study to investigate the effects of ion collisions on heating

effectiveness for both Single Electrostatic Wave (SEW) and Beating Electrostatic Waves

(BEW) heating mechanisms.

This chapter is organized as follows. Section 3.1 interprets the findings from the pre-

vious chapter in a context relevant to the numerical study. In Section 3.2 we present a

numerical model that describes the ion Coulomb collision dynamics using a Monte Carlo

technique and also tracks a large number of ions using a 3-dimensional equation of mo-

tion between collisions. Section 3.3 presents and discusses the results of our numerical

investigation, and in Section 3.4 we summarize the findings.
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3.1 Single Particle Model

As discussed in the previous chapter, the motion of an ion interacting with electrostatic

waves that propagate perpendicularly to a constant magnetic field is governed by the fol-

lowing equation,

d2x

dt2
+ ω2

cix =
q

m

∑
j

Ej sin(k⊥jx− ωjt + ϕj). (3.1)

Furthermore, Benisti et al. have found that ions can be accelerated from an arbitrary low

velocity by a pair of beating electrostatic waves, such that [3]

ω2 − ω1 = nωci. (3.2)

This was a significant finding, as discussed in Chapter 2, since the non-beating waves can

only accelerate ions that are already moving above a certain velocity. We have also found,

in Chapter 2, that the beating criterion should be augmented with a restriction on the particle

energy – Hamiltonian. For that we defined the “forbidden acceleration region”

HH < H(ρ0; ϑ0) < HE, with ρ0 < ν −√ε, (3.3)

where the subscript “0” denotes initial conditions, and HH and HE are the values of the

Hamiltonian evaluated at the hyperbolic and elliptic points, as shown schematically in

Fig. 3.1b. As long as the two waves satisfy Eq. (3.2), ions that do not lie in the forbidden

acceleration region will be accelerated by the beating waves. This statement constitutes the

necessary and sufficient condition for ion acceleration by the BEW.

The following graphical illustration can help to explain the formidable mathematics

governing the SEW and BEW acceleration mechanisms and the necessary and sufficient

conditions for the acceleration to occur. Figure 3.1 shows all possible acceleration pro-

cesses for the SEW (Fig. 3.1a) and BEW (Fig. 3.1b) schemes.
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Figure 3.1: Poincaré section schematics. The figure shows typical trajectories for various
initial conditions of an ion interacting with: a) a single electrostatic wave (SEW), b) beating
electrostatic waves (BEW).
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For the SEW case (Fig. 3.1a) the Poincaré section consists of two regions: the “forbid-

den acceleration region” (black) and “stochastic acceleration region” (light grey). Particles

initially in one region cannot move into the other unless scattered by collisions with other

particles, as will be discussed later in this chapter. A particle in the forbidden acceleration

region is not affected by the wave, and its trajectory remains circular in the xy space (a

particle gyrating in magnetic field). Since θ is the particle gyro-angle, this trajectory is

represented by a horizontal line on the Poincaré section, as illustrated by the trajectories of

particles 2 and 3 in Fig. 3.1a. On the other hand, a particle in the stochastic acceleration re-

gion is vigorously accelerated, as shown schematically by particle 1. Since this is the only

region on the Poincaré section where significant ion acceleration is possible, the stochastic

acceleration region can also be generalized as the “allowed acceleration region”.

The BEW interaction case is shown in Fig. 3.1b. The allowed acceleration region now

consists of the “regular acceleration region” (dark grey) and “stochastic acceleration re-

gion” (light grey). For small values of ε the border between the two regions is roughly

predicted by the single-wave threshold (ρ = ν − √ε). A particle in the regular accelera-

tion region (e.g. particle 3 in Fig. 3.1b) is accelerated by beating electrostatic waves into

the stochastic acceleration region. While the regular acceleration is slower than stochas-

tic acceleration, it allows the particles with small initial velocities to reach the stochastic

acceleration region, where they are further accelerated to very high velocities.

Thus, the salient differences between the SEW and BEW acceleration mechanisms can

be understood by following trajectories of the three particles in Fig. 3.1. Particle 1 in both

panels of Fig. 3.1 is in the stochastic acceleration region, and undergoes vigorous accel-

eration in both cases. Particle 2 with initial energy below the SEW resonance threshold

(ρ = ν − √ε) lies in the forbidden acceleration region for both SEW and BEW acceler-

ation. It is affected by beating electrostatic waves only slightly, and is never allowed to

reach the stochastic acceleration region. On the other hand, while particle 3 is also below

the SEW threshold, it is in the allowed acceleration region for the BEW interaction. The
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particle remains unaffected by the single electrostatic wave, Fig. 3.1a, but is accelerated

by the beating electrostatic waves, Fig. 3.1b. It is important to note that the initial kinetic

energy of particle 3 is less than that of particle 2 (ρ3 < ρ2). This point demonstrates the

importance of the particle gyrophase with respect to the beating waves rather than its ve-

locity, or more accurately, the importance of the Hamiltonian, which includes the phase

information, over that of the energy.

3.2 Including Collisions

Collisions drastically alter the picture described in the previous section. Without collisions

an ion inside the forbidden acceleration region (e.g. particle 2 in Fig. 3.1b) cannot be accel-

erated by the beating electrostatic waves. However, a collision can instantaneously change

the ion trajectory and place it outside the forbidden acceleration region. Note that accord-

ing to Fig. 3.1b the change in the phase angle θ is as important as the change in velocity.

Thus for example, an ion in the forbidden acceleration region may loose momentum during

a collision, move to the regular acceleration region, and, if its phase angle is favorable, con-

sequently be accelerated by the beating electrostatic waves into the stochastic acceleration

region.

Since collisions between the like particles are easier to simulate, in this chapter we

consider ion-ion collisions only. Coulomb ion collisions are of interest since the main

focus of this dissertation is the stochastic ion heating and this type of collisions thermalizes

the heavy species. Effects of the ion-neutral collisions on the wave propagation and ion

heating will be discussed later in Chapter 5.

To introduce collisions into our numerical model we follow the classical work of Tak-

izuka and Abe [49]. We model the Coulomb collisions as an accumulation of small-angle

binary collisions. We also assume that on a sufficiently small time scale we can uncouple

these binary collisions from the particle motion. Thus, our algorithm consists of two parts.
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We move each particle between collisions according to the equation of motion prescribed

by the single-particle collisionless model, presented in the previous chapter. We then use

the Monte Carlo approach to determine randomly the collision partners and the scattering

angles for each binary collision.

3.2.1 Overall Implementation

1. We first choose a time step ∆t much smaller than the ion-ion relaxation time calcu-

lated for the initial ion temperature. Since the ion temperature increases with time,

and the Coulomb collision frequency is proportional to T
−3/2
i , the time step is assured

to be smaller than the relaxation time throughout the simulation.

2. Using a 4th order Runge-Kutta scheme we then follow each particle in our simulation

for ∆t seconds according to the 3-dimensional equation of motion for a single ion,

given below by the set of Eqs. (3.10).

3. Next we randomly choose a collision partner for each ion.

4. Using the Monte Carlo method described in Section 3.2.2 we then determine the

velocity increments for each colliding pair. The new velocities are fed back into the

Runge-Kutta solver.

5. After each binary collision, we store the value of the scattering angle Ψ for each

particle. We assume that whenever
∑

sin2 Ψ ≥ 1 the particle has undergone one

ion-ion Coulomb collision. Here the summation is over successive collisions for a

given particle. This evaluation is consistent with the classical Coulomb collision

frequency definition given by Mitchner and Kruger [50].
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3.2.2 Momentum Exchange During Collisions

We model Coulomb collisions between ions as a sum of small angle binary elastic scattering

events [49]. Such collisions preserve energy and momentum.

The relative velocity vector u = (ux, uy, uz) for a colliding pair of particles is

u = va − vb, (3.4)

where va and vb are the velocities of the two colliding ions in the laboratory frame. The

post-collision relative velocity uf is

uf = ui + ∆u, (3.5)

where ui is the relative velocity right before the collision and ∆u is the change in the rela-

tive velocity caused by the collision. The change in the relative velocity due to a scattering

event can be derived from the conservation principles, and is given by [49],

∆ux = (ux/u⊥)uz sin Ψ cos Φ− (uy/u⊥)u sin Ψ sin Φ

− ux(1− cos Ψ), (3.6a)

∆uy = (uy/u⊥)uz sin Ψ cos Φ + (ux/u⊥)u sin Ψ sin Φ

− uy(1− cos Ψ), (3.6b)

∆uz = −u⊥ sin Ψ cos Φ− ux(1− cos Ψ), (3.6c)

where u2
⊥ = u2

x + u2
y and u2 = u2

⊥ + u2
z. Here the perpendicular and parallel directions are

defined relative to the magnetic field (ẑ axis). Angle Φ is chosen homogeneously randomly
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Figure 3.2: Illustration of the particle cross-field diffusion due to collisions. A particle is
gyrating around the center of axis in the xy coordinate system before a collision. Right
after the collision the particle gyrates about the center of axis in the x′y′ coordinate system.
The new position of the particle (x′, y′) and its phase angle θ′ are used instead of (x, y) in
the numerical simulation for consistency.

from 0 to 2π, and angle Ψ can be found from

sin Ψ =
2δ

1 + δ2
, (3.7a)

1− cos Ψ =
2δ2

1 + δ2
, (3.7b)

where δ = tan(Ψ/2) is a random number chosen with the Gaussian distribution centered

around zero and having the following variance 〈δ2〉:

〈δ2〉 = ∆t
q4neλ

πε2
0m

2
i ‖ui‖3

, (3.8)

where q and m are the charge and the mass of the ion, ne is the particle number density, λ

is the Coulomb logarithm, ε0 is the permittivity of free space, ‖ui‖ is the relative speed of

the two colliding ions before the collision, and ∆t is the time step [49].

Because the two colliding particles have the same mass, the post-collision velocity is
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found from the following simple relations

vf
a = vi

a +
1

2
∆u, (3.9a)

vf
b = vi

b +
1

2
∆u. (3.9b)

As was stated earlier, elastic binary collisions occur on a significantly smaller time

scale than the particle motion, and consequently the position of the colliding particles is

not altered during the collision. Presence of a magnetic field however, introduces some dif-

ficulty in tracking the particle trajectory self-consistently. Consider, for example, a particle

right before a collision. Equation (3.1) describes the gyromotion of this particle around the

origin of the xy coordinate system, as shown in Fig. 3.2. At a moment right after the colli-

sion the velocity vector of this particle has instantaneously changed to vf
a . Essentially, the

particle has jumped to a different magnetic field line. To track the trajectory consistently

with the new velocity we now need to reorient the coordinate system to x′y′, as shown in

Fig. 3.2. It can be demonstrated that

x′ = −(1/ωci)vf
y ,

y′ = (1/ωci)vf
x,

z′ = z. (3.10)

These new coordinates (x′, y′, z′), rather than the pre-collision (x, y, z) coordinates, to-

gether with vf , obtained from Eq. (3.9), are fed back to the Runge-Kutta solver as the new

initial conditions.

3.2.3 Moving the Particles

Starting from the Lorentz force equation,

F = mr̈ = q(E + v× B), (3.11)
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we can derive the equation of motion for a single particle in three dimensions. In our

analysis, the magnetic field is constant, B = Bẑ, and the electric field arises from the

propagating electrostatic waves, as shown in Fig. 2.1. Therefore, we can rewrite Eq. (3.11)

as

ẍ = ωciẏ +
q

mi

E
∑

i

sin(kix− ωit), (3.12a)

ÿ = −ωciẋ, (3.12b)

z̈ = 0, (3.12c)

where ẍ, ÿ, and z̈ are the second derivatives with respect to time t, and the other variables

are the same as those appearing in Eq. (2.1). Equation (3.12) is equivalent to Eq. (2.1) but is

written in the form that can be readily programmed into a 4th order Runge-Kutta numerical

solver.

3.3 Simulations

We now use the model described in the previous section to conduct a parametric study of

ion heating by two beating electrostatic waves. For this study, unless stated otherwise, we

assume that the initial ion temperature is 0.1 eV. This is chosen to be similar to the values

observed in the BWX experiment. In addition, we set k1 = k2 = 20 cm−1, and B = 0.2

Tesla. These numbers are consistent with the experiments reported by Skiff et al. [17].

During the simulation runs we follow trajectories of 1000 particles. A larger number of

particles requires excessive computational time and a smaller number might not give a

good statistical representation of the interaction.

We first visualize the results of the simulations using Poincaré sections, and compare

and contrast these results with the schematic illustrated in Fig. 3.1b. Next we demonstrate

the difference between the SEW and BEW ion heating schemes with an example (ε =
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10, ν1 = 24.3, ν2 = 25.3, κi = 1), and show how the ion-ion collisions influence the

kinetic energy evolution. By varying plasma the density, ne, we then show that the ion

Coulomb collisions enhance the effectiveness of ion heating by increasing the ion heating

rate and the maximal energy obtained by the system of particles. Finally, we investigate

the ion energy evolution as a function of the electric field amplitude and wave frequency.

3.3.1 Poincaré Sections

Figure 3.3 shows an example that follows the evolution of 1000 collisionless particles in-

teracting with beating electrostatic waves (ε = 10, ν1 = 24.3, ν2 = 25.3). Initially we dis-

tribute all particles homogeneously over some region of the phase space (ρ . 20), as shown

by the first panel in Fig. 3.3. We obtain this distribution by creating the 3-dimensional

Maxwellian ion velocity distribution profile corresponding to Ti = 0.1 eV. Then we nor-

malize the perpendicular velocity of each particle in accordance with the rules given below

Eq. (2.3) to get ρ. Finally, for each particle we calculate the phase angle θ = tan−1 vy/vx.

Stochastic motion is observed whenever the ions reach the stochastic acceleration re-

gion (ρ > 20). Once that happens, an ion can be accelerated vigorously to a very high

velocity corresponding to ρ ∼ 80 − 100. Figure 3.3 shows the time evolution of the

Poincaré section for the BEW collisionless scheme. In that figure only the particles with

initial conditions laying outside the forbidden acceleration region are accelerated. Points

corresponding to the unaccelerated particles form a mount-like structure, seen in the last

two panels of Fig. 3.3. The structure corresponds to the forbidden acceleration region

shown in Fig. 3.1b.

Figure 3.4 follows evolution of 1000 particles with the same initial distribution as in

Fig. 3.3, but now the particles are allowed to collide with each other. This simulation cor-

responds to the plasma density ne = 1012 cm−3. The evolution of the particle distribution

is fundamentally different from that of the collisionless case, illustrated in Fig. 3.3. Many

more ions reach the high values of ρ than during the collisionless interaction. This happens
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because ions originally in the forbidden acceleration region can now be accelerated by the

waves. This can happen by two different routes.

An ion in the forbidden acceleration region can be knocked directly into the stochas-

tic acceleration region, where it will then undergo vigorous acceleration by the beating

waves. Another route involves an ion knocked into the regular acceleration region, where it

will then be slowly accelerated into the stochastic acceleration region by the beating elec-

trostatic waves following a trajectory similar to particle 3 in Fig. 3.1b. It is important to

point out that, while the colliding partner may loose its energy during such a collision, that

particle does not necessarily end up in the forbidden acceleration region. Thus, after the

collision both colliding partners may be accelerated by the beating waves.

Ion Coulomb collisions enhance stochastic ion heating because collisions allow all ions

(with finite probability) to eventually be accelerated by the beating electrostatic waves.

That is what makes the BEW acceleration mechanism attractive for the ion heating in warm

collisional plasmas, such as used for space plasma propulsion.

3.3.2 Velocity Evolution

Comparison of numerical simulation results gives insights into the effectiveness of the wave

heating mechanism. We define the ion heating effectiveness by the following two indices:

1) the ion heating rate and, 2) the maximum energy attained by the system of ions (or max-

imum temperature, when the distribution is Maxwellian). Both indices may be important

for the design of a practical device based on the stochastic ion heating mechanism.

Keeping these two indices in mind we now investigate the evolution of the kinetic en-

ergy of the entire system consisting of 1000 particles as a function of various parameters.

Figure 3.5 compares the BEW and SEW heating mechanisms for both collisionless and

collisional cases. Each curve was obtained by averaging the perpendicular kinetic energy

over all particles, and then normalizing vave to obtain ρave. In that figure the dashed curves

correspond to the collisionless cases while the solid curves represent simulations with the
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Figure 3.5: Perpendicular velocity evolution for 1000 particles interacting with beating
electrostatic waves with ε = 10, ν1 = 24.3, ν2 = 25.3. For comparison we also show
the evolution for the single electrostatic wave interaction with ε = 10, ν = 24.3. The
collisional case corresponds to plasma density ne = 1012 cm−3. Initial ion temperature is
Ti = 0.1 eV.

plasma density equivalent to ne = 1012 cm−3. The initial ion distribution used to obtain

all curves in Fig. 3.5 was the same as that shown in Figs. 3.3 and 3.4, so that most ions

lie below the threshold for the SEW heating. Additionally, wave amplitude in the SEW

simulation (ε = 20) was twice that of each wave in the BEW simulation (ε = 10). This

condition ensures that the total wave energy is equal in both cases. The curves in Fig. 3.5

show two stages in the velocity evolution: 1) the initial energy increase followed by 2)

the equilibration stage, where the system energy approaches a plateau. The curve for the

collisionless SEW mechanism is flat because we chose the initial particle distribution such

that most of the particles are below the single-wave acceleration threshold, and thus do not

interact with the single electrostatic wave.

Therefore, Fig. 3.5 shows that beating electrostatic wave can produce heating in a col-

lisionless plasma because the waves can accelerate ions, whose velocities are below the

single-wave threshold, as discussed in the previous chapter. Our simulations also show

(see Figs. 3.3 and 3.4) that the initial velocity rise is caused by the ions funneling to the
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stochastic region. In the case of the beating electrostatic waves interacting with a colli-

sionless plasma, a fraction of the ions below the single-wave threshold reach the stochastic

acceleration region. These ions initially reside in the allowed acceleration region and fol-

low trajectories similar to that of the particle 3 in Fig. 3.1b.

As mentioned earlier, collisions provide another mechanism by which an ion, even in

the forbidden acceleration region, can reach the stochastic acceleration region. Therefore,

the collisional BEW ion heating can result in even higher heating rate and maximal attained

energy than BEW heating in a collisionless plasma, as shown in Fig. 3.5. Our simulations

have also shown that with the help of collisions, a single electrostatic wave can heat the

ions whose initial velocities are below the single-wave threshold, whereas no heating was

possible in a collisionless plasma. Furthermore, for the chosen parameters in Fig. 3.5, the

SEW mechanism resulted in a greater energy increase than the BEW mechanism. The

SEW stochastic acceleration region, in this case, is more homogeneous than that for the

BEW acceleration mechanism. As will be shown shortly, the maximal energy attained

by the system of simulated particles is a function of the ratio between areas occupied by

the stochastic and forbidden acceleration regions on the Poincaré section. Therefore, the

higher effectiveness of the SEW heating mechanism can be explained, in this case, by the

topological differences between the stochastic acceleration regions of the two mechanisms.

However, as will be shown next, a different set of parameters may be found where the

effectiveness of the BEW heating mechanism is greater than that of the SEW mechanism.

Effectiveness of the two heating mechanisms depends on many parameters, such as

wave amplitude and frequency, initial ion temperature, and plasma density. Dependence

on the latter two can be better understood through investigations of Coulomb collision fre-

quency. Figure 3.6 shows curves for the BEW and SEW heating that qualitatively resemble

respective collisionless curves in Fig. 3.5. However, in Fig. 3.6 we simulate a collisional

plasma with initial ion temperature Ti = 3 eV, which is much higher than the initial ion

temperature used in Fig. 3.5. Additionally, plasma density, normalized amplitude, and fre-
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Figure 3.6: Perpendicular velocity evolution for 1000 particles interacting with BEW
(ε = 10, ν1 = 104.3, ν2 = 105.3) and SEW (ε = 100, ν = 104.3). Qualitatively, the
improvement in the BEW heating over that of the SEW in this picture is similar to the im-
provement shown for the collisionless simulation in Fig. 3.5. Other parameters used in this
simulations are: ne = 1011 cm−3, B = 0.1 T, Ti = 3 eV.

quencies of the waves in Fig. 3.6 were chosen to be ne = 1011 cm−3, ε = 100, ν1 = 104.3,

and ν2 = 105.3 respectively (ν = 104.3 for the SEW case). This particular choice of

plasma density and initial ion temperature ensures very low, yet finite, Coulomb collision

frequency. For the BEW case, this Coulomb collision frequency decreases even further

as ions gain energy from the waves, since the frequency is proportional to T
−3/2
i . Thus,

Fig. 3.6 demonstrates that even in dense plasmas the BEW heating scheme can be more

effective than the SEW scheme, as long as the initial ion temperature is high enough to

ensure low collision frequency.

It also should be noted that the wave frequency was chosen such that the bulk of the ion

velocity distribution function lies below the single-wave threshold, as is the case in Fig. 3.5.

If we were to chose a wave with a lower frequency, then the single-wave threshold would

also be lowered, in accordance with Eq. (2.10), and a larger portion of the ion velocity dis-

tribution function would fall into the stochastic acceleration region for both SEW and BEW

cases. Eventually, as wave frequency is lowered further, both mechanisms produce similar
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heating, because the bulk of the velocity distribution function lies in the stochastic accel-

eration region. This point is of particular importance, since in our experiments, presented

in Chapter 5, we seek conditions where the BEW heating mechanism can be distinguished

from the SEW mechanism. Finally, we also note that frequency ν ∼ 100 corresponds to

the lower-hybrid wave, which is electrostatic.

We can further investigate effects of Coulomb collision frequency on the BEW heating

scheme by varying plasma density. The results are shown in Fig. 3.7. Collisions have

beneficial effects on both stages of plasma heating, the initial heating and equilibration.

That trend can be explained by the ratio of the areas occupied by the forbidden and allowed

acceleration regions on the Poincaré section. As can be seen from Fig. 3.1b, the forbidden

acceleration region occupies a smaller area than the regular and stochastic acceleration

regions combined. Therefore, because collisions are a random process, the chances that a

particle is knocked out from the forbidden acceleration region are greater than the chances

that a particle will end up in that region as a result of a collision. It follows that the more
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frequent collisions are, the more particles are knocked out from the forbidden acceleration

region, and are then accelerated by the waves.

However, increasing the plasma density also means that an ion completes a lesser por-

tion of the gyro-orbit between the collisions. This reduces the degree to which the nonlinear

interaction affects the ion. At ne & 1012 cm−3 plasma is dominated by ion-ion collisions,

i.e. νii > ωci, where νii is the ion-ion collision frequency. Furthermore, at plasma density

ne & 1013 cm−3 the ion-ion collision frequency is greater that the wave frequency. This

means that above ne = 1013 cm−3 ion motion is dominated by collisions and maximal en-

ergy attained by the system of particles may plateau or even decrease with density. This is

evident by comparing the lines for ne = 1012 and 1013 cm−3 in Fig. 3.7.

We next investigate the heating effectiveness as a function of the wave amplitude ε.

Figure 2.8 shows that the stochastic acceleration region extends to the lower values of ρ

as ε increases. Figure 3.8 demonstrates the ε dependence for the BEW interaction with a

collisional (ne = 1012 cm−3) as well as collisionless plasma. The effectiveness of the BEW
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heating mechanism increases with increasing ε. This is an expected trend since ε is the

normalized wave amplitude. Because the energy carried by a wave is proportional to the

square of its amplitude, the wave with the higher ε will produce more heating. Furthermore,

collisionless heating is always less effective than the collisional heating. However, the dif-

ference between the collisionless and collisional cases decreases at larger wave amplitudes

because of the extended stochastic acceleration region.

Finally, we investigate the ion heating dependence on the wave frequency ν. Figure 3.9

shows this dependence for the collisional (ne = 1012 cm−3) plasma interacting with beating

electrostatic waves of various frequencies. As can be seen from that figure, the ion heating

effectiveness displays a complex monotonic dependence on the wave frequency. The curves

in the figure indicate that a wave with a smaller frequency heats ions faster, but to a lower

final energy than a wave with a higher frequency.

Dependence gets even more complicated for the collisionless cases, which are shown

in Fig. 3.10. While the heating rate decreases with the wave frequency, as in the collisional

case, the maximal (final) energy is a more complex function of ν. To understand this

complex dependence we need to take into account the initial particle velocity distribution

as well as the nonlinear nature of the velocity evolution dictated by the equation of motion.

Looking back at Fig. 3.1b, it is reasonable to assume that the normalized maximal

energy Emax(∼ ρ2
max) of the particles in all three regions of the Poincaré section scales

with the wave frequency ν (since the vertical extent (ρ axis) of the entire Poincaré section

scales with the location of the critical points of motion [51]) as well as the fraction of

particles in each region. Therefore, we can express the total energy of all the particles

on the Poincaré section as the sum of the total energy of each acceleration region. For

example, the energy of the particles in the forbidden acceleration region is proportional to

the square of the product ηfNr (the fraction of particles in that region) and (ν − √ε)/2,

which is the vertical coordinate of the elliptic point on the Poincaré section. Here Nr is the

initial fraction of particles below the single-wave threshold, given by Eq. (3.16), and ηf is
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the fraction of those particles in the forbidden acceleration region. The total energy is then,

ρ2
max = [cfηfNr]

2

+ [crηr{(1− ηf )Nr + Ns}]2

+ [cs(1− ηr){(1− ηf )Nr + Ns}]2, (3.13)

where Nr and Ns are the initial fractions of particles below and above the single-wave

threshold respectively, and the c’s are proportionality coefficients for each acceleration re-

gion. The final fraction of particles in the regular acceleration region is ηr – this is the

fraction of particles in the region when the system reaches equilibrium. These fractions, of

course, sum to unity,

ηfNr + ηr{(1− ηf )Nr + Ns}+ (1− ηr){(1− ηf )Nr + Ns}

= Nr + Ns = 1

Values of ηr and ηf cannot be calculated exactly and must be extracted from the nu-

merical simulations. Figure 3.11a shows ηr as a function of the wave frequency ν, and

its corresponding best fit curve. These values are computed as the fraction of particles in

the regular acceleration region at the end of the simulation. Figure 3.11b shows ηf , which

was calculated as the ratio of the area of the forbidden acceleration region to the total area

below the stochastic acceleration region, 2π(ν − √ε), on the Poincaré section. Since the

Hamiltonian is a complicated function of θ and ρ, the area of the forbidden acceleration

region was computed numerically. The best fit curves to these points are used in Eq. (3.13)

and are given by the following expressions

ηr = 0.18 + 0.19 tanh[0.22(ν − 13.56)] (3.14a)

ηf = 0.65− 0.49 exp[−0.10ν] (3.14b)

70



0.4
0.3
0.2
0.1
0.0

η r
302520151050

ν

0.8

0.6

0.4

0.2

η f

605040302010
ν

a)

b)

Figure 3.11: Fraction of particles below the single-wave threshold ηr and inside the forbid-
den acceleration region as functions of the normalized wave frequency ν. Points extracted
from numerical simulations (◦ and O) are given together with the best fits, which are given
by Eqs. 3.14.

For the forbidden acceleration region cf = (ν −√ε)/2, as was discussed before, since

the vertical extent of that region scales with the position of the elliptic point [51]. Similarly,

for the regular acceleration region cr = ν−√ε. The value of cs, which is the proportionality

coefficient for the stochastic acceleration region, can be calculated from the numerical

simulations by averaging the velocities of the particles in the stochastic acceleration region,

and fitting the resultant numbers as a function of ν, as shown in Fig. 3.12.

To simplify our analysis we also assume that the initial particle velocity distribution

is Maxwellian and is distributed randomly along the θ axis on the Poincaré section. This

assumption is verified by the measurements of the ambient ion velocity distribution in the

BWX experiment, as described in Chapter 5. The ion velocity distribution can be expressed

in terms of ρ as

f⊥(ρ) = 4π
(

mi

2πkbTi

)3/2(ωci

k⊥

)2
ρ2 ×

e
−(

ωci
k⊥

)2miρ
2/2kbTi , (3.15)

71



100

80

60

40

20

c s

3530252015105
ν

cs=1.7615ν+23.863

Figure 3.12: Proportionality coefficient cs for the average energy of the particles in the
stochastic acceleration region. Circles are computed by averaging ρ for the particles in the
stochastic acceleration region at the end of each simulation. The proportionality coefficient
is obtained through a linear least-squares fit to these points.

Where kb is the Boltzmann constant, k⊥ is the perpendicular wavenumber, Ti is the perpen-

dicular ion temperature, mi is the ion mass, and ωci is the ion cyclotron frequency. We then

can express the initial fraction of particles in each acceleration region as,

Nr =
∫ ν−√ε

0
4π

(
mi

2πkbTi

)3/2(ωci

k⊥

)3
ρ2 ×

e
−(

ωci
k⊥

)2miρ
2/2kbTidρ (3.16)

Ns =
∫∞

ν−√ε
4π

(
mi

2πkbTi

)3/2(ωci

k⊥

)3
ρ2 ×

e
−(

ωci
k⊥

)2miρ
2/2kbTidρ. (3.17)

Figure 3.13 shows the maximal velocity ρmax
ave as a function of the wave frequency ν.

The open circles were obtained from the numerical simulations for a collisionless plasma

described above (e.g. see Fig. 3.10), while the solid curve is the solution of Eq. (3.13).

The analytical equation predicts the right trends. For small values of ν (0–10) the max-

imal energy increases with the frequency because most of the particles already lie in the
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quency for the cases with collisionless BEW heating. The curve extracted from numerical
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open circles. It is in a good qualitative agreement with the solution to Eq. (3.13), shown
by solid line. Other parameters used to construct this figure are: ε = 10, ν1,2 = 24.3, 25.3,
Ti = 0.1 eV, and B = 0.2 T.

stochastic region, and are vigorously accelerated by the waves. For the intermediate values

of ν (10–20) a progressively larger particle fraction falls into the forbidden acceleration

region. Consequently the maximal energy also decreases. For yet higher values of ν (>20)

the fraction of particles in the forbidden region saturates and the maximal energy resumes

its growth.

The analytical model described allows one to choose the right wave frequency to max-

imize the heating effectiveness. According to Fig. 3.13, a wave with frequency slightly

above the ion cyclotron frequency, ν = ω/ωci ∼ 8, will result in the greatest amount of

ion heating by beating electrostatic waves. It should be noted, however, that Fig. 3.13 was

obtained for the specific plasma and wave parameters listed in Section 3.3. These param-

eters were chosen to closely resemble conditions of the previously reported experiments

[17], and plasma parameters in the BWX experiment, which will be described in the next

chapter. Effects of changing these parameters could be a subject of future studies.
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3.4 Chapter Summary

In this chapter we extended the study of a single particle interacting with beating electro-

static waves, which we described in the previous chapter, to the case of a real plasma, in

which a large number of particles interacts with beating electrostatic waves while undergo-

ing Coulomb collisions. The following conclusions can be drawn from this study,

• Our simulations showed that a single electrostatic wave can heat ions below the

single-wave threshold in presence of collisions, whereas no heating below the thresh-

old is possible in a collisionless plasma.

• The results also indicate that ion-ion collisions can improve the ion heating rate and

increase the maximal attained energy for both the SEW and BEW heating schemes.

The simulations showed that the ion heating effectiveness increases as the plasma

density (i.e. collision frequency) is raised from 109 to 1012 cm−3. The heating effec-

tiveness also increases with the wave amplitude for collisional as well as collisionless

cases of the BEW and SEW heating mechanisms.

• The results of the numerical simulations show that in a collisionless plasma the max-

imal ion energy is a complicated function of the wave frequency. Using a simple

analytical model we were able to predict the maximal energy dependence on the

wave frequency.

• The BEW heating scheme was found to be more effective than the SEW scheme even

in dense plasmas, as long as the initial ion temperature is high enough to ensure low

collisionality.

• Further improvements in the ion heating effectiveness can be achieved by choosing

appropriate plasma and wave parameters. The simulation-supported phenomenolog-

ical picture points to the promise of using beating electrostatic waves as a new and

effective method for heating magnetized ions in a real plasma.
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Chapter 4

Experimental Setup and Diagnostics

If you wish to make an apple pie from scratch, you must first create the

universe.

– Carl Sagan

This chapter presents a detailed description of the BWX (Beating Waves Experiment) ap-

paratus and diagnostics used to study the electrostatic wave propagation and dispersion, as

well as the resulting stochastic ion heating. The chapter is organized as follows. First, we

give a detailed description of the vacuum chamber in Section 4.1 and the rf plasma source

in Section 4.2. Section 4.3 describes various electrostatic (ES) antennas that were tried

in order to excite the electrostatic waves. Section 4.4 is dedicated to the diagnostics. It

describes the various Langmuir probes and the LIF apparatus used to measure the plasma

and wave properties.

4.1 Vacuum Chamber

A technical drawing and computer rendering of the Beating Waves Experiment (BWX) are

shown in Fig. 4.1 and Fig. 4.2. The BWX vacuum chamber consists of a 6 cm diameter and

37 cm long Pyrex cylinder serving as the plasma source, connected through an aluminum
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Figure 4.2: Computer rendering showing how the components of the BWX apparatus fit
together.
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Figure 4.3: Axial magnetic field Bz along the centerline of the magnet. The ion cyclotron
frequency varies by less than 3% within the test section of the large chamber, where the
electrostatic waves are launched.
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plate to a 20 cm and 46 cm long Pyrex cylinder serving as the test section. The aluminum

plate is electrically isolated from the rest of the chamber and the electromagnet. The small

cylinder is capped with a molybdenum backplate, which is electrically floating to minimize

sputtering. The vacuum chamber is placed inside an electromagnet, which produces a ho-

mogeneous, steady-state magnetic field up to 0.1 Tesla, that is uniformly axial throughout

the test section. The axial magnetic field along the centerline is shown in Fig. 4.3. The

two curves correspond to ion cyclotron frequency of 10 kHz and 30 kHz in the test section

of the vacuum chamber. Pressure of 1 to 30 mTorr is typically maintained by a gas feed

(Ar or He) at the aluminum endplate of the large cylinder and by a 150 l/s turbo pump

with a conductance controller backed up by a roughing pump. The system is capable of

maintaining a base pressure of 2 · 10−6 Torr.

Two 46 cm long arms protrude from the large endplate, as shown in Fig. 4.1. Wilson

seals attached at the ends of the arms provide a vacuum-sealed translation and rotation

feedthrough mechanism for the internal ES antenna (used to launch the electrostatic waves)

and the Langmuir probes. Two 92 cm long, 0.5” (OD) hollow rods are inserted through the

Wilson seals. Langmuir probes or ES antennas can be attached at one end of each of the

rods. The rods consist of a 46 cm long stainless steel section that is attached to a 46 cm

long G-11 fiberglass section. While the stainless steel section provides a good vacuum seal,

the insulating G-11 section ensures that the proximity of the rod does not alter the plasma

discharge. The wires to the ES antenna and the Langmuir probes are carried inside the

hollow rods. The distance between the centerline of the vacuum chamber and the center of

each rod is 8.5 cm, while the distance between the two rods is 2× 8.5 = 17 cm.

Once the discharge is ignited in the small cylinder, the plasma propagates along the

magnetic field lines, which are parallel to the axis of the cylinders, into the large chamber

where the wave-launching and plasma-heating experiments are conducted.

78



Figure 4.4: Photograph of an inductive rf discharge established by the helicon antenna. The
copper mesh box surrounding the vacuum chamber forms a safety rf shielding cage.

4.2 Plasma Source

The plasma is generated in the smaller cylinder by a helicon source consisting of a Boswell

saddle-type rf antenna wrapped around the smaller Pyrex cylinder, as shown in Fig. 4.4.

The helicon antenna is made of 0.25” copper tubbing to allow water cooling. The discharge

is produced by supplying rf power to the helicon antenna from an ENI 13.56 MHz 1.2 kW

power supply through a tuner. The tuner, shown in Fig. 4.5, consists of an L network made

of two Jennings 1000 pF 3 kV variable vacuum capacitors. The tuner is placed as close

to the helicon antenna as possible to maximize coupling to the antenna. A power control

circuit allows for pulsed as well as steady-state plasma generation. The vacuum chamber is

incased in a Faraday cage consisting partly of the magnet casing and partly of copper mesh

to prevent the radiation emitted by the helicon antenna from leaking into the laboratory.

The shielding is shown in Fig. 4.4.

A power control circuit allows for pulsed as well as steady-state plasma generation.
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Figure 4.5: Schematic of the electric circuit driving the helicon antenna. An ENI OEM-
12A 13.56 MHz rf power supply provides up to 1.2 kW to the helicon antenna through a
π-network tuner consisting of two Jennings 1000 pF 3 kV variable vacuum capacitors.
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Figure 4.6: Plasma density and electron temperature profiles for various rf power to the
helicon antenna. Plasma density increases with rf power. Electron temperature, on the
other hand, is not a strong function of the rf power. Helicon discharge is observed as the rf
power is raised beyond 500W. B=261 Gauss, P=1mTorr.
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Figure 4.7: Typical LIF signal strength profile measured in the BWX experiment. The thin
line is obtained from ∼300 LIF data points, while the thick dashed line (almost indistin-
guishable) is a Gaussian fit to the data points.

The circuit consists of an HP 8116A function generator that sends a control and trigger

signals to the ENI RF power supply. In addition, the signal from the HP function generator

is delivered to a digital pulse and delay generator (DDG) DG565, where the signal can

be delayed by an arbitrary amount to trigger the ES antennas, Langmuir probes, or other

diagnostics.

An inductive discharge is easily obtained with only a few watts of forward rf power to

the helicon antenna and only a few percent of rf power reflected. A helicon discharge with

high plasma density (ne = 1013 cm−3) can be produced as rf power to the helicon antenna

is raised above 500 W by properly adjusting pressure, magnetic field, and capacitance of

the coupling tuner. The inductively coupled discharge looks homogeneous and occupies

the entire cross-section of the small cylinder. When the helicon discharge is obtained with

argon, a bright blue column can be observed at the centerline. Measured radial profiles of

plasma density and electron temperature for both types of discharges are shown in Fig. 4.6.
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The radial distribution of the plasma density depends on the power input from the heli-

con antenna. For the low-power discharges the profile is more uniform, while at higher

rf powers the profile becomes peaked at the center of the plasma column. The electron

temperature, on the other, hand displays a more uniform profile, and is much less sensitive

to the helicon antenna power. A small asymmetry in both plasma density and electron tem-

perature profiles is most likely due to the interaction between the Langmuir probe and the

plasma column.

An example of the ion velocity distribution function measured by the LIF technique

is shown in Fig. 4.7. The distribution profile is obtained by scanning the laser through

∼300 different frequencies. The ion temperature can be determined from a Gaussian fit

to the measured velocity distribution profile. This technique will be further explained in

Section 4.4.5. An excellent agreement between the fit (thick dashed line) and the measured

distribution (thin line) indicates that the accuracy of the ion temperature measurement is

determined primarily by the shot-to-shot repeatability rather than the fit accuracy. For the

experiments reported here, the background electron and ion (perpendicular) temperatures

were Te ≈ 3 eV and Ti⊥ ≈ 0.1 eV, and the ratio of the ion-neutral charge-exchange

collision frequency to the ion cyclotron frequency νex/ωci = 0.2, as will be shown in the

next section. The parallel ion temperature was not measured, but in a typical inductive

discharge it roughly equals half of the perpendicular ion temperature. It should be noted

that the ratio νex/ωci is an order of magnitude above that of the Skiff’s experiment [17].

While the ion-neutral collision frequency is an order of magnitude smaller than the ion

cyclotron frequency, charge-exchange collisions play an important role in the electrostatic

wave dispersion. Figure 4.8 shows the range of some natural plasma frequencies in the

BWX that were calculated with the measured Te, Ti, ne, and B0.
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Figure 4.8: Typical plasma parameters for the BWX experiment calculated with measured
Te, Ti, ne, and B.

4.3 Electrostatic (ES) Wave Antennas

In order to launch electrostatic waves into the plasma three different electrostatic (ES) an-

tenna types were tested: 1) Helmholtz-coil antenna wrapped outside the vacuum chamber,

2) internal (to the vacuum chamber) two-plate antenna, and 3) internal loop antenna. We

were unable to launch electrostatic waves with the Helmholtz-coil antenna. Therefore, for

the rest of this dissertation we will concentrate on the other two antenna types. The two-

plate or loop antennas were placed inside the test section of the BWX vacuum chamber.

In addition, the two-plate ES antenna was situated directly inside the plasma column. The

ES antennas were driven by one or two Wavetek 180 signal generators, which are capable

of producing a signal up to 20 Vpp into a 50Ω load. The signal was further amplified by

an operational amplifier or an ENI 2100L broadband amplifier, and sent through a tuning

circuit to match the ES antenna impedance.
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4.3.1 Two-plate ES Antenna

The two-plate ES antenna has been previously used to launch a single electrostatic wave

above the ion cyclotron frequency by Goree et al. in the toroidal ACT-1 device [16, 52],

and by Skiff et al. in a linear device [17]. The two-plate ES antenna used in the BWX

experiment is similar to the one used in these experiments, and is constructed from two 1

cm × 6 cm molybdenum plates placed ∼3 cm apart along the magnetic field lines. The

plates are oriented such that the long side and the surface normal are perpendicular to the

center axis of the vacuum chamber (and the magnetic field), as shown in Fig. 4.9. The

plates are attached to a movable arm that can rotate the ES antenna in and out of the plasma

column, and is also free to move along the axis of the vacuum chamber. The plates could be

electrically driven in or out of phase with each other by a circuit schematically illustrated in

Fig. 4.10. To drive the ES antenna in phase, a coupling capacitor (Cc = 2µF) can be used

to allow both plates to float with respect to the plasma potential. To drive the plates out of

phase, the ES antenna is connected through a 1:1 transformer. When the plates are driven

out of phase, the parallel wavenumber is controlled by the plate spacing, and when the

plates are driven in phase, the parallel wavelength is determined by the vacuum chamber

geometry and the antenna position inside the vacuum chamber.

During the wave launching experiments reported in the next chapter, the plates were

driven by a single Wavetek 180 signal generator with a sinusoidal signal (10-300 kHz)

through a Tektronix AM 501 modular op-amp either in or out of phase, as shown in

Fig. 4.10. To increase the power supplied to the ES antenna during the ion heating ex-

periments, the op-amp was replaced by a more powerful broadband ENI 2100L power

amplifier with the input and output impedance of 50 Ohm.

4.3.2 Loop ES Antenna

The loop ES antenna, shown in Fig. 4.11, was constructed from four aluminum rings mea-

suring 1 cm wide and 6.7 cm in diameter each. The rings were attached to an arm, similar
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Figure 4.9: Photograph of the BWX test section showing the two-plate ES antenna attached
to the moving arm. A set of Langmuir probes attached to the other arm can also can be seen.

+

-

In-Phase

Cc=2 µF

G=10

Rout ~ 150 Ω

Max:   50 mA,  +/- 40 V

1:1

Out-of-Phase

1 kΩ 9 kΩ

B

Figure 4.10: Circuit diagram of the two-plate ES antenna, signal generator, and rf amplifier.
The two antenna plates can be driven in or out of phase by connecting them to the amplifier
through either a capacitor or transformer.
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Figure 4.11: Photograph of the loop ES antenna showing its four aluminum rings. The
rings are insulated from the plasma by wrapping them in Kapton tape.

Rout = 50 Ω
Amplifier

B

Antenna Loops

Figure 4.12: Circuit diagram of the loop ES antenna, signal generator, and rf amplifier. The
rings are driven by a signal generator through an rf amplifier in either [0, π, 0, π] (shown
here) or [0, π, π, 0] configuration. The transformer turns ratio is chosen to optimize the
impedance matching between the ES antenna and the driving circuit.
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to that of the two-plate ES antenna, so that the entire antenna assembly could be rotated in

and out of plasma, and moved along the axis of the experiment. To prevent ohmic losses

each loop was wrapped in Kapton tape. The antenna was inserted into the plasma such that

the center axis of all four rings was coincident with the center axis of the experiment and

the direction of the magnetic field. The spacing between the center of each loop is 3 cm.

Just as with the two-plate ES antenna, the loop spacing controls the parallel wavenumber,

k‖,while the perpendicular wavenumber, k⊥, is free to evolve according to the dispersion

relation as a function of wave frequency and other relevant plasma parameters.

While each ring could be supplied with a voltage signal independently, the two useful

configurations are [0, π, 0, π], and [0, π, π, 0], as described in Ref. [53]. The first configu-

ration establishes parallel wavenumber k‖ = 1 cm−1 (λ ∼ 6 cm), while the second config-

uration establishes a larger wavelength k‖ = 0.5 cm−1 (λ ∼ 12 cm). In the experiments

reported in this dissertation the loop ES antenna assembly was driven in the [0, π, 0, π] con-

figuration. A schematic of the electric circuit used to drive the loop ES antenna is shown

in Fig. 4.12. Note that the turns ratio of the transformer in that figure is chosen to optimize

the impedance matching between the ENI 2100L amplifier and the antenna.

4.3.3 Beating Waves – Mixing Signals from Two Sources

Beating electrostatic waves can be launched into the plasma by combining the output

from two signal sources. This is achieved by mixing the low-power signals from the two

Wavetek 180 signal generators and sending the combined output to an amplifier, as shown

in Fig. 4.13. The output impedance of the signal generators and the input impedance of

the amplifier is 50 Ohms. To make sure that the signal of one of the signal generators is

not distorted by the other, the circuit impedance should be matched. A power combiner

consisting of a 100 Ohm resistor and a tapped inductor in parallel provide good matching

between the signal generators and the amplifier.
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1
0
0
 Ω

In-Phase Out-of-Phase

Amplifier
Rin = 50 Ω

Cc = 2µF

Figure 4.13: Circuit diagram for launching two waves into the plasma column. The
impedance between the two signal generators and the amplifier is matched by a power
combiner.

4.4 Diagnostics

The BWX diagnostics consist of rf-compensated and uncompensated Langmuir probes and

a Laser Induced Fluorescence (LIF) apparatus. The Langmuir probes can be used to mea-

sure the steady-state and pulsed parameters such as the plasma density ne, electron tem-

perature Te, as well as to analyze the electrostatic waves dispersion and relative amplitude.

The LIF system can measure the perpendicular ion velocity distribution function, and thus

yielded the ion temperature. Although this was not done for the experiments reported here,

the LIF system could also be reconfigured to measure the parallel ion velocity distribution.

4.4.1 Langmuir Probes

Two types of Langmuir probes were employed to measure the steady-state plasma prop-

erties and wave propagation. The plasma density and electron temperature were deter-

mined using a radio-frequency-compensated Langmuir probe with 0.5 mm graphite tip
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Figure 4.14: Rf-compensated Langmuir probe used to measure the electron temperature
plasma density.

Figure 4.15: Picture of the two-plate antenna together with three Langmuir probes. The
three probes can be used to measure the perpendicular and parallel components of the
wavenumber as the frequency of the wave is varied.
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[54], shown in Fig. 4.14. The rf compensation was achieved with four miniature inductors

placed in series and close to the probe tip. The inductors where chosen to filter out the

fundamental (13.56 MHz) and the second harmonic (27.12 MHz) signals of the helicon an-

tenna. The design of the rf-compensated Langmuir probes is described by Sudit and Chen

[54].

Instead of the Laframboise analysis [55] of the Langmuir probe I-V characteristic we

used the empirical floating potential method developed by Chen et al. [56] to determine the

Te and ne with the rf-compensated Langmuir probes in the rf-sustained plasmas.

A set of three uncompensated Langmuir probes placed orthogonally to each other were

also used to measure the perpendicular and parallel wavenumber components of the prop-

agating electrostatic wave, simultaneously. The three-probe set and its position relative to

the two-plate ES antenna is shown in Fig. 4.15. Once the parallel wavenumber was estab-

lished a system of two probes with T-shaped tips made of 10 mil tungsten wire were used

to conduct the further studies. The T shape provided a better signal-to-noise ratio of the

Langmuir probe signal.

4.4.2 Electron Temperature and Plasma Density Measurements

A Langmuir probe is the simplest plasma diagnostics device. Typically it is constructed

from a thin metal or graphite rod. Langmuir probes can measure electron temperature Te,

plasma density ne, and electron velocity distribution function fe(v).

An unbiased probe inserted into a plasma that is at some plasma potential Vp will reach

a floating potential Vf . In order to measure the electron temperature and density a sweep-

ing voltage signal is applied to the probe. The amplitude of the voltage sweep is chosen

such that the current to the probe oscillates between the ion saturation current Isat
i and the

electron saturation current Isat
e . At any point during the sweep the measured current to the

probe is I = Ii − Ie, where Ii and Ie are the ion and electron contributions to the total

current respectively. The electron current becomes negligible when the voltage is swept
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below the floating potential, and the ion current reaches its saturation limit [56],

Isat
i ≈ 0.5qApnecs, (4.1)

where Ap is the surface area of the probe and cs =
√

kbTe/mi is the Bohm velocity. Below

the plasma potential, the electron current collected by the probe is exponential,

Ie = qneApvtee
q(V−Vp)/kbTe , (4.2)

where vte =
√

kbTe/2πme is the electron thermal speed. The electron temperature can be

inferred from the slope of ln(Ie)vs.V plot. Plasma density can subsequently be calculated

from Eq. (4.1).

The method outlined above was derived for unmagnetized plasmas [55]. During the

experiments described in this dissertation the plasma parameters where such that the ratio

of the ion Larmor radius to the Langmuir probe radius is greater than unity, rci/rprobe > 1,

implying that Eqs. (4.1) and (4.2) can be used.

An improved method of extracting Te and ne from the probe’s I–V trace was devel-

oped by Chen et al. [56] specifically for the rf-compensated Langmuir probes in helicon

discharges. The method is based on the empirical observation that the ion current has the

following power law dependence

Ii = V 3/4 (4.3)

The equation above can be fitted to the ion saturation current region, extrapolated to the

plasma potential, and then subtracted from the total current measured by the probe. The re-

sult is the electron current that can be fitted by Eq. (4.2). This method is explained in more

details in Ref. [56]. Figure 4.16 shows a typical I–V trace taken in the BWX apparatus.

The figure indicates that both methods give similar results. In that figure superscript “L”
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Figure 4.16: Typical I-V trace for the rf-compensated Langmuir probe. Superscript “L”
refers to the Laframboise method [55] while superscript “C” refers to the values obtained
using the Chen’s floating potential method [56].

refers to Laframboise method [55] while superscript “C” refers to the values obtained us-

ing Chen’s floating potential method [56]. In this dissertation we will adopt Chen’s method

since it was developed specifically for rf-compensated probes and inductive plasma dis-

charges similar to ours.

4.4.3 Dispersion Relation Measurements

An electrostatic wave is one that has no magnetic field fluctuations. According to

Maxwell’s equations that leads to a curl-free electric field component,

∇× E = −1

c

∂B
∂t

⇒ k× E = ωB = 0,

which means that the wavenumber is aligned along the electric field. Therefore, electro-

static waves are longitudinal in nature. Propagation of an electrostatic wave is characterized

by oscillations in the local plasma density. These oscillations can be detected by a Lang-

92



muir probe. Thus, Langmuir probes can be used to detect electrostatic waves, analyze their

dispersion relation, and measure their electric fields. Two different method involving Lang-

muir probes can be used to measure the dispersion relation of an electrostatic wave. For

this work we used the two-probe method, however a brief description of an interferometric

method is also given.

Langmuir Probe Interferometry Method

This technique requires only one Langmuir probe. The interferometric approach relies on

comparing the antenna reference signal, sin(ωt), with the signal detected by the Langmuir

probe, sin(kx − ωt), as it is moved relative to the ES antenna. The convolution of the

signals, 0.5{cos(kx)+cos(kx−2ωt)}, contains two spectral components. The wavenumber

can be extracted from the graph of the dc component, sin(kx) vs. x.

The wavenumbers of two or more waves of the same frequency can be separated

since the interferometric signal will contain a linear juxtaposition of the sinusoidal terms,

sin(k1x) + sin(k2x) + ...

The method outlined in this section requires an accurate probe positioning system. In

addition, large distances must be traversed by the probe in order to accurately measure

waves with long wavelength. Unfortunately, the dimensional constraints of the BWX sys-

tem make interferometric measurements very difficult.

Two-Probe Method

A simple way to measure the dispersion relation of an electrostatic wave is to compare the

phase delay between two or more Langmuir probes separated by a known distance [57]. A

plane wave A sin(kx− ωt) will introduce a phase delay

∆φ = kd (4.4)
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between the signals from two Langmuir probes separated by a distance d. The component

of the wavenumber in the direction of the probe separation can then be found as k = ∆φ/d.

Figure 4.15 shows the three probe system used in the BWX experiment. The system allows

simultaneous measurements of k‖ and k⊥ components.

It is typical for a dispersion relation to have two or more roots for a given wave fre-

quency. Physically this means that two or more waves having different wavenumbers

but the same frequency can be sustained by the plasma. In such situation the method

described above may produce an erroneous measurement. This can be demonstrated by

deriving the phase delay introduced between two Langmuir probes by two such waves,

sin(k1x−ωt) + sin(k2x−ωt) (assuming the waves have the same amplitude). After some

simple algebraic manipulations it can be shown that the phase delay between the signals of

the two probes is

∆φ = (k1 + k2)d/2.

It is thus impossible to distinguish between the two waves. However, in our experiments

this was not a problems since only one wave was observed. As will be discussed in the next

chapter, this wave corresponds to the forward branch of the Electrostatic Ion Cyclotron

(EIC) wave. It is possible that a wave corresponding to the backward EIC branch was also

excited, but its amplitude was much smaller than that of the forward branch. As can be

seen from Fig. 5.3 of the next chapter, the experimentally measured dispersion relation is

in good agreement with the forward branch of the EIC wave.

4.4.4 Laser Induced Fluorescence

Various non-invasive spectroscopic plasma diagnostic techniques have been implemented

since the development of lasers. One powerful and versatile technique, Laser Induced

Fluorescence (LIF), can be used to measure neutral and ion temperatures, flow velocities,
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plasma density, and even the dispersion relation of electrostatic waves [58, 59].

One of the first measurements of ion velocity distribution and plasma density with a

non-tunable LIF system was performed by Stern and Johnson [60]. Development of tun-

able dye lasers allowed significant improvements and simplifications to the technique [61].

Advances in tunable diode lasers allowed construction of relatively cheap, compact, and

portable LIF systems [62].

This section describes the experimental setup consisting of the portable, diode-laser

LIF system built as a part of the plasma diagnostics for the BWX experiment. In addition,

this section provides a brief overview of the theory behind the LIF ion velocity distribution

and temperature measurements.

4.4.5 LIF Theory

The Laser Induced Fluorescence diagnostic technique is based on the Doppler shift of the

ion absorbtion lines due to thermal motion and directed drifts. The ion velocity distribution

measurement along a particular direction can be achieved by directing a laser beam along

that direction. An ion observes the laser frequency νl that is Doppler-shifted proportionally

to the ion velocity v,

νl = νl0

(
1− v

c

)
for

v

c
¿ 1, (4.5)

where c is the speed of light and νl0 is the frequency of the laser signal in the labora-

tory frame. When the laser wavelength is swept around an ion absorption line, the plot

of absorption intensity versus the laser frequency will be proportional to the ion velocity

distribution along the direction of the laser beam.

An insightful example of the technique summarized above can be made by assuming
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Figure 4.17: Simplified Grotrian diagram for an ArII ion. The diagram shows some pos-
sible LIF schemes. The excitation (668.61 nm) and decay (442.72 nm) lines used for the
BWX experiments are shown by the dotted lines. The figure is taken from Ref. [62].

96



the Maxwellian non-drifting ion velocity distribution,

fi(v) ∼ e−miv
2/2kbTi . (4.6)

Rearranging Eq. (4.5) and expressing v through ∆νl = νl − νl0, the absorption intensity

Il(νl), which is proportional to the velocity distribution, can be written as,

Il(νl) = Il0 exp

[
−∆ν2

l

ν2
l0

mic
2

2kbTi

]
. (4.7)

Thus, a fit of Eq. (4.7) to the LIF absorbtion intensity data can yield the ion temperature.

4.4.6 LIF Implementation

In practice it is difficult to measure laser light absorbtion. Instead, the laser wavelength

is chosen to excite the electrons from a well populated metastable state to some unstable

state. The intensity of the emitted light during the transition from the unstable state is pro-

portional to the absorbtion intensity, and can be easily measured with a photomultiplier.

The photomultiplier signal is then plotted versus the laser wavelength to yield the ion ve-

locity distribution. Some transition lines that can be utilized for the LIF experiments with

diode lasers in argon plasmas were investigated in Ref. [62] and are shown in Fig. 4.17. For

the BWX experiment a scannable diode laser is tuned to 668.61 nm center wavelength. The

chosen wavelength induces the 3d 4F7/2 − 4p 4D0
5/2 transition in argon ions. The 4p 4D0

5/2

state is unstable and decays quickly to the 4s 4P3/2 state producing 442.72 nm light.

In general, an additional experimental difficulty arises from Zeeman splitting of the

transition lines due to the external magnetic field. Other broadening mechanisms, such as

natural line broadening, Stark broadening, and power broadening were found to be negli-

gible in similar rf-sustained plasmas [63]. For the perpendicular ion temperature measure-

ments performed during the BWX experiments, the laser was aligned such that the electric

field of the light was polarized along the magnetic field. Equation (4.7) can then be used
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directly to deduce the ion temperature.

4.4.7 LIF Instrumentation

A schematic of the LIF system used for the BWX experiment is shown in Fig. 4.18. A

15 mW Sacher Lasertechnik Lynx tunable diode laser in the Littrow configuration is set

to 668.61 nm center wavelength. The laser beam is modulated by a SRS SR-540 chopper

spinning at approximately 3.5 kHz. A 10/90 beam splitter allows a Burleigh WA-1500

wavemeter to measure the wavelength of the laser beam with an accuracy of 0.2 ppm.

Collection optics focuses the 442.7 nm emission light into an optical fiber which carries

the signal to a Hamamatsu HC124-06MOD photomultiplier. A Stanford Research Sys-

tems SR830 lock-in amplifier further amplifies the photomultiplier signal with the chopper

signal used as a reference. Laser control and data acquisition are achieved with a LabWin-

dows/CVI code written by the WVU helicon source group [64]. For the BWX experiment

the code runs on a 950 MHz PC with a National Instruments PCI-6024E and a GPIB data

acquisition card through a BNC-2110 connector block and a Tektronix TDS 460A digital

oscilloscope.

The LIF system can be used to measure the steady-state as well as time-resolved ion

velocity distribution. The steady-state measurements are acquired directly by the computer

as the laser wavelength is scanned. For the time-resolved measurements the plasma source

needs to be pulsed at a known repetition rate and duty cycle. The plasma source trigger

signal, as well as the low integration time signal from the lock-in amplifier, are fed into a

TDS 460A oscilloscope. The controlling computer acquires the time-resolved data from

the oscilloscope through a GPIB interface.

A picture of the entire LIF assembly is shown in Fig. 4.19. The entire system is small

enough to fit on a portable table. The photograph shows all the components except the

computer and the oscilloscope.
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4.5 Operation and Procedures

The entire BWX experiment, including the helicon plasma source, can be operated in either

steady state or pulsed modes. For pulsed operation, a variable voltage, 100 ms TTL pulses

were produced by an HP8116A function generator at 5 Hz and 50% duty cycle. The signal

controls the ENI OEM-12A RF power supply, which is used as a power source for the

helicon antenna. The same signal can be used as a gate signal for the time-resolved LIF

measurements. In addition, the function generator controls a DDG DG565 where the signal

can be delayed by an arbitrary amount to trigger the Langmuir probes, ES antenna or other

equipment. Most of the experiments were performed with 125 W of rf power to the helicon

antenna and only a few watts reflected. The wave launching and time-resolved ion heating

experiments were conducted with at least a 30-ms delay from the time the helicon antenna

is triggered to ensure that all plasma parameters have reached their steady-state values [65].

Unless stated otherwise, the steady-state LIF measurements were composed of three

laser scans. Typical voltage applied to the photomultiplier varied from 600 to 750 volts.

For the time-resolved measurements the lock-in integration time was set to 3 ms and each

time-resolved wavelength line was averaged over 100 shots.
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Chapter 5

Experimental Results and Analysis

I have not failed. I’ve just found 10,000 ways that won’t work.

– Thomas Alva Edison

This chapter presents and analyzes the data collected during the experimental investi-

gation of the ion heating by beating electrostatic waves. The experiments consisted of two

main components. First, dispersion properties of electrostatic waves, which were launched

from the two-plate ES antenna into a magnetized plasma column, were characterized. In

order to investigate the BEW ion heating mechanism, we needed to ensure that the electro-

static waves propagate in the plasma column at an angle close to 90◦ relative to the external

magnetic field, since we limited our theoretical study in Chapter 2 to propagation per-

pendicular to magnetic field. Single particle acceleration by oblique beating electrostatic

waves has been studied by Strozzi et al. [34]. They found that, as long as both beating

waves have equal parallel wavenumber, and the angle of propagation is close to 90◦, the

regular acceleration region remains connected to the stochastic acceleration region, simi-

larly to what was found for the case of perpendicular propagation, which was presented in

Chapter 2. Measurements of the wave dispersion relation confirmed the electrostatic nature

of the waves and determined the angle of their propagation.

The second component of the study involved measurements of the perpendicular ion

102



temperature increase in the presence of the electrostatic waves. Three different measure-

ment techniques were attempted. A Retarding Potential Analyzer (RPA) could not provide

a reliable perpendicular ion temperature measurement because the ion Larmor radius in

the BWX experiment was on the order of the RPA thickness. Ion temperature can also

be inferred from the dispersion properties of the backward branch of the Electrostatic Ion

Cyclotron (EIC) wave [18]. However, with the available diagnostics we only observed

the forward branch of the EIC wave. We were able to successfully measure the perpen-

dicular ion temperature, using the Laser Induced Fluorescence (LIF) system, described in

Chapter 4. Therefore, only the results of the perpendicular ion temperature measurements

performed with the LIF technique are reported in this chapter.

In the following section we present and analyze the ES antenna circuit response dur-

ing the wave-launching experiments. In Section 5.2 we describe the electrostatic wave

dispersion and propagation properties in our rf-sustained, magnetized plasma. Effects of

ion-neutral collisions on wave propagation are described in Section 5.3. Ion heating by

a single and beating electrostatic waves are then compared and contrasted in Section 5.4.

Finally, in Section 5.5 we offer some concluding remarks.

5.1 Wave Detection

We conducted the wave dispersion relation studies with the two-plate ES antenna because

this antenna coupled better to the plasma than the loop antenna. The waves were detected

with a set of uncompensated Langmuir probes with either cylindrical carbon tips or tung-

sten T-shape tips. A set of three carbon-tipped probes is shown next to the two-plate ES

antenna in Fig. 4.15. The circuit used to launch a single electrostatic wave from the two-

plate ES antenna into the plasma column is shown in Fig. 4.10. Figure 5.1 shows typical

fourier-transformed voltage signals a) driving the ES antenna, b) detected by a Langmuir

probe in our plasma, and c) AC coupling between the ES antenna and the Langmuir probe
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Figure 5.1: Magnitude of the Fourier transform of a typical a) voltage signal to the ES
antenna, b) Langmuir probe signal, showing also the second and third harmonics of the
excited wave in the plasma, and c) Langmuir probe signal with plasma turned off. The
signal is due to the AC coupling between the ES antenna and the Langmuir probe.
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without the plasma. The figure indicates that the AC coupling between the antenna and

probe is an order of magnitude below the plasma wave signal, and thus AC coupling does

not affect the plasma wave measurements.

To ensure efficient wave generation we needed to maintain good coupling between

the ES antenna, its driving circuit, and the plasma. By choosing the appropriate plasma

parameters that maximize the amplitude of the launched electrostatic wave for a given

input power to the ES antenna we can optimize the coupling. For a fixed magnetic field

and neutral pressure, the plasma impedance varies with the plasma density, i.e. with the rf

power delivered to the helicon antenna. Therefore, the power delivered to the ES antenna

can be correlated with the helicon antenna power.

In order to investigate the wave launching conditions we conducted the following ex-

periment. The signal generator and the op-amp in Fig. 4.10 were set to produce a 30-Volt

sinusoidal signal (f = 60 kHz). A magnetized argon plasma with ne = 109−1013 cm−3 and

fci = 30 kHz was produced by the helicon antenna at various rf powers with the chamber

neutral pressure of 1 mTorr. Measuring the ES antenna’s voltage and current simultane-

ously we were able to determine the impedance and power delivered to the antenna plates

as a function of the rf power delivered to the helicon antenna. A Langmuir probe inserted

into the plasma column measured the amplitude of the launched waves.

As was mentioned in the previous chapter, the plates of the two-plate ES antenna could

be driven in or out of phase with each other. We found that for the in-phase configuration

the maximum power to the ES antenna plates is delivered when the helicon antenna power

is 100-200 W, as shown in Fig. 5.2a. The amplitude of the Langmuir probe signal peaks at

∼250 W of rf power, when the real component of the measured impedance (Zr) approaches

150 Ω, which is the output impedance of the op-amp used in this experiment, and the

imaginary part (Zi) is small. At that condition the entire circuit is closely matched.

A similar experiment was repeated with the antenna plates driven out of phase. The

results are shown in Fig. 5.2b. The maximum power in this case is about 75% of that
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Figure 5.2: The amplitude of the launched ES wave (measured by the Langmuir probe) as
well as the impedance and the power delivered to the ES antenna are shown as functions
of rf power to the helicon antenna. The real and imaginary components of the ES antenna
impedance are designated by Zr and Zi respectively. a) Both plates are driven in phase. b)
The plates are driven out of phase.
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delivered to the ES antenna driven in phase. Also, the wave amplitude detected by the

Langmuir probe is significantly lower than the amplitude of the wave launched by the

plates driven in phase. Possible reasons for this are given in the next section. However, as

in the previous case, the maximum in wave amplitude corresponds to the matched circuit

condition, Zi ¿ Zr ∼ 150 Ω.

The in-phase driven antenna couples better to the plasma, resulting in a wave with a

higher amplitude than the out-of-phase driven antenna. We therefore undertook further

study of the in-phase configuration. The goal of the study was to determine whether the

launched wave is electrostatic in nature and whether it propagates transversely to the mag-

netic field.

5.2 Dispersion Relation Measurements

Linear electrostatic dispersion relation for a collisional, homogenous, isotropic, non-

drifting, and infinite plasma with finite electron and ion temperature, can be derived from

the Vlasov equation by including the BGK collision term as described by Choueiri, who

performed a similar derivation for unmagnetized ions [66, 67]

−i(ω − kzvz − k⊥v⊥ cos θ + iν)f1 + ωc
∂f1

∂θ
=

iq

m
kΦ · ∇vf0 + ν

n1

n0

f0, (5.1)

where f0, n0, f1, and n1 are the zeroth and first order perpendicular ion velocity distribution

functions and particle densities respectively, θ is the angle between the wave propagation

and the external magnetic field, and Φ is the electric potential. After some manipulations

the first order distribution function can be expressed as

f1 =
q

T
f0

∑
n

∑
m

Jn

(
k⊥v⊥

ωc

)
Jm

(
k⊥v⊥

ωc

)
ei(n−m)θ

w + iν − nωc − kzvz

[
(kzvz + nωc)Φ + iν

n1

n0

T

q

]
. (5.2)
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The equation above can be integrated over the velocity space to obtain n1, and then used in

Poisson’s equation to yield the ES dispersion relation

1 +
∑

s

αs
1 + e−µsξ0s

∑
n In(µs)Z(ξns)

1 + i(νs/kzvts)e−µs
∑

n In(µs)Z(ξns)
= 0, (5.3)

where subscript s refers to the type of the charged species, αs = 1/k2λ2
Ds, λDs is the Debye

length, µ = k2
⊥v2

t /2ωc, and In(µ) is the modified Bessel function of the first kind. It could

be easily checked that upon setting νs to zero, Eq. (5.3) reduces to the familiar collisionless

electrostatic dispersion relation, e.g. Eq. (85) given by Stix in Ref. [68]. A more detailed

derivation of Eq. (5.3) is given in Appendix F.

To launch an electrostatic ion cyclotron (EIC) wave above the ion cyclotron frequency

the following conditions must be satisfied [16],

ωpi > ωci, Ti . Te,

(2Ti/mi)
1/2 ¿ ω/k‖ ¿ (2Te/me)

1/2.

In the reported experiments the following parameters were measured Te ∼ 3 eV, Ti ∼ 0.1

eV, B = 261 Gauss, ω = 30 − 180 kHz, and λ‖ ≈ 46 cm, and therefore the above

inequalities are satisfied. The numerical solution of Eq. (5.3) for the plasma parameters in

our experiment is shown in Fig. 5.3. The first panel in that figure shows the solution to

Eq. (5.3) in the collisionless limit (νs = 0), while the second panel includes the ion-neutral

collisional effects (these will be discussed in the next section). In additions, Fig. 5.3b shows

the experimentally measured dispersion.

According to Eq. (5.3), two wave modes can propagate in the neighborhood of the ion

cyclotron frequency. The first mode is a forward branch of the EIC wave (ω/k⊥ parallel to

∂ω/∂k⊥) with a relatively large wavelength (λ⊥ ∼ 6 cm). The other mode is the backward

branch of the EIC wave (ω/k⊥ antiparallel to ∂ω/∂k⊥) with the perpendicular wavelength

on the order of the ion Larmor radius. The latter branch is also sometimes referred to as the

108



Neutralized Ion Bernstein Wave (NIBW). In both panels of Fig. 5.3 the forward branch of

the EIC and four branches of the NIBW waves are shown by thick lines. The line with the

short dashes shows the imaginary part of the perpendicular wavenumber for the forward

EIC branch. This wave is weakly damped. On the other hand, the lines with the longer

dashes represent the imaginary part of the wavenumber for the NIBW. A large negative

imaginary component close to the wave harmonics in Fig. 5.3a indicates that this wave is

highly damped at the exact resonances. However, away from the resonance ki/kr ¿ 1 the

wave can propagate freely from the ES antenna. Indeed, both the forward and backward

branches of the EIC wave have been observed by Skiff et al. [17], Alba et al. [18], Goree

[52], and others in discharges with low neutral density (νin/ωci 6 0.02). As can be seen

from Fig. 5.3b, only the forward branch of the EIC wave could be detected in the BWX

machine with our diagnostic method.

The dispersion relation for the forward branch of the EIC wave can also be derived from

the fluid equations as [13],

ω2 = ω2
ci + v2

tik
2
⊥, (5.4)

where vti is the ion thermal speed. As can be seen from this expression, the slope of the for-

ward branch of the EIC dispersion is sensitive to the electron temperature. Thus, compar-

ing the experimentally measured dispersion relation to the theoretical expression provides

a good check of the electron temperature. The electron temperature inferred by the slope

of the experimental dispersion relation, Te = 2.75 eV, is in good agreement with the val-

ues measured independently with the rf-compensated Langmuir probe, shown in Fig. 4.6.

Additionally, just as the forward branch of the EIC dispersion relation is sensitive to the

electron temperature, the backward is sensitive to the ion temperature [69]. However, since

we could not detect the backward branch with our diagnostic methods, the ion temperature

in our experiments had to be measured with an alternative method – the LIF.

109



As was mentioned above, the theoretical dispersion relation given by Eq. (5.3) was

derived for an idealized plasma. Some relevant plasma parameters are shown in Fig. 4.8. It

can be seen that the plasma is collisional (νei, νii > fci). Also, the density profiles shown

in Fig. 4.6 indicate that the plasma is not homogeneous, (a/n)∂n/∂x & 1, specifically

at high rf power. Another point of concern is the effect of the plasma boundaries. At

low values of k⊥ (long wavelength) the effect of the boundaries can be significant and the

experimental data might diverge from the theoretical prediction. With these considerations

in mind, Fig. 5.3b shows a good agreement between the experiments and the theory for a

wide range of frequencies.

The experimental dispersion was obtained in the following manner. A single sinusoidal

wave was launched by the two-plate ES antenna driven in the in-phase configuration, and

inserted at the edge of the plasma column. We measured the wave dispersion by a system

of three uncompensated Langmuir probes. The probes were placed orthogonally to each

other so that simultaneous determination of k⊥ and k‖ could be performed by measuring

the signal delay between any two probes [57]. This setup is shown in Fig. 4.15. Measuring

the probe signal with the plasma discharge off we determined that the ac-coupling between

the ES antenna and the probes was very small (an order of magnitude below the wave signal

with the plasma turned on, as shown in Fig. 5.1b and c.

The parallel component of the wavenumber, measured by the two probes placed along

the magnetic field, indicated that the parallel wavelength of the wave is 46 cm – the length

of the large glass cylinder. The measured perpendicular wavenumber, shown in Fig. 5.3b,

varies in accordance with the forward branch of the EIC wave dispersion. The error of

the measurements, shown by a horizontal bar in the lower right corner of the figure, was

calculated from multiple (10–30) measurements at the same conditions. The dispersion

measurements at frequencies up to ω/ωci = 10 indicate that the wave propagates at the

angles of 82◦ to 86◦ with respect to the magnetic field. It should be noted that, while

theoretical work presented in Chapter 2 strictly applies only to the perpendicular wave
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Figure 5.3: Electrostatic dispersion relation for the waves propagating in an argon plasma
slightly above the ion cyclotron frequency obtained from Eq. (5.3) for a) collisionless
plasma, b) a plasma typical to the BWX experiment, including ion-neutral collisions at
1 mtorr. The thick black lines show the wave frequency as a function of the real component
of the wavenumber, while the dashed lines show the wave frequency as a function of the
imaginary component of the wavenumber (top scale). Experimentally measured dispersion
relation (M) is also shown. Other plasma parameters common to both a) and b) are B=261
G, Te=3 eV, Ti⊥=0.11, and k‖=0.14 cm−1.
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propagation, recent theoretical work by Strozzi et al. [34] shows that we should expect the

BEW heating mechanism to exist even when the waves propagate obliquely with respect

to the magnetic field, as long as the waves have the same wavenumber. This is indeed the

case in our experiment since both beating waves were launched from the same antenna

simultaneously. For both waves, the parallel wavenumber was established either by the

plate spacing or the physical dimensions of the chamber.

We should also note that when the antenna plates were driven out of phase, the mea-

sured dispersion relation did not follow the theoretical dispersion relation for the EIC wave.

According to the previous discussion, we expected the parallel wavelength for the out-of-

phase configuration to be 6.28 cm – twice the spacing between the plates. However, the

measured parallel wavelength was on the order of the chamber length, similar to the in-

phase configuration. While we have not investigated this in detail, it is possible that the

wave propagation was affected by the closeness of the conducting end-plates of the vac-

uum chamber or by ion Landau damping since, for that configuration, w/k‖ ∼ vti. For

the experiments presented in the following sections we, therefore, used only the in-phase

configuration.

5.3 Effects of Ion-Neutral Collisions

As we have discussed earlier, the effects of ion-neutral collisions can be investigated by

including the BGK collisional operator into the Vlasov equation. For argon, at temperatures

and densities typical to the BWX experiment, the charge-exchange and ion-neutral elastic

scattering collision cross-sections are on the order of ∼ 10−14 cm2 [70, 71], and the total

ion-neutral collision frequency can be estimated to be ∼ 1.5 × 104 s−1. Therefore, in our

experiment νin/ωci = 0.2, which is an order of magnitude higher than in Skiff’s experiment

[17]. Even though the ratio of ion-neutral collisions to the ion cyclotron frequency is small

(νin/ωci < 1), we now show that the collisions nevertheless significantly alter the EIC wave
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propagation.

When ion-neutral collisions are taken into account in the dispersion relation, the back-

ward branch of the EIC wave becomes highly damped at all frequencies. Figure 5.3b shows

solutions to Eq. (5.3) that include ion-neutral collisions. Note that collisions have little ef-

fect on the real part of the forward branch of the dispersion relation. While the forward

branch of the EIC wave is mainly unaffected, the imaginary part of the NIBW wavenumber

grows significantly. For example, with ω/ωci = 1.5 the imaginary part of the wavenumber,

ki, increases by three orders of magnitude to ki ∼ kr (kr is the real part of the wavenum-

ber), as compared to the collisionless case. Thus, for our collisional plasma we expect the

backward branch of the EIC wave to be damped within a short distance away from the ES

antenna. As was mentioned above, we did not observe the backward branch of the EIC

wave. However, the experimental dispersion relation, shown in Fig. 5.3(b) by triangles, is

in a good agreement with the solutions to Eq. (5.3) for the forward branch of the EIC wave.

For the conditions of our experiments, with the plate antenna driven in phase, we were

able to launch the forward branch of EIC, which despite the attenuating effect of ion-neutral

collisions propagates in the vicinity of the antenna. While we were only able to measure

the dispersion relation of the forward branch, it is possible that the heating reported in the

next section could be due to the backward branch, whose amplitude may have been too

small to detect by our diagnostic, because it is known to have better coupling with the ions.

5.4 Ion Heating in the BWX

The NIBW mode interacts with ions much stronger than the forward branch of the EIC

wave, because its wavelength is on the order of the ion Larmor radius. Therefore, to observe

any significant ion heating by an electrostatic wave in a warm, dense discharge, either the

amount of power to the ES antenna or the magnetic field should be increased. The former

increases the amount of power transferred from the waves to the ions. The latter decreases
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the ratio νin/ωci, thus making the plasma less collisional, allowing the NIBW to propagate.

The magnetic field in the BWX experiment is limited by the amount of the current available

from the magnet power supply. To reduce νin/ωci to an acceptable level in our experiment,

the magnetic field should be increased to at least 0.3 T, which is three times the amount

available. Therefore, we have chosen the route of increasing the power by amplifying the

signal to the ES antenna. We have observed ion heating with the two-plate and the loop ES

antennas. The heating with the two-plate ES antenna was more pronounced than heating

with the loop ES antenna because more power could be transferred to the plasma from the

former than the latter.

We first performed a time-resolved study of ion heating by a single electrostatic wave

launched by the two-plate ES antenna. For this study, all plasma parameters were similar to

the experiments described in Refs. [64] and [72]. The plasma was created by sending a 100

ms, 125 W rf pulse to the helicon antenna. The two-plate ES antenna was turned on for 20

ms with a delay of 50 ms (to ensure that the plasma has reached a steady state), as shown in
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Fig. 5.4 by the dashed boxes. For the first 15 ms after the helicon antenna was turned on we

observed a population of fast ions propagating through the plasma column. The velocity

distribution of this population was found not to be Maxwellian, and thus a perpendicular

ion temperature could not be established. The plasma reached a steady state after about

15 ms with an average temperature of 0.11 eV, shown by the thick dashed horizonal line

in Fig. 5.4. The uncertainty in the temperature measurement can be determined from the

temperature fluctuation when the two-plate ES antenna is off. Analysis shows that this

error, shown by the vertical bar in Fig. 5.4, is ∼0.01 eV or 10%. We have also confirmed

this uncertainty through a series of repeated steady-state ion temperature measurements

with the two-plate ES antenna turned off.

When the ES antenna was turned on, we observed significant rise in the ion tempera-

ture. Figure 5.4 shows a 35% temperature increase. However, this increase is an order of

magnitude below that reported by Skiff et al. [17] in a less collisional plasma of a Linear

Magnetized Device, but on the same order as reported by Kline et al. [73, 74] in an rf-

sustained plasma. This is not surprising since we expect ion-neutral collisions to play an

important role in damping the waves.

Ion heating was observed within only a short distance from the two-plate ES antenna.

While the position of the antenna relative to the LIF measurement volume could not be

precisely controlled, we observed a sharp increase in the ion temperature as the ES antenna

was moved within half a centimeter of the LIF laser beam. This observation qualitatively

supports prediction of the collisional dispersion relation in Fig. 5.3b.

Next, we performed a study of the beating wave ion heating in a steady-state plasma.

Time-resolved measurements are quite time consuming; it takes about 30 minutes to obtain

a time-resolved ion temperature profile with 31 different laser wavelengths. A small drift

in the helicon antenna tuning may change plasma parameters over this period. This renders

the time-resolved measurements impractical for comparison between different scans. On

the other hand, a measurement of a steady-state plasma with 300 different wavelengths can
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be performed under 30 seconds. For this experiment we have compared ion heating by a

single electrostatic wave with ω = 3.5ωci to that resulting from two beating waves with

ω1 = 3.5ωci and ω2 = 4.5ωci. To ensure that the comparison is valid we set the total power

for both beating waves to be the same as that for the single wave. Figure 5.5 shows the

results of these experiments as a function of power delivered to the ES antenna. Each data

point is an average of three measurements.

Experiments revealed a threshold in the ES antenna power (wave amplitude) at about

2 W, above which there is a significant ion heating for both single and beating waves,

as shown in Fig. 5.5. Power to the ES antenna was calculated by the simultaneous mea-

surements of the oscillating current and voltage delivered by the amplifier. When the ES

antenna power was below 2 W we did not observe ion heating with either single or beat-

ing electrostatic waves. As the antenna power was increased above 2 W, ion temperature

also increased for both SEW and BEW heating mechanisms. This behavior can be ex-
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plained with the help of the wave-amplitude threshold (not to be confused with the velocity

threshold) derived from the single-particle model developed by Karney [28], and given by

Eq. (2.8a), quoted here for convenience,

E/B =
1

4
(ωci/ω)1/3(ω/k⊥). (5.5)

Using this equation we can determine the electric field amplitude of the wave at the thresh-

old. Then, from Fig. 5.2a we can estimate the minimum ES antenna power needed to

observe the ion heating. For the parameters of our experiments, the amplitude of the elec-

tric field at the threshold determined by Eq. (5.5) is 0.14 V/cm. With the wavenumber

of 0.7 cm−1 (from Fig. 5.3 at ν = 3.5) this corresponds to 0.6 V of the probe signal. Fig-

ure 5.2a shows that, at 125 W of RF power, and with∼ 1.5 W of power into the ES antenna,

the Langmuir probe signal is 0.42 V. A simple extrapolation of that signal to 0.6 V gives

2.14 W needed at threshold. This threshold is shown in Fig. 5.5 by a vertical dashed line,

and is in good agreement with the power above which ion heating is observed shown in 5.5.

Similar threshold behavior was observed by Skiff et al. [17], who investigated ion heating

by SEW in a less collisional plasma. At ES antenna powers below this threshold we do not

observe significant ion heating, while at powers above this threshold ions are heating by

both SEW and BEW mechanisms.

In previous chapters we have shown that the BEW heating mechanism has the potential

of providing a more effective method of ion heating than the SEW mechanism because

beating electrostatic waves can interact with ions below the single-wave velocity threshold,

given by Eq. (2.8b). We expect that a wave interacting with a larger number of ions will

be able to produce higher ion temperatures. Figure 5.5 shows that as the ES antenna power

level is increased above 2 W, the ion temperature resulting from the BEW heating increases

over that of the SEW heating. To ensure that the increase in the heating effectiveness of

the BEW mechanism is due to the waves interacting with particles whose initial velocity
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is below the SEW velocity threshold, we check that the bulk of the initial ion velocity

distribution function falls below the threshold given by Eq. (2.8b), which we quote here for

convenience

v =
ω

k⊥
−

√
qE

k⊥mi

. (5.6)

Using the value of electric field calculated above, we find that the threshold velocity is

∼ 3 × 105 cm/s, which is higher than the ion thermal velocity, vti ∼ 5 × 104. We, there-

fore, conclude that the bulk of the initial ion velocity distribution function is below the

single-wave velocity threshold for the SEW and BEW, and the higher ion temperature ob-

served with the BEW is a manifestation of threshold-less behavior that allows a larger

portion of the distribution function to be energized. We found that the BEW ion heating

is ∼15% stronger than the SEW heating for the particular conditions used in this experi-

ment. This provides the first evidence of an increase in efficiency between SEW and BEW

heating. We expect that this enhancement would be much more significant without the

effects of collisions.

The loop ES antenna could not be coupled to the plasma as well as the two-plate an-

tenna. As the result, the heating produced by the loop antenna was significantly smaller.

Using the loop antenna, we have attempted to heat ions with either a single or beating waves

at frequencies varying from 30 kHz up to 1.8 MHz. We were able to heat ions by ∼15%

with a wave at 450 kHz, and by∼2.4% at 1.8 MHz. It is interesting to note that at the latter

frequency the ion heating most likely results indirectly from the interaction between the

lower-hybrid waves and the electrons. Nevertheless, beating waves with ω1 = 1.77 MHz

and ω2 = 1.8 MHz produced ∼5% heating, which is twice the heating produced by the

single wave at 1.8 MHz.
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5.5 Final Remarks

In this chapter we have reported on the excitation and propagation of Electrostatic Ion Cy-

clotron (EIC) waves launched by the two-plate ES antenna into a magnetized, rf-sustained

argon plasma. We described in detail the circuity necessary to drive the ES antenna in the

in- and out-of-phase configuration. We found that the ES antenna driven in phase cou-

ples better to the plasma and can excite a higher amplitude wave than the plates driven out

of phase. In addition, we determined that the wave amplitude can be optimized by care-

fully choosing the right plasma parameters and selecting appropriate electric components

to match the driving circuit.

The ES antenna driven in phase excited a wave with λ‖ = 46 cm - the length of the test

section of the vacuum chamber. The perpendicular component of the wavenumber varies

according to the EIC dispersion relation, and is in good agreement with the forward branch

of the theoretical dispersion relation despite the simplifying assumption of a homogeneous,

isotropic, and infinite plasma slab. As a part of the study we have also investigated the

effects of ion-neutral collisions using the electrostatic dispersion relation, and shown that

the backward branch of the EIC wave is strongly damped by these collisions. We found that

the forward branch of the EIC waves launched at frequencies between ωci and 10ωci can

propagate with little damping at an angle between 82◦ and 86◦ with respect to the magnetic

field.

We have also reported on an experimental investigation of the ion heating by a single

and beating electrostatic waves in order to explore the heating enhancement predicted by

the theory of ion acceleration by beating electrostatic waves. We were able to produce ion

heating with a single and beating waves using two different ES antennas. Using the two-

plate antenna we were able to increase the ion temperature by ∼35% above background.

We observed a threshold behavior consistent with the single-particle theory for both single

and beating wave heating by increasing the power to the ES antenna. In addition, we

showed that beating waves can consistently heat ions to higher temperature than a single
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wave within the error bar of the measurement. This enhancement in ion temperature was

found to be 15% for the particular conditions of these experiments, but is expected to be

significantly higher in a less collisional plasma. This observation supports the theoretical

prediction that beating electrostatic waves interact with ions moving below the single-wave

velocity threshold.
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Chapter 6

Conclusions

Thus, the task is, not so much to see what no one has yet seen; but to think

what nobody has yet thought, about that which everybody sees.

– Erwin Schröinger

This dissertation presented an investigation of the ion heating by beating electrostatic

waves (BEW) in a magnetized plasma. This type of heating mechanism may be promising

for various applications because the BEW interaction is inherently a non-resonant process

that allows the waves to energize arbitrarily slow particles.

Previous works on the BEW heating mechanism [3, 4] were limited to theoretical in-

vestigations dealing with one magnetized charged particle. In addition, the theory lacked

a description of the necessary and sufficient conditions that govern this interaction. Fur-

thermore, effects of collisions on this interaction have not been investigated. Finally, no

experimental studies of the stochastic ion heating by beating electrostatic waves have been

previously reported. The work presented in this dissertation has thus been channeled along

three directions: 1) theoretical, 2) numerical, and 3) experimental with the following spe-

cific aims

• To improve the single-particle theory of the BEW ion heating. Specifically, to deter-

mine the necessary and sufficient conditions for the stochastic wave-particle interac-
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tion to occur.

• To understand the applicability of the BEW ion heating mechanism to warm colli-

sional plasmas.

• To perform an experimental demonstration of the BEW heating for the first time in a

laboratory environment.

6.1 Summary of Major Findings

6.1.1 Theoretical Findings

Theoretical investigation of the model describing the stochastic interaction between a single

charged and magnetized particle and beating electrostatic waves revealed that the beating

criterion

ω1 − ω2 = nωc,

described by Benisti et al. [3, 4] provides the necessary but not sufficient condition for the

stochastic interaction to occur.

We have found that the necessary and sufficient conditions can be described through

the positions of the elliptic and hyperbolic points in the regular acceleration region on the

Poincaré section describing the BEW acceleration. These points define an energy well that

a particle must overcome in order to be stochastically accelerated by the beating waves. In

the notation used throughout this dissertation we call this well the forbidden acceleration

region of phase space. This forbidden region can be described by the Hamiltonian of the
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two critical points.

H([ν −√ε]/2; π) < H(ρ0; ϑ0) < H(ν −√ε; π),

with ρ0 < ν −√ε, (6.1)

where the subscript “0” refers to the particle initial position on the Poincaré section (i.e.

its velocity and phase angle), and H is the system Hamiltonian. Equation (6.1) states that

a particle with the Hamiltonian inside the energy well does not interact with the beating

waves strongly, and its energy oscillates between the high and low points of the well. On

the other hand, particles outside the well are said to be in the allowed acceleration region.

These particles strongly interact with the waves, and on average gain energy.

6.1.2 Numerical Findings

While useful, the theoretical model is limited to the BEW interaction with a single particle.

In a real plasma, other processes, such as collisions between ions, electrons, and neutral

atoms can alter the heating mechanism. We have studied the effects of ion-ion collisions

on the BEW heating scheme by conducting Monte Carlo simulations.

Our simulations have shown that ion-ion collisions improve the heating effectiveness

of the BEW as well as SEW schemes. In a real plasma, initial ion temperature, plasma

density, and wave frequencies can be chosen to optimize the effectiveness of the BEW

heating mechanism over that of the SEW.

We have also found that for collisionless plasmas the maximal energy attained by the

simulated system (i.e. its temperature, when the distribution is Maxwellian) is a com-

plex function of the wave frequency. Using an analytical model that is based on a simple

physical argument we were able to predict the maximal energy dependence on the wave

frequency. This model may serve to optimize the plasma and wave parameters for future

detailed experimental investigations of the BEW heating mechanism.
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6.1.3 Experimental Findings

We have found that an EIC wave could be launched into a magnetized, rf-sustained plasma

from a two-plate ES antenna at frequencies up to 10ωci. These waves propagate at the

angles between 82◦ and 86◦ relative to the external magnetic field. According to the single-

particle theory these waves can result in significant ion acceleration [34].

We have also found that in a warm, collisional plasma that is sustained by an rf source,

ion-neutral collisions play a key role in electrostatic wave propagation. This effect was not

considered in the theoretical and numerical investigations that we have conducted because

these studies focused on the wave-particle interaction, and not on the wave generation and

propagation mechanisms. For an ion-neutral collision frequency of ∼ 0.2ωci we found that

the backward branch of the EIC wave is strongly damped. Since this is the branch mostly

responsible for the wave-ion interaction, the BEW heating mechanism, for our particular

experiment, was strongly affected by ion-neutral collisions.

Nevertheless, we have found that even in such a collisional plasma, ions can be heated

by∼ 35% over background level by the electrostatic waves. We have confirmed a threshold

in wave energy above which we observe ion heating for both the BEW and SEW mecha-

nisms. This threshold was predicted theoretically by Karney et al. [1, 28, 38] and confirmed

experimentally by Skiff et al. [17] for the single wave heating. Furthermore, we have found

that the BEW interaction resulted in 15% greater temperature increase than the SEW inter-

action (at the same overall wave energy). Based on the dependencies discussed in Chapter 3

we expect the BEW mechanism to result in significantly higher heating in a less collisional

plasma, where the relevant parameters are optimized to enhance the heating.

6.2 Recommendations for Future Work

The theoretical, numerical, and experimental studies reported in this dissertation constitute

an early step in the exploration of the BEW heating mechanism. Now that the basics of
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the mechanism have been elucidated, a more detailed study should be conducted to inves-

tigate the relevance of this mechanism to plasmas used specifically for space propulsion

applications.

One avenue for investigation can include a more detailed numerical study that simulates

the effects of collisions between all species, and includes geometric factors, such as the ES

antenna extent, chamber dimensions, and plasma flow past the antenna. This will most

likely require an involved PIC/DSMC solver that was beyond the scope of the goals set for

this dissertation.

Another direction for future work can be focused on improving the experimental pa-

rameters to yield higher ion heating. As we have found, a key parameter for the wave

propagation in our experiment is the ratio of ion-neutral collision frequency to the ion cy-

clotron frequency. This ratio should be lowered at least an order of magnitude in order to

observe significant stochastic ion heating. There are multiple ways of achieving this goal.

For example this could be done either by increasing the ion cyclotron frequency or lowering

the ion-neutral collision frequency.

Lowering ion-neutral collision frequency significantly may require a different plasma

source, since rf sources cannot maintain discharges at a neutral pressure much lower than

used in the BWX experiment. A good candidate is a Q-machine that can sustain high

plasma density while maintaining very low neutral pressure.

On the other hand, the ion cyclotron frequency can be raised by either increasing the

magnetic field or utilizing a lighter gas. Both solutions are feasible, but come with their

own set of problems. Increasing the magnetic field requires an expensive magnet power

supply, and a magnet capable of conducting high currents without overheating. One possi-

ble solution to overheating is to pulse the magnet.

Using a lighter gas may make it hard to measure the ion temperature. For example,

helium atom is ten times lighter than argon, and may be an ideal candidate for future exper-

iments. However, direct measurements of the helium ion temperature with LIF appears to
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be quite difficult [75]. As described in Chapter 5, temperature measurements with RPA and

using the ES wave interferometry have also proven unsuccessful in the BWX experiment.

An indirect measurement may still be possible.

Finally, ion-neutral collision frequency can be lowered by an appropriate choice of

initial conditions, such as ion temperature and plasma density, as well as judiciously se-

lecting ES wave frequency, as discussed in Chapter 3. While decreasing the plasma density

while maintaining the same ionization fraction is difficult to achieve in rf-sustained plasma

devices, ion temperature could be raised with various means. If the ion temperature is

increased by an order of magnitude, significant BEW ion heating with the lower-hybrid

waves may be possible, as shown in Fig. 3.6.
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Appendix A

Review of Previous Work

This appendix reviews ionospheric rocket observations and previous experimental work on

electrostatic wave propagation and particle heating.

A.1 Review of Ionospheric Rocket Observations

In this section of the appendix we review some of the satellite and sounding rocket obser-

vations of ion acceleration by electrostatic waves.

Variety of satellite observations indicate that high-energy ions in the Earth’s magneto-

sphere have ionospheric origin [6]. In particular, it has been observed that vigourous ion

acceleration from the ionosphere takes place both parallel and perpendicular to the ambient

magnetic field at an altitude ranging from 400 km to 8000 km. The most detailed study of

ion acceleration was performed by the S3-3 (1976-65B) satellite that was launched in 1976,

and performed the first in situ measurements of electric fields in the auroral region [7, 8].

The satellite was placed in a nearly polar orbit (8050 km apogee, 260 km perigee, and 97.50

inclination). It contained various mass spectrometers and Langmuir probes. The data col-

lected by the satellite indicated that ions are being accelerated at an altitude of ∼ 8000 km.

Additional data from the Topaz 3 [2], Isis 1 and 2 [6], OGO 5 [76], Vela 4 [77], Prognoz

7 [78], and other satellites [79, 80, 81, 82], as well as a variety of sounding rockets, such
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as the Black Brant series (AAF-IVB-33 and AAF-IVB-36) [83] launched from Canada,

showed that the range of the ionospheric acceleration region extends much lower than was

determined by S3-3 observations.

In the second part of the 1970’s a group at the Palo Alto Research Laboratory pub-

lished a series of articles that presented and analyzed data obtained by the S3-3 satel-

lite [84, 85, 86, 87]. Their analysis indicated strong (in the keV range) H+ and O+ ion

acceleration out of the ionosphere and parallel to the magnetic field in the polar regions

(5000− 8000 km) [84]. The analysis also suggested that a field aligned electron flux could

be the cause of this acceleration, however the collected data did not establish the direct and

unambiguous link between this flux and the ion acceleration. In addition, the data revealed

a field-aligned potential drop of up to several kilovolt as another possible source for the

parallel ion acceleration [86, 87].

Upon further examination, the data collected by the S3-3 spacecraft revealed that the

ions are also being accelerated transversely to the magnetic field to high (& 10 keV) en-

ergies [85]. The region of the maximum perpendicular acceleration was estimated to be

4000 − 5000 km. Mozer et al. [7] investigated the plasma density and electric field fluc-

tuations data collected by the S3-3 satellite and determined that the electric field structure

observed by the spacecraft was due to formation of the Electrostatic Ion Cyclotron (EIC)

waves. The spectrum of the waves observed by the S3-3 satellite varied between 200 Hz

and 10 kHz. Existence of electrostatic turbulence in the ionosphere as low as the auroral

E and F regions (130 − 400 km) was also discovered by Fejer et al. [88] during various

ground radar experiments.

In 1963 Motley and D’Angelo [13] performed a series of experiments where they ex-

cited a single Electrostatic Ion Cyclotron (EIC) wave in a Q-machine (first described by

Rynn and D’Angelo in 1960 [14]) by drawing the electron current along the magnetic field

lines. They reported perpendicular ion heating when the current exceeded a certain thresh-

old. These experiments corroborated the S3-3 data, which also showed that the electron
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field-aligned current in the ionosphere was above the threshold necessary for the excitation

of the hydrogen EIC wave [8].

Kintner et al. [8] also analyzed the S3-3 data and demonstrated that the EIC waves in the

ionosphere caused predominantly transverse ion acceleration. In particular, they associated

both H+ and O+ acceleration at the altitude of 5000 − 8000 km with the hydrogen EIC

wave. The authors inferred strong perpendicular ion acceleration from the observations of

conical ion distribution peaked at 900 angle relative to the Earth’s magnetic field. Okuda

and Ashour-Abdalla [89] used a simple numerical model to determine that as a result of

the wave-ion interaction the ion temperature becomes anisotropic with T⊥i /T‖i & 10, as was

observed by the spacecraft.

Observations of ion acceleration in the presence of large-amplitude, low-frequency

plasma density fluctuations at lower altitudes than those reported by the S3-3 spacecraft

were presented and discussed by Yau et al. [83] as well as by Satyanarayana and Chaturvedi

[78]. They proposed that while the hydrogen ion acceleration occurs primarily at high al-

titude in the ionosphere (5000 − 8000 km), the oxygen ions are accelerated at the lower

altitude (400 − 600 km) of the auroral region. Thus, the electrostatic turbulence and the

EIC waves in particular, were observed in all regions of the ionospheric ion acceleration:

by the S3-3 satellite at high altitudes, and by a backscatter radar observations reported by

Fejer et al. in Ref. [88], as was mentioned above.

While the observations clearly linked ion acceleration to electrostatic turbulence, nei-

ther the satellite nor the radar data were able to determine the exact acceleration mechanism

and point to the source of the EIC waves unambiguously. However, in light of the exper-

imental work by Motley et al. [13] and others (to be discussed in the next section), three

possible explanations were cited by Kintner and his coworkers [8] as the most likely. The

first explanation relied on the field-aligned electron current. The EIC waves could also be

excited by the electron diamagnetic drifts or ion beams.
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A.2 Review of Previous Laboratory Experiments

While transverse ionospheric ion acceleration was observed in regions of electrostatic wave

activity, the satellite observations could not unambiguously point to the wave-ion interac-

tion mechanism as the source of acceleration. Laboratory experiments simulating iono-

spheric conditions were therefore aimed at determine this interaction mechanism. This

section of the appendix provides a brief overview of these experiments, and discusses their

relevance to the study reported in this dissertation.

The experimental studies can be subdivided into three main categories. In the first cate-

gory of experiments, the electron current was drawn parallel to the magnetic field to excite

the Current Driven Electrostatic Ion Cyclotron (CDEIC) waves, as first described by Mot-

ley and D’Angelo [13]. To this category we can also add the set of experiments where

the waves were excited by particle (ions or electrons) field-aligned beams. In the second

category, the electrostatic waves were excited by shear flows produced by the radial elec-

tric field or diamagnetic drifts without drawing significant field-aligned current. Ganguli

et al. developed a theory for waves produced this way in a series of papers [90, 91, 92].

The theory showed that the transverse Kelvin-Helmholtz instability could be produced at

frequencies below the ion cyclotron frequency and with longer wavelength than the ones

observed by the satellites in the Earth’s ionosphere. At the shorter wavelength a new class

of waves, the Inhomogeneous Energy Density Driven (IEDD) electrostatic waves, was ob-

served with frequencies just above the ion cyclotron harmonics.

Finally, in the third class of experiments, electrostatic waves were excited by means of

a driven antenna located either inside [11, 16] or outside [93, 17] of the plasma column. An

overview of this class of experiments is particularly important for application to controlled

plasma heating, relevant for fusion or space plasma propulsion devices.
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MAGNET COILS

Figure A.1: Schematic of a typical setup for studying the Current Driven Electrostatic
Ion Cyclotron (CDEIC) waves using a Q-Machine, such as the one used by Motley and
D’Angelo [13]. Electron current, drawn to a biased small exciter disk - “button”, excites
the EIC waves. This drawing is taken from Ref. [94].

A.2.1 EIC Waves Excited with Field Aligned Currents (CDEIC)

Historically the Current Driven Electrostatic Ion Cyclotron (CDEIC) waves was the first

type of electrostatic waves propagating perpendicularly to the magnetic field studied in the

laboratory. This mode was described by Motley and D’Angelo in the early sixties [13]. A

comprehensive review of the CDEIC waves is given by Rassmusen and Schrittwieser [95].

The CDEIC waves are typically produced in laboratory plasmas by placing a small

“button” electrode into a magnetized plasma column and biasing the button to draw the

electron current, as shown in Fig. A.1. For effective wave generation the diameter of the

button electrode should be smaller than the diameter of the plasma column but larger than

the ion Larmor radius, rL ≤ rbutton ≤ rplasma. The CDEIC wave generation is a threshold-

type process. The waves are observed when the electrode potential is increased above a

threshold described through the electron drift velocity vde

vde & 5vti,

where vti is the ion thermal velocity. Another characteristic of the CDEIC wave is that its
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parallel phase velocity is in resonance with the electron drift velocity

ω/k‖ ' vde

In most experiments CDEIC waves were found to have essentially no azimuthal component

[95]. In addition, the parallel wavenumber was found to be small: k‖/k⊥ & (me/mi)
1/2 ∼

3.7×10−3 for an argon plasma. Therefore, CDEIC waves propagate nearly perpendicularly

to the external magnetic field. A simple dispersion relation for the electrostatic waves

propagating perpendicularly to the magnetic field in the ion cyclotron range of frequency

can be derived either from fluid theory [13] or from the cold-plasma dispersion directly

[68]

ω2 = ω2
ci + k2c2

s, (A.1)

where ωci is the ion cyclotron frequency, k is the wavenumber, and cs = (γkbTe/mi)
1/2 is

the sound (or Bohm) velocity. This equation, however, assumes that the ions are cold, and

misses a different type of electrostatic waves that can coexist in a plasma together with the

EIC waves. This will be demonstrated in Chapter 5 through a dispersion relation derived

from kinetic theory. This other type may interact with the ions more intensely than the EIC

wave.

Kindel and Kennel produced a comprehensive study of CDEIC wave generation in the

ionosphere [96]. They found that CDEIC waves propagate at ω ' 3
2
ωci. They also found

that these waves are unstable to smaller drift velocities vde than either the ion-acoustic or

Buneman instabilities for a wide range of the Te/Ti ratio. In other words, in the iono-

sphere, CDEIC waves are preferentially excited. A detailed study showed, however, that

as Te/Ti increases, the wave propagation vector becomes more field-aligned. For example,

for oxygen with Te/Ti ≥ 20 the wave propagates parallel to the magnetic field, and thus

turns into the ion-acoustic wave. It was also noted that the electron-ion collisions help in

destabilizing the wave while the ion-ion collisions have a stabilizing effect [97].
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The field-aligned electron currents observed in the ionosphere were found to have drift

velocities above the threshold needed for the CDEIC wave excitation [96].

A.2.2 EIC Waves Excited without Field Aligned Currents

In the absence of the field-aligned current the Electrostatic Ion Cyclotron waves can be ex-

cited by other means. Ganguli et al. have published a series of papers [91, 90, 92] describ-

ing how an electrostatic instability can be excited by a radial electric field. Additionally,

electrostatic drift waves with frequencies ranging from the lower hybrid down to the ion

cyclotron frequency can also be excited by diamagnetic drifts and perpendicular gradients

in density or temperature [98, 99].

Maekawa and Tanaka have used a Retarding Potential Analyzer (RPA) to measure sig-

nificant ion heating by the ion cyclotron [100] and lower-hybrid [101] drift instabilities

in a magnetized helium plasma. Both types of waves were excited by applying potential

difference between an anode and cathode and creating a radial electric field in the plasma

chamber. For modest values of potential (V ∼ 300 Volts) the Ion Cyclotron Drift Insta-

bility (ICDI) was observed, and at the higher potentials the Lower Hybrid Drift Instability

(LHDI) was excited. Gary and Gerwin [102] showed that the ion cyclotron drift wave can

be excited by the electron diamagnetic drift instead of the ion diamagnetic drift. Gary and

Sanderson [98] investigated the ion cyclotron drift wave propagation as a function of Te/Ti

ratio. They found that the critical drift velocity, v∗de, for destabilizing the wave increases

with the temperature ratio. For example, with mi = 3674me, they found that vde/vti ratio

increases from 0.03 to 1 as Te/Ti varies from 0.1 to 10.

A radial electric field can also excite other electrostatic modes, such as the Kelvin-

Helmholtz (KH) instability. Sckopke et al. [103] reported that the ISEE spacecraft has

observed oscillations consistent with the KH instability in the ionosphere. Pritchett and

Coroniti [104] studied the excitation and growth of this mode numerically. They found

that the KH instability propagates perpendicularly to the magnetic field with wavenumber
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Figure A.2: Schematic of a typical setup for studying the Inhomogeneous Energy Density
Driven instability (IEDD). In this type of experiments the EIC wave is excited by the radial
electric field imposed by the ring electrodes. The schematic is taken from Ref. [105].

k⊥ and the frequency proportional to the potential drop V (ω ' k⊥V/2). The Kelvin-

Helmholtz instability can be excited when the ion Larmor radius rL is small (k⊥rL . 0.1).

Another electrostatic mode arises when the ion Larmor radius is large. In the literature

this mode is referred to as the Inhomogeneous Energy Density Driven (IEDD) instability.

An experimental apparatus that can excite the IEDD instability with a radial electric field

is shown in Fig. A.2. The mode is characterized by its robustness toward various plasma

parameters such as collisions and density gradients. Ganguli et al. [92] noted that the IEDD

instability can exist even at frequencies slightly below the ion cyclotron frequency while the

CDEIC waves propagate only above this frequency. Another difference between the IEDD

and CDEIC waves can be found by looking at the spectrum produced by the two waves.

While the CDEIC waves produce a sharp single-featured spectrum, the IEDD waves result

in a broadband feature.

Various groups investigated experimentally the IEDD instability [97, 106, 107, 108,

109] as well as the KH instability [110, 111, 112]. However, since both instabilities can

propagate with similar azimuthal wavenumbers there seems to be some confusion in iden-

tifying and distinguishing the KH from the IEDD modes [90].
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A.2.3 Waves Excited by Antennas

The previous sections dealt with experiments that were motivated primarily by the need

to explain the ionospheric observations. In these experiments the electrostatic instabilities

were excited indirectly through various drifts and flows, to simulate the ionospheric pro-

cesses. Some doubt related to the nature of the wave-ion interaction still remained because,

with those experiments, it was impossible to separately control the wave excitation and ion

heating. Experiments where the waves are launched in a controllable manner from an exter-

nally driven antenna make ion heating more tractable. In addition, this type of experiment

is beneficial for investigating plasma heating for practical applications, such as fusion and

space plasma propulsion.

Figure 1.2 demonstrates schematics of a few such experiments used to investigate

various types of electrostatic waves. Sato et al. [113] studied propagation of the ion-

acoustic wave in a linear device (Q-machine), while Edgley et al. [114] investigated a high-

frequency electron-plasma wave mode conversion into the ion-acoustic wave. Numerous

aspects of the excitation, propagation, and ion heating by the lower-hybrid waves in linear,

as well as toroidal, devices were investigated by many authors [9, 115, 10, 116, 117, 118].

For example, Hooke and Barnabei [9] used the capacitively coupled plates and Stenzel and

Gekelman [10] employed a set of wires strung along the magnetic field to launch waves

close to the LH resonance, as shown in Fig. 1.2a and Fig. 1.2b. Ion heating by electro-

static waves in the ion cyclotron range of frequencies was extensively investigated by Chu

et al. [119], Ono et al. [120], and others [121] in the single-ion plasmas, and by various

research groups in multi-ion plasmas [122, 123]. In addition, many groups have inves-

tigated propagation of both pure (PIBW) and neutralized (NIBW) Ion Bernstein waves

[124, 11, 69, 125]. Figure 1.2c shows an experimental setup for one such experiment,

where a single wire at the center of the plasma column was used to launch the PIBW.

Schmitt and Krumm investigated mode conversion from an extraordinary wave, launched

by a wire coil wrapped around the plasma column into the ion Bernstein wave [12]. Their
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experimental setup is shown in Fig. 1.2d.

The following few experiments deserve a special notice because of their relevance to the

work presented in this dissertation. Goree et al. [16] and Skiff et al. [17] used the electro-

static plate antenna to launch a single electrostatic wave above the ion cyclotron frequency

perpendicularly to the magnetic field in argon and neon plasmas. Similar experiments were

performed in hydrogen and deuterium plasmas by Alba et al. [18]. These experiments

reported significant ion heating. Since our theoretical and numerical investigations have

focused on similar frequency range, we have adopted a similar antenna design to launch

the beating electrostatic waves.

While helicon sources are relatively new devices [126, 127], some groups have already

tried to utilize them for the wave propagation studies. Hanna and Watts [128] have launched

Alfvén waves into a helicon plasma, while a group at the West Virginia University demon-

strated significant ion heating by a single EIC wave [73, 74].
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Appendix B

Derivation of the Hamiltonian

Here we derive the Hamiltonian for a single magnetized ion interacting with multiple trans-

versely propagating electrostatic waves, as shown in Fig. 2.1. Section B.2 derives the non-

autonomous Hamiltonian for the BEW interaction. It follows the algorithm described by

Karney [28]. Then in Appendix C, we follow the recipe described by Chia et al. [33] to

derive the autonomous form of the Hamiltonian. That form may be used to obtain the

analytical Poincaré sections.

B.1 Lorentz Equation

We choose a constant magnetic field to be in the ẑ direction, and let the electrostatic waves

propagate in the x̂ direction. Under these conditions an ion experiences a gyro motion in

the xy plane. We can write down the potential of the waves as:

E =
∑

i

Ei0 sin(kix− ωit + ϕi),

φ = −
∫

Edx =
Ei0

ki

cos(kix− ωit + ϕi). (B.1)
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Remembering that B = ∇× A we can rewrite the cross product in each direction

x :
dAz

dy
− dAy

dz
= 0,

y :
dAx

dz
− dAz

dx
= 0,

z :
dAy

dx
− dAx

dy
= B0.

We are now free to choose A = B0xŷ without the loss of generality. It should be noted

however, that the electric field does not simply equal to the divergence of the electric po-

tential. Instead there is an extra term from the magnetic field contribution. To see that we

start with a Maxwell’s equation for the curl of E and add the curl of A:

∇× E = −∂B
∂t

=
∂

∂t
∇× A ⇒ ∇× (

E +
∂A
∂t

)
= 0, therefore we may write

E +
∂A
∂t

= −∇φ ⇒ E = −∇φ− ∂A
∂t

(B.2)

Now we use Eq. (B.2) in the Lorentz force equation,

F = q(E + v× B) = q(−∇φ− ∂A
∂t

+ v×∇× A), (B.3)

where we can rewrite the x component of the last term as

(v×∇× A)x = vy

(
∂Ay

∂x
− ∂Ax

∂y

)
− vz

(
∂Az

∂z
− ∂Az

∂x

)

=

(
vx

∂Ax

∂x
+ vy

∂Ay

∂x
+ vz

∂Az

∂x

)
−

(
vx

∂Ax

∂x
+ vy

∂Ax

∂y
+ vz

∂Ax

∂z

)
,(B.4)

where
(

vx
∂Ax

∂x
+ vy

∂Ax

∂y
+ vz

∂Ax

∂z

)
=

dAx

dt
− ∂Ax

∂t
.
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With that simplification the last term becomes (v ×∇ × A)x = ∂
∂x

(v · A + ∂A
∂t
− dA

dt
) and

the x component of the Lorentz force equation can be rewritten as

Fx = q

(
−∂φ

∂x
+

∂

∂x
(v · A− dA

dt
)

)

= q

(
− ∂

∂x
− v · A

)
− d

dt

(
∂

∂vx

v · A
)

. (B.5)

We can also rewrite the expression above in the Lagrangian form:

Fx = −∂U

∂x
+

d

dt

∂U

∂vx

, where (B.6a)

U = q(φ− v · A). (B.6b)

The Lagrangian of the system L is defined as L = T −U , where T = 1
2
(ẋ2 + ẏ2) is the

kinetic energy of the particle [42]. In expressing the kinetic energy we have chosen the z

component to be zero without the lost of generality.

B.2 Canonical Variables

Hamiltonian h of the above system may be expressed in terms of the Lagrangian and the

generalized coordinates pi and qi as h =
∑

piq̇i − L, where

q̇i =
∂h

∂pi

, ṗi = − ∂h

∂qi

, pi =
∂L

∂q̇i

, and (B.7)

px = mẋ, py = mẏ + qAy,

q̇x = ẋ =
px

m
, q̇y = ẏ =

py − qAy

m
.

Here q is the charge of the ion, while qi’s are the generalized positions. After some straight-

forward algebraic manipulations the Hamiltonian may be re-expressed in terms of the given

physical quantities as
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h =
1

2m
[p2

x + (py − qAy)
2] + qφ

=
1

2m
[p2

x + (py − qB0x)2] +
∑

i

qEi0

ki

cos(kix− ωit + ϕi). (B.8)

Now we normalize the variables in the following way

ωc =
qB0

m
; τ = ωct; νi = ωi/ωc; ki/k1 = κi; k1x = X; (B.9)

k1qEi0

mω2
c

= εi;
k1

mωc

px = Px;
k1

mωc

py = Py;
k2

1

ω2
cm

h = H.

In addition, we notice that the Hamiltonian above does not depend on y. With the help

of Eqs. (B.7) we see that this implies that py is a constant of motion. Therefore, we are

free to choose an arbitrary value for it without the loss of generality. We choose py = 0 to

further simplify the problem. Finally, we see that Eqs. (B.7) allow us to set ẋ = px. With

all these simplifications we arrive to the following expression describing the Hamiltonian

in the normalized coordinate system,

H =
1

2
(Ẋ2 + X2) +

∑
i

εi

κi

cos(κiX − νiτ + ϕi). (B.10)

Again, with the help of Eqs. (B.7) we can write down the equation of motion as

Ẍ + X =
∑

i

εi sin(κiX − νiτ + ϕi). (B.11)

Transforming the coordinates one more time into the action-angle coordinate system we

get the following expression for the Hamiltonian,

H = I1 +
∑

i

εi

κi

cos(κiρ sin θ − νiτ + ϕi), (B.12)

where I1 = ρ/2 = (Ẋ2 + X2)/2 and ρ = Ẋ cos θ and ρ = X sin θ. This equation is

identical to the one given by Benisti et al. [3] and Eq. (2.3).
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Appendix C

Lie Transformations

C.1 General Considerations

The general idea behind the Lie transformation perturbation method modified by Deprit

[43] consists of the following steps. To obtain the autonomous Hamiltonian H from the

non-autonomous one, H , we need to solve the following equation [33],

∂w

∂τ
=

∂H

∂ε
− LH − T−1∂H

∂ε
, (C.1)

where w is the Lie generating function, L = [w, ] is the Lie operator ([ , ] is the Poison

bracket), and T is a transformation operator to be described later. We next expand each of

the variables in Eq. (C.1) in orders of ε and then solve each order separately. The nonlinear

wave-particle interaction phenomenon is a second order effect, so it will suffice to solve

Eq. (C.1) to that order. Thus, we express the following functions and variables as power

series in ε

H =
∑

i

εiHi, H =
∑

i

εiH i, w =
∑

i

εiwi+1,

L =
∑

i

εiLi+1, T =
∑

i

εiTi, i = 1, 2, 3...
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With these expansions we can define the transformation operator T as follows [33]

Tn = − 1

n

n−1∑
m=0

TmLn−m, and

T−1
n =

1

n

n−1∑
m=0

Ln−mT−1
m ,

where T0 = T−1
0 = I . Here I is the identity matrix. We are now ready to rewrite Eq. (C.1)

using the expansion terms

∂wn

∂t
= nHn −

n−1∑
m=0

Ln−mHm −
n∑

m=1

mL−1
n−mHm, or

∂wn

∂t
+ [wn, H0] = n(Hn −Hn)−

n−1∑
m=1

(Ln−mHm + mL−1
n−mHm)

The left-hand side of the last equation can be thought of as the total derivative of wn along

the invariant of motion (a free ion gyrating in the constant magnetic field). Examining

Eq. (B.10) we see that H is a first order quantity with respect to ε and H2,3,4,... = 0. Also,

we can simplify the left-hand side of the previous equation by writing out the Poisson

bracket as

[wn, H0] =
∂wn

∂θ

∂H0

∂I1

− ∂wn

∂I1

∂H0

∂θ
=

∂wn

∂θ
.

Finally, we can rewrite Eq. (C.1) to the zeroth, first, and second orders

H0 = H0 = I1 = ρ2/2, (C.2a)

∂w1

∂τ
+

∂w1

∂θ
= H1 −H1, (C.2b)

∂w2

∂τ
+

∂w2

∂θ
= 2H2 − L1(H1 + H1). (C.2c)

The general goal behind solving these equations is this: Choose self-consistently the Lie

generating functions w1 and w2 to produce “nice” expressions for H1 and H2. What is
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meant by “nice” will be apparent in the next section.

Before we start solving these equations however, we need to make one more simplifying

transformation. A difficulty arises when one tries to solve the terms containing cos in

Eq. (B.12) because they have both ρ and θ dependance. We can use the following identity

eρ/2(t−1/t) =
∑∞

−∞ tmJm(ρ) (where Jm are the mth-order Bessel functions of the first kind

and t 6= 0) to separate these dependencies into different functions [47]

cos(κρ sin θ − ντ) =
∑
m

Jm(κρ) cos(mθ − ντ). (C.3)

With that, we can rewrite the non-autonomous Hamiltonian as

H = H0 + ε1H1, (C.4a)

H0 = I1 = ρ2/2, (C.4b)

H1 =
∑

i

εi

ε1

1

κi

∞∑
−∞

Jm(κiρ) cos(mθ − νiτ + ϕi), (C.4c)

and the last two equations in the set (C.2) become

∂w1

∂τ
+

∂w1

∂θ
= H1 −

∑
i

εi

ε1

1

κi

∞∑
−∞

Jm(κiρ) cos(mθ − νiτ + ϕi), (C.5a)

∂w2

∂τ
+

∂w2

∂θ
= 2H2

− L1[H1 +
∑

i

εi

ε1

1

κi

∞∑
−∞

Jm(κiρ) cos(mθ − νiτ + ϕi)]. (C.5b)

We are finally ready to solve these equations. We will do so in the following way. First,

we solve the first-order equation. Because of the resonances (the secular terms) there are

two cases to solve: 1) the on-resonance case when νi = integer, and 2) the off-resonance

case when νi 6= integer. Then we solve the second-order equation.
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C.2 First-Order Solution

νi = integer: In this case the resonances occur when νi = m in Eq. (C.5a). We therefore

choose w1 to eliminate the secularities [31, 45]

w1 =
∑

i

εi

ε1

1

κi

∞∑
−∞
m6=ν

Jm(κiρ)
sin(mθ − νiτ + ϕi)

νi −m
, (C.6)

and the first order autonomous Hamiltonian in this case is

Hon-resonance
1 =

∑
i

εi

ε1

1

κi

Jm(κiρ) sin[νi(θ − τ) + ϕi]. (C.7)

νi 6= integer: The first-order solution for this case is even simpler than for the νi = integer

case. Again, we want to get rid of the secular terms, but in this case there are none since

νi 6= integer. It follows that

Hoff-resonance
1 = 0. (C.8)

The physical significance of this equation is that it tells us that for the off-resonance case,

to the first order the average energy is zero. Therefore, all energy exchange between the

waves and the ion is a second-order process. Also, this equation provides a hint that the

on-resonance cases are more complicated because of the first-order term.

Since we need to solve the Hamiltonian to the second order, we have to find w1 for the

off-resonance case. Eq. (C.5a) reduces to

∂w1

∂τ
+

∂w1

∂θ
= 0−H1, and (C.9)

w1 =
∑

i

εi

ε1

1

κi

∞∑
−∞

Jm(κiρ)
sin(mθ − νiτ + ϕi)

νi −m
, (C.10)

We are now ready to proceed to the second-order equations. We will find out quickly
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that solving these equations requires quite a bit more algebra.

C.3 Second-Order Solution

νi 6= integer: As was shown in the previous subsection, the first order autonomous Hamil-

tonian is zero. Unfortunately, we still have to worry about L1H1 term,

L1H1 = [w1, H1] =
1

ρ

[
∂w1

∂θ

∂H1

∂ρ
− ∂w1

∂ρ

∂H1

∂θ

]
. (C.11)

For the sake of simplicity we now proceed to compute that term for the case of only two

waves with ν1, ν2 6= integer. A generalization for arbitrary number of waves may also be

obtained. After a page or so of algebra one can show that

L1H1 =
∞∑

m=−∞

∞∑
n=−∞

mJm(ρ)J ′n(ρ)

2ρ(ν1 −m)(ν1 − n)

(
[2ν1 − (m + n)] cos[(m− n)θ]

+ (m− n) cos[(m + n)θ − 2ν1τ + 2ϕi]

)
(C.12a)

+
∞∑

m=−∞

∞∑
n=−∞

mJm(ρ)J ′n(κρ)

2ρ(ν1 −m)(ν2 − n)

ε2

ε1

×
(

[(ν1 + ν2)− (m + n)] cos[(m− n)θ − (ν1 − ν2)τ + ϕ1 − ϕ2]

+ [(ν2 − ν1) + (m− n)] cos[(m + n)θ − (ν1 + ν2)τ + ϕ1 + ϕ2]

)
(C.12b)

+
∞∑

m=−∞

∞∑
n=−∞

mJm(κρ)J ′n(ρ)

2ρ(ν2 −m)(ν1 − n)

ε2

ε1

1

κ

×
(

[(ν2 + ν1)− (m + n)] cos[(m− n)θ − (ν2 − ν1)τ + ϕ2 − ϕ1]

+ [(ν1 − ν2) + (m− n)] cos[(m + n)θ − (ν2 + ν1)τ + ϕ2 + ϕ1]

)
(C.12c)

+
∞∑

m=−∞

∞∑
n=−∞

mJm(κρ)J ′n(κρ)

2ρ(ν2 −m)(ν2 − n)
(
ε2

ε1

)2 1

κ

(
[2ν2 − (m + n)] cos[(m− n)θ]

+ (m− n) cos[(m + n)θ − 2ν2τ + 2ϕ2]

)
. (C.12d)
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Again, to obtain the autonomous Hamiltonian we need to choose w2 to eliminate the secular

(resonant) terms. In Eq. (C.12a) the secularities occur when m = n in the first cos term

and 2ν1 = m + n in the second cos term. Therefore, the contributions to the autonomous

Hamiltonian from these two secular terms respectively are

S1(ρ) =
∞∑

m=−∞

mJm(ρ)J ′m(ρ)

2ρ(ν1 −m)
, (C.13)

S3(ρ) =
∞∑

m=−∞

mJm(ρ)J ′2ν1−m(ρ)

2ρ(ν1 −m)
. (C.14)

Similarly, the secular terms in Eq. (C.12d) occur when m = n and 2ν2 = m + n in the first

and second cos terms respectively. Their contributions to the autonomous Hamiltonian are

(
ε2

ε1

2
)

S2(ρ) =
∞∑

m=−∞

mJm(κρ)J ′m(κρ)

2κρ(ν2 −m)
, (C.15)

(
ε2

ε1

2
)

S4(ρ) =
∞∑

m=−∞

mJm(κρ)J ′2ν2−m(κρ)

2κρ(ν2 −m)
. (C.16)

Finally, the secularities in Eq. (C.12c) occur when m− n = ν1− ν2, m + n = ν1 + ν2, and

in Eq. (C.12d) when m − n = ν2 − ν1, m + n = ν2 + ν1. The combined contribution of

these two terms to the autonomous Hamiltonian is

(
ε2

ε1

)[
S5(ρ) cos[(ν1 + ν2)(θ − τ) + ϕ1 + ϕ2] + S6(ρ) cos[(ν1 − ν2)(θ − τ) + ϕ1 − ϕ2]

]
,

S5(ρ) =
∞∑

m=−∞

mJm(ρ)J ′ν1+ν2−m(κρ)

2ρ(ν1 −m)
+

∞∑
m=−∞

mJm(κρ)J ′ν1+ν2−m(ρ)

2κρ(ν2 −m)
,

S6(ρ) =
∞∑

m=−∞

mJm(ρ)J ′ν2−ν1+m(κρ)

2ρ(ν1 −m)
+

∞∑
m=−∞

mJm(κρ)J ′ν1−ν2+m(ρ)

2κρ(ν2 −m)
.
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We are now ready to combine all the terms and write down the complete expression for the

autonomous Hamiltonian

H2 = S1(ρ) +

(
ε2

ε1

2
)

S2(ρ) + S3(ρ) cos[2ν1(θ − τ) + 2ϕ1]

+

(
ε2

ε1

2
)

S4(ρ) cos[2ν2(θ − τ) + 2ϕ2]

+

(
ε2

ε1

)
S5(ρ) cos[(ν1 + ν2)(θ − τ) + ϕ1 + ϕ2]

+

(
ε2

ε1

)
S6(ρ) cos[(ν1 − ν2)(θ − τ) + ϕ1 − ϕ2] (C.17)

Our derivation is not yet complete because the equation above is not precisely correct. In

our derivation we assumed that ν 6= integer. However, even with that assumption secular

terms may still occur whenever 2ν = integer. To place the proper restrictions on the above

equation we note that the terms (C.12a-C.12d) place the following constraints respectively:

2ν1 6= integer, 2ν2 6= integer, |ν2 − ν1| 6= integer, ν1 + ν2 6= integer. The second-order

contribution to the autonomous Hamiltonian is then

H2 = S1(ρ) +

(
ε2

ε1

2
)

S2(ρ) + δ1S3(ρ) cos[2ν1(θ − τ) + 2ϕ1]

+ δ2

(
ε2

ε1

2
)

S4(ρ) cos[2ν2(θ − τ) + 2ϕ2]

+ δ3

(
ε2

ε1

)
S5(ρ) cos[(ν1 + ν2)(θ − τ) + ϕ1 + ϕ2]

+ δ4

(
ε2

ε1

)
S6(ρ) cos[(ν1 − ν2)(θ − τ) + ϕ1 − ϕ2], (C.18)

where δ1, δ2, δ3, δ4 = 1 when 2ν1, 2ν2, ν1 − ν2, ν1 + ν2 = integer respectively, and zero

otherwise.

νi = integer: In this case the derivation is similar to the one given above. It could be

shown that the second-order terms are also given by Eq. (C.18).
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C.4 Autonomous Hamiltonian to the Second Order

We now derive the expression for the second-order autonomous Hamiltonian describing the

interaction between two electrostatic waves and a magnetized ion. For the off-resonance

case (ν1, ν2 6= integer) the Hamiltonian is

Hoff−resonance = ε2
1S1(ρ) + ε2

2S2(ρ) + δ1ε
2
1S3(ρ) cos[2ν1ϑ + 2ϕ1]

+ δ2ε
2
2S4(ρ) cos[2ν2ϑ + 2ϕ2]

+ δ3ε1ε2S5(ρ) cos[(ν1 + ν2)ϑ + ϕ1 + ϕ2]

+ δ4ε1ε2S6(ρ) cos[(ν1 − ν2)ϑ + ϕ1 − ϕ2], (C.19)

where we have used a generating function of the second kind, F2 = ϑ · I1, where ϑ = θ− τ

and I1 = ρ/2, to rewrite the Hamiltonian in its autonomous form, as described by Chia

et al. in Ref. [33]. It should be noted that equivalent Poincaré sections are constructed as

ρ vs. θ from numerical solutions of Eq. (2.1) and as ρ vs. ϑ by plotting lines of H = const

using Eq. (C.21) (below). However, for the purposes of constructing Poincaré sections

ϑ and θ are equivalent variables since the least common period used to construct these

sections is always a multiple of 2π and ϑ appears inside either “sin” or “cos” terms.

For the on-resonance case we need to add the first-order term to Eq. (C.19)

Hon−resonance = ε1Jν1(ρ) cos[ν1ϑ + ϕ1] + ε2
Jν2(κρ)

κ
cos[ν2ϑ + ϕ2] (C.20)

+ Hoff−resonance.

According to Benisti et al. S3 and S5 terms are small [3]. Finally, we can generalize the

second-order autonomous Hamiltonian for the case of multiple propagating electrostatic
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waves as

H =
∑
ν1∈N

εi

κi

Jνi
(κiρ) cos[νiϑ + ϕi] +

∑
νi

ε2S(i)(ρ)

+
∑

νi−νj∈M{0}
εiεjS

(i,j)
6 (ρ) cos[(νi − νj)ϑ + ϕ1 − ϕ2] (C.21)

For two waves the equation above can be reduced to Eq. (2.6) by setting κi = 1 and ϕi = 0,

as described in Section 2.3.
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Appendix D

S
νi,νj
6 (ρ) Term Simplification

Using Eq. (2.11) and substituting for Jm(ρ) and J ′m(ρ) with the following identities [46]

Jm−1(ρ) + Jm+1(ρ) =
2m

ρ
Jm(ρ),

Jm−1(ρ)− Jm+1(ρ) = 2J ′m(ρ), (D.1)

we can rewrite S
νi,νj

6 (ρ) as

S
νi,νj

6 (ρ) =
1

8

{∑ Jm+2(ρ)Jm+1(ρ)

ν −m

+
∑ Jm(ρ)Jm+1(ρ)

ν −m
−

∑ Jm−1(ρ)Jm+2(ρ)

ν −m

−
∑ Jm(ρ)Jm−1(ρ)

ν −m
+

∑ Jm−1(ρ)Jm−2(ρ)

ν −m

+
∑ Jm+1(ρ)Jm−2(ρ)

ν −m
−

∑ Jm(ρ)Jm−1(ρ)

ν −m

−
∑ Jm(ρ)Jm+1(ρ)

ν −m

}
. (D.2)

Now we use the following identity [21]

∞∑
m=−∞

Jm+p(ρ)Jm(ρ)

ν −m
=

π

sin πν
Jp+ν(ρ)J−ν(ρ),
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which is valid for p > 0 to simplify Eq. (D.2) to

S
νi,νj

6 (ρ) =
π

8 sin πν
[2Jν+2(ρ)J−(ν+1)(ρ)

− 2Jν(ρ)J−(ν−1)(ρ)],

which, with the help of identities (D.1), may be shown to be

S
νi,νj

6 (ρ) =
ρ

ν

π

sin πν
[Jν+1(ρ)J−(ν+1)(ρ)

−Jν−1(ρ)J−(ν−1)(ρ)]

+
ρ

(ν + 1)

π

sin π(ν + 1)
[Jν(ρ)J−ν(ρ)

−Jν+2(ρ)J−(ν+2)(ρ)].

Chia et al. [33] showed that Sνi
1 (ρ) can be simplified as

Sνi
1 (ρ) =

π

8 sin πνi

[Jνi+1(ρ)J−(νi+1)(ρ)

−Jνi−1(ρ)J−(νi−1)(ρ)].

It is then clear that

S
νi,νj

6 (ρ) =
ρ

νi

Sνi
1 (ρ) +

ρ

νj

S
νj

1 (ρ). (D.3)

Finally, we caution that the relation (D.3) holds only for the special case of νi 6= integer

and νj = νi + 1.
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Appendix E

Symplectic Integration Algorithm

To solve Eq. (2.1) or Eq. (2.3) numerically one can use a 4th order Runge-Kutta algorithm.

While being a standard numerical technique, this algorithm does not take into account the

Hamiltonian nature of the stochastic heating problem. A symplectic numerical method

that preserves the invariants of motion was developed by Candy and Rozmus [129]. A

numerical routine based on their method was used in this dissertation to study the stochastic

interaction between electrostatic waves and a single charged particle.

The symplectic integration algorithm (SIA4) is described in detail in Ref. [129]. Here

we give the necessary steps to apply the method to Eq. (2.3).

First, we need to separate the Hamiltonian into the components,

H(q,p, t) = T (p) + V (q, t), (E.1)

where q and p are the canonical variables. In our case T = Ẋ2/2 and V = −X2/2 +
∑

εi cos(κiX − νiτ).

After choosing the initial condition (Ẋ0, X0) we advance the solution in time in the
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i 1 2 3 4
ai

1
6
(2 + 21/3 + 2−1/3) 1

6
(1− 21/3 − 2−1/3) 1

6
(1− 21/3 − 2−1/3) 1

6
(2 + 21/3 + 2−1/3)

bi 0 (2− 21/3)−1 (1− 22/3)−1 (2− 21/3)−1

Table E.1: Values of the coefficients for the SIA4 algorithm.

following manner:

For i = 1 to 4 :

Ẋi = Ẋi−1 + biF (Xi−1, τi−1)δτ,

Xi = Xi−1 + aiP (Ẋi)δτ,

τi = τi−1 + aiδτ. (E.2)

The variables (Ẋ4, X4) give the values of (Ẋ, X) at the next time step τ = τ0 + δτ . In the

equations above functions F (q, t) and P (p) are,

F (q, t) = −∇qV (q, t) = −X +
∑

εi sin(κiX − ωiτ),

P (p) = ∇T (p) = Ẋ.

The values of ai and bi are tabulated in Table E.1.
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Appendix F

ES Dispersion for a Homogeneous,

Isotropic, Magnetized, Collisional

Plasma

Physics is like sex. Sure, it may give some practical results, but that’s not

why we do it.
– Richard Feynman

In this appendix we derive the electrostatic dispersion relation for a homogeneous,

isotropic, magnetized, collisional plasma. A very similar derivation was made by Choueiri

[66] for unmagnetized ions. Here we generalize that derivation to include magnetized ions.

We also model the ion-neutral collisions through an adjusted BGK collision operator as

described by Dougherty in Ref. [130]. The first-order Vlasov equation for any charged

species can be written as

∂f1

∂t
+ v · ∇xf1 +

q

m
E1 · ∇vf0 +

q

m
v×B0 · ∇vf1 = −ν

(
f1 − n1

n0

f0

)
, (F.1)

where all first-order variables vary as ei(k·v−ωt), and ν is the collision frequency. Note that

by summing over all charged species the final dispersion relation will be general enough

to include all collisions in a plasma (i.e. ion-neutral and electron-neutral collisions). The
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following operator substitutions can now be made: ∂/∂t → −iω and ∇x → ik. The

equation above can be rewritten as,

−i(ω − kzvz − k⊥v⊥ cos θ + iν)f1 + ωc
∂f1

∂θ
=

iq

m
kΦ · ∇vf0 + ν

n1

n0

f0, (F.2)

where we have expressed the electric field of the wave as E1 = −ikΦ and switched to

cylindrical coordinates, shown in Fig. 2.1. We have also assumed, without any loss of

generality that k = k⊥ŷ + kz ẑ. After dividing by ωc we see that the equation above is a

first-order, ordinary, inhomogeneous equation of the type y′ + P (x)y = Q(x), which can

be solved by the method of integrating factors [131] to obtain the following solution,

f1 =
1

ωc

[
iq

m
kΦ · ∇vf0 + ν

n1

n0

f0

]
e

i(w+iν−kzvz)
ωc

θe−i
k⊥v⊥

ωc
sin θ

×
∫

e
i(w+iν−kzvz)

ωc
θei

k⊥v⊥
ωc

sin θdθ. (F.3)

With the help of the following identities

f0 =
n0

π
√

πv3
t

e−v2
⊥/v2

t e−v2
z/v2

t , (F.4)

ei
k⊥v⊥

ωc
sin θ =

∑
einθJn

(
k⊥v⊥
ωc

)
, (F.5)

e−i
k⊥v⊥

ωc
sin θ =

∑
e−inθJn

(
k⊥v⊥
ωc

)
, (F.6)

∑
Jn(z) =

∑ n

z
Jn(z), (F.7)

where Jn is the Bessel function of the first kind and vt is the species thermal velocity, the

first-order velocity distribution can finally be rewritten as

f1 =
q

T
f0

∑
n

∑
m

JnJmei(n−m)θ

w + iν − nωc − kzvz

[
(kzvz + nωc)Φ + iν

n1

n0

T

q

]
. (F.8)

In the following calculations it is helpful to express the distribution function as f1 = AΦ +
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Bn1, where

A =
q

T

n0

πv3
t

∑
n

∑
m

ei(n−m)θF⊥(v⊥)A(vz),

B =
q

T

n0

πv3
t

∑
n

∑
m

ei(n−m)θF⊥(v⊥)B(vz),

F⊥(v⊥) = Jn

(
k⊥v⊥
ωc

)
Jm

(
k⊥v⊥
ωc

)
e−v2

⊥/v2
t ,

A(vz) =
1√
π

kzvz + nωc

ω + iν − nωz − kzvz

e−v2
z/v2

t ,

B(vz) =
i√
π

νT

qn0

1

ω + iν − nωz − kzvz

e−v2
z/v2

t .

We immediately notice that the velocity distribution depends on n1(=
∫

f1d
3v), which

itself depends on f1. However, since n1 is not a function of velocity we can express it as

n1 =

∫
Ad3v

1− ∫
Bd3v

Φ, (F.9)

where
∫

d3v =

∫ 2π

0

dθ

∫ ∞

∞
v⊥dv⊥

∫ ∞

∞
dvz (F.10)

which upon combining with the Poisson equation produces the dispersion equation

k2 − q

ε0

∫
Ad3v

1− ∫
Bd3v

= 0, (F.11)

where k2 = k2
⊥ + k2

z . The rest of this section is dedicated to evaluating the integrals in

Eq. (F.11). Integrating both A and B over the angle θ allows the following contractions,

∫ 2π

0

dθei(n−m)θ = 2πδ(n−m)

A =
2qn0

T

1

v3
t

∑
n

F⊥(v⊥)A(vz),

B =
2qn0

T

1

v3
t

∑
n

F⊥(v⊥)B(vz),

F⊥(v⊥) = J2
n

(
k⊥v⊥
ωc

)
e−v2

⊥/v2
t .
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Next we integrate over v⊥,

∫ ∞

∞
v⊥dv⊥F⊥(v⊥) =

1

2
v2

t e
−µIn(µ),

where µ = k2
⊥v2

t /2ωc, and In(µ) is the modified Bessel function of the first kind. Integra-

tion over vz is a bit more complicated

∫ ∞

∞
dvzA(vz) = −vt[1 + ξ0Z(ξn)],

∫ ∞

∞
dvzB(vz) = − iνT

qn0kz

Z(ξn),

where ξn =
ω + iν − nωc − kzvz

kzvt

,

and Z(ξn) =

∫ ∞

∞

e−zdz

z − ξn

.

Combining all integrals and summing over all charged species (ions and electrons) we

obtain,

1 +
∑

s

αs
1 + e−µsξ0s

∑
n In(µs)Z(ξns)

1 + i(νs/kzvts)e−µs
∑

n In(µs)Z(ξns)
= 0, (F.12)

where αs = 1/k2λ2
Ds and λDs is the Debye length. It could be easily checked that upon

setting all collision frequencies to zero Eq. (F.12) reduces to the familiar collisionless elec-

trostatic dispersion relation, e.g. Eq. (85) given by Stix in Ref. [68].
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