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The mechanism controlling the scaling of the electron temperature and attachment
length within orificed hollow cathodes is investigated numerically by combining a theoretical
zero-dimensional plasma flow model and a charge-exchange-limited ambipolar diffusion
model. Electron temperature and attachment length are critical because they determine
the effective utilization, and therefore the operational life, of thermionic hollow cathode
inserts. Conservation of momentum for the combined-species flow, conservation of energy
for the electrons, and the assumption of charge-exchange-limited ambipolar diffusion are
used to derive the underlying models. The combined model takes as inputs the operating
conditions (discharge current and mass flow rate), cathode geometry, and the gas species,
along with two non-controllable parameters: the neutral gas temperature and the sheath
potential. Good agreement with experimental data is obtained for the emission length
and electron temperature, both as functions of the neutral gas pressure-insert diameter
product, and as functions of discharge current. Both the zero-dimensional model and the
experimental data show that orificed cathodes operate in the region of neutral gas pressure-
diameter product P · d ≈ 1 Torr-cm. The predicted emission length is found to be between
0.8 and 1.2 times the insert radius, to scale weakly with the pressure-diameter product,
and to be nearly independent of the orifice diameter. The analysis also suggests that the
diffusion-dominated nature of the insert plasma can account for the scaling of the emission
length with cathode operating conditions.

List of Symbols

Constants

kB Boltzmann’s constant 1.38× 10−23 J/K

Geometry

r̄o Orifice radius normalized to insert radius

dc Cathode (insert) diameter m

Lemit Emission length m

Lo Orifice length m

rc Cathode (insert) radius m
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ro Orifice radius m

Plasma parameters

ne Electron density m−3

ng Neutral gas density m−3

Tg Neutral gas temperature K

TeV Electron temperature V

Flow properties

P Total pressure Pa

Pg Neutral gas pressure Pa

I. Introduction

The next-generation of Hall and ion thrusters will require more demanding discharge currents and opera-
tional lifetimes than are presently available. Discharge powers for “near-term” thrusters are in the range

of 100 to 200 kW,1 with expected mission lifetimes of up to 100 kh.2,3 These requirements translate to up
to 700 A of required discharge current for a specific impulse in the range of 2000 to 6000 s.4 Life tests of up
to 50 kh have been performed for low-discharge-current cathodes (less than 4 A).5 High-discharge-current
cathodes have been successfully operated in the 300–400 A range6,7 with estimated lifetimes of nearly 12 kh
at 100 A.8 Life tests are time-consuming and costly so there is a clear need for models that can accurately
estimate the operational life of thermionic hollow cathodes.

Because the temperature of the thermionic emitter, which controls its evaporation rate, is dependent on
the effective emission area, the insert electron temperature and the “attachment length” are of the utmost
importance. The attachment length is the length over which the internal plasma is sufficiently dense to
support temperature-limited thermionic emission. Both parameters also govern the power deposition from
the plasma to the emitter. Using the charge-exchange-limited ambipolar diffusion model described in Ref. 9,
it can be shown that both quantities depend primarily on the product of the diameter and the neutral
density for a variety of operating conditions. We have developed10 semi-analytical correlations for both
electron temperature and attachment length in argon- and xenon-fed hollow cathodes using the results of
this model. These correlations remain to be verified experimentally.

Both the electron temperature and plasma density profile(s) can be measured using a scanning Langmuir
probe as shown in Refs. 11–14. The attachment length can be inferred directly from the plasma density
profile in the insert plasma region. In this work we compare the theoretical correlations, developed using
the ambipolar diffusion model, to available experimental data for a few cathodes. We first briefly present
the theoretical framework, then explain the data analysis methodology, and finally compare the theoretical
results to experimental data.

II. Approach

A. Numerical models

Cathode tube

Insert / Emitter

Lemit/rc Lo/rc

r̄o
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Figure 1: Fluid control volume considered in the analysis.

We consider the fluid control volume shown in Fig. 1 and use both the ambipolar diffusion model presented
in Ref. 9 and the zero-dimensional model of the insert and orifice regions presented in Ref. 10. Both models
feature common assumptions:

1. The plasma density is governed by charge-exchange-limited ambipolar diffusion,

2. The Bohm flux is not modified by the presence of an emitting sheath,
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3. The electron temperature is constant in each (insert/orifice) region, and

4. The heavy particle temperature is constant within the cathode and is a free parameter.

These assumptions are typically valid in the orificed hollow cathodes that we consider. Further discussion
of the assumptions can be found in Refs. 9, 10.

The ambipolar diffusion model permits the calculation of both the plasma density profile and the electron
temperature in the insert region of a hollow cathode. The details of the model and algorithm are presented
in Ref. 9 and are not repeated here. The solution to the ambipolar diffusion equation for the plasma density
has the following form:

ne (r̄, z̄) =

+∞∑
k=1

CkJ0 (λkr̄) exp (αkz̄) , (1)

where r̄ and z̄ are the spatial coordinates normalized by the insert radius, Ck is the coefficient of the kth

eigenmode, J0 is the 0th order Bessel function of the first kind, and λk and αk are the eigenvalues and
separation constant, respectively. The expressions for Ck, λk, and αk are also given in Ref. 9.

Because the separation constant αk increases with k, the first-order eigenmode dominates as z̄ → −∞.
We therefore define the attachment length as the decay-length scale of the first-order eigenmode of the 2D
solution in the insert region. This corresponds to the length scale of the exponential electron density decay
in the upstream region of the cathode insert:

Lemit =
rc
α1
. (2)

The assumption we made in Ref. 9 that the net ion flux is zero on the orifice inlet plane implies that the
plasma density resulting from the algorithm always features a peak at the orifice inlet and likely represents
a lower bound for the attachment length. This assumption is generally acceptable for cathodes with small
orifice-to-insert diameter ratio. The true attachment length, however, will likely be larger than that predicted
by the algorithm for cathodes with either larger orifices or no orifice, or for cathodes operated at low mass
flow rates or at low internal pressures. For these cathodes the peak in the electron density profile is typically
situated upstream from the orifice inlet.

We combined the ambipolar diffusion model with the 0-D model we developed in Ref. 10 in order to
compute volume-averaged plasma properties and to provide the neutral gas pressure or density prediction
required by the ambipolar diffusion model. The 0-D model is based on a rigorous treatment of the plasma-
neutral flow through the cathode orifice but requires the electron temperature and emission length, as
calculated by the ambipolar diffusion model, to close the system. The 0-D approach combines the plasma
fluid equations for the plasma-neutral flow and the electron energy equation in both insert and orifice regions.
In this work, we calculate the neutral gas density in order to predict both experimental emission length and
electron temperature as functions of the neutral gas pressure-diameter product.

B. Comparison to experimental data

Dataset We use the electron temperature and plasma density profiles measured for the following cathodes:

• Salhi’s cathode15 operating on xenon at a mass flow rate of 0.5 equivalent-Ampères,

• the NSTAR discharge cathode,12

• the NEXIS discharge cathode,16 and

• the JPL 1.5 cm LaB6 cathode.17

For the calculation of the total pressure-diameter product presented in the last section of this paper, we use
measured pressure data from the following cathodes:

• Siegfried and Wilbur’s mercury cathode,18

• Friedly’s cathode,19

• Salhi’s cathode15 operating on both argon and xenon,
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• the T6 cathode,20,21

• Domonkos’s cathodes (AR3, EK6, SC012),22

• the NSTAR discharge cathode,23,24

• the NEXIS cathode,13,25 and

• Princeton’s large hollow cathode.10

Attachment length The experimental attachment length is derived from the measurement of the elec-
tron density profile. Because we define the attachment length as the length-scale of the exponential decay
of the electron density upstream of the cathode orifice, we fit only the relevant portion of the experimental
data with a decaying exponential. We show an example of this approach in Fig. 2.
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Figure 2: Example of the derivation of the attachment length from an electron density profile. Experimental
data from Ref. 12 for the NSTAR discharge cathode operating at 15 A.

The NSTAR, NEXIS, and JPL LaB6 cathodes share the same experimental setup and diagnostics for
which the error in the density measurement was reported26 to be ±40% (σ2

n = 0.04). For the density
measurements taken by Salhi no experimental uncertainty was reported so we assume the same value of
±40%. The error inherent in performing the various steps of the linear regression on the logarithm of the
density must also be estimated to obtain a confidence interval for the derived attachment length. If the
density at a given point has a variance of n̄2eσ

2
n (where n̄e is the average density at that point) then its

logarithm Y = lnne has a variance of σ2
n. We derive this property in the Appendix. For the linear fit of

lnne with parameters β̂0 and β̂1, we have
Ŷ = β̂0 + β̂1z̄. (3)

The inverse of β̂1 is the normalized emission length. The standard error of the slope is:27

σ2
β =

σ2
n∑N

i=1 (z̄i − ẑ)2
, (4)

where ẑ is the average distance from the orifice inlet. If we now assume that β̂1 is also normally distributed
about the value calculated using the regression procedure, then the emission length has a variance (to first
order) of

σ2
L =

σ2
β

β̂2
1

. (5)

We also give the derivation for the variance of the inverse of a normally distributed random variable in the
Appendix.
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Electron temperature The electron temperature is typically measured as a function of position in the
insert region. Because the electron temperature typically varies gradually upstream of the cathode orifice,
we use the axial line-average of the experimental data over the entire cathode insert region to obtain a single
experimental value. We take the uncertainty of the electron temperature measurements to be ±0.5 eV, as
reported in Ref. 26, unless otherwise specified.

Methodology With the ambipolar diffusion model, we compute the numerical values of the attachment
length and electron temperature as functions of the neutral gas pressure and orifice-to-insert diameter ratios.
The results of the ambipolar diffusion model are combined with the 0-D model to compute the plasma
parameters for a variety of experimental operating conditions (discharge current, mass flow rate, cathode
geometry, and gas species). For each experimentally-measured data point we compute

1. the neutral gas pressure using the 0-D model, and

2. an estimate of both attachment length and electron temperature using the ambipolar diffusion model.

The combination of the calculated neutral gas pressure and the experimentally-measured electron temper-
ature and attachment length are compared to the resulting values of the ambipolar diffusion model as
functions of pressure-diameter product. We separately compare the estimate of the attachment length and
electron temperature calculated from the combined models to their experimentally-measured counterparts
as functions of discharge current.

III. Results and discussion

We have found that both attachment length and electron temperature are sensitive only to the neutral gas
density-insert diameter product for the range of values considered. For a constant heavy particle temperature
this corresponds to the neutral pressure-diameter product. We have derived the following semi-analytical
expressions for both electron temperature,

T insert
eV =

ti,0

(Pgdc)
ti,1

+ ti,2, (6)

and attachment length,

Lemit =
dc
2

(
l0 +

l1

ln6 (Pgdc + l2)

)
, (7)

respectively, by fitting the results of the ambipolar diffusion model as functions of the pressure-diameter
product and the ratio of orifice to insert diameter to the functional forms given above. dc and Pg = ngkBTg
are the insert diameter and the neutral gas pressure, respectively. The coefficients ti,k and lk for xenon
and argon gases are given in the Appendix. In all cases, the pressure-diameter product that appears in the
denominator is in Torr-cm.

In Figs. 3 and 4 we show the attachment length and electron temperature as calculated using the ambipo-
lar diffusion model (Eqns. 6 and 7) and the combined 0D model from Ref. 10, respectively. We compare the
model results to experimental data in the dataset described above for orificed hollow cathodes operating on
xenon gas. Results are shown as a function of the neutral gas pressure-diameter product for the ambipolar
diffusion model and as a function of discharge current for the 0D model. We obtain good agreement between
models and experimental data, which suggests that the models are capable of capturing the appropriate
physics.

Attachment length Figure 3 shows that the attachment length varies between 0.8 and 1.2 times the
cathode insert radius and scales weakly with the pressure-diameter product. As defined, it is insensitive to
the orifice diameter, as suggested experimentally.29 We also show in Fig. 3 the previous empirically-derived
scaling relationship suggested in Ref. 28:

Lemit = K/P, (8)

where K is a constant between 5–15 Pa-m. We plot the results using the neutral gas pressure (as opposed
to the total pressure). A similar expression to Eqn. 8 can be derived using the results from the electron
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Figure 3: Attachment length (top) and electron temperature (bottom) as functions of the neutral pressure-
diameter product.

transport approach of Ref. 30 if one considers sheath voltages less than 8 V for xenon. The corresponding
constant is between 0.01–15 Pa-m for ionization fractions between 0.1% and 10% and sheath potentials
between 1 and 8 V.

The observed scaling of attachment length cannot be captured by the electron transport phenomena
suggested in Ref. 30, nor by the purely empirical relationship given in Ref. 28 (which does not offer a
mechanistic explanation). The results of the ambipolar diffusion model suggest that the observed behavior
is governed not by the total static pressure but by the neutral gas pressure. When supplied with the neutral
gas pressure estimation of the 0-D model, the plasma density decay predicted by the ambipolar diffusion
model appears to account for the variation of the observed attachment length.

Pressure-diameter product Most of the experimental data is clustered around a measured (total static)
pressure-diameter product of Pd ≈ 1 Torr-cm. Because the insert neutral pressure is always less than the
total pressure, the total pressure-diameter product gives an upper bound on the neutral pressure-diameter
product. This value has been observed to be a sufficient condition for the efficient operation of tube cathodes
on a variety of gases.31,32 Similar observations have been made for orificed hollow cathodes that operate
with mercury33 and noble gases.34

We show in Fig. 5 the statistical distribution of the total pressure-diameter product for the pressure
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Figure 4: Attachment length (top) and electron temperature (bottom) as functions of discharge current.

dataset described in Section II.B. The dataset has roughly 400 operating points and includes data for argon,
xenon, and mercury. The distribution is shown both as a histogram with 40 bins and as a density function
obtained with the Kernel Density Estimation (KDE) technique. We use a Gaussian kernel for the KDE
with an optimum bandwidth that is found using a grid search with cross-validation. The KDE method, grid
search, and cross-validation are implemented in the Python library scikit-learn.35 Due to the decaying
nature of the solutions to the ambipolar diffusion equation, for the very high total pressures (164–609 Torr)
measured in cathodes from Ref. 22 we expect that the peak plasma density occurs in the orifice as opposed
to the insert. To reflect this, we show in Fig. 5b the pressure-diameter product where we have used the
orifice diameter for the cathodes presented in Ref. 22 and the insert diameter for all other cathodes. We
see that the operation of cathodes is distributed mostly in a region where the pressure-diameter product is
10 Torr-cm or less. The most probable pressure-diameter is 4.2 Torr-cm.

We emphasize that the local neutral pressure, as opposed to the one measured upstream of the cathode,
should be used to determine the pressure-diameter product. In the absence of direct experimental measure-
ments of the local neutral pressure, we can only estimate this product from the total upstream pressure.
For cathodes that are operating at a high (≥ 10 Torr-cm) total pressure-diameter product, it is likely that
the peak electron density is near the cathode orifice. In these cases, we expect the rapid pressure drop due
to the flow constriction near the orifice results in a pressure-diameter product near the most probable value
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Figure 5: Distribution of total pressure-diameter product for a large number of cathodes. Left: Pressure-
diameter product calculated using the insert diameter for all cathodes. Right: Pressure-diameter product
calculated using the orifice diameter for only those cathodes presented in Ref. 22.

close to or inside the orifice.

IV. Conclusion

Using the combination of our previous modeling efforts presented in Refs. 9 and 10 we have computed
the attachment length and electron temperature for a variety of operating conditions. As noted in Ref. 10,
we have found that both quantities vary only with the neutral pressure-diameter product. Despite neglect-
ing the variation of several properties in the insert region we find good agreement between experimental
results gathered from the literature and the semi-analytical fits calculated by the model. This suggests that
the ambipolar diffusion model in combination with the pressure predictions of the zero-dimensional model
captures the relevant physics that govern the scaling of the attachment length and electron temperature.

The charge-exchange-limited ambipolar diffusion model relies on the assumption of a peak density at the
orifice inlet and therefore can only give an estimate of the attachment length through the exponential density
decay length scale. This is an acceptable approximation for cathodes with small orifice-to-insert diameter
ratio. The true attachment length may be larger but the inclusion of the appropriate near-orifice effects would
add significant complexity to the model. As we have noted previously in Ref. 10, the two free parameters
of the 0-D model (sheath potential and neutral gas temperature) could be self-consistently incorporated
through a potential solver and the energy equation for the heavy particles, respectively. A potential solver
would also allow for the attachment length to be more accurately determined, as the temperature-limited
emission region of the emitter may then be properly identified.

This work illuminates the underlying regime of operation of orificed hollow cathodes. The results we
present and the preponderance of experimental evidence suggest possible design rules for future cathodes:
the insert length should be comparable to the insert radius for optimum emitter usage, and the mass flow
rate can be initially estimated such that the pressure-diameter product is near 1 Torr-cm.

Acknowledgments

The authors would like to thank the Princeton Program in Plasma Science and Technology for supporting
this work.

8
The 36th International Electric Propulsion Conference, University of Vienna, Austria

September 15–20, 2019



References

1Brown, D. L., Beal, B. E., and Haas, J. M., “Air Force Research Laboratory High Power Electric Propulsion Technology
Development,” IEEE Aerospace Conference, 2010.

2Goebel, D. M. and Chu, E., “High Current Lanthanum Hexaboride Hollow Cathodes for High Power Hall Thrusters,”
32nd International Electric Propulsion Conference, 2011, IEPC-2011-053.

3Hofer, R., Randolph, T., Oh, D., Snyder, J., and de Grys, K., “Evaluation of a 4.5 kW Commercial Hall Thruster System
for NASA Science Missions,” 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006, AIAA-2006-4469.

4Plasek, M., Wordingham, C. J., Rojas Mata, S., Luzarraga, N., and Choueiri, E. Y., “Experimental Investigation of a
Large Diameter Cathode,” 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2014, AIAA-2014-3825.

5Shastry, R., et al., “Status of NASAs Evolutionary Xenon Thruster (NEXT) Long-Duration Test as of 50,000 h and 900
kg Throughput,” International Electric Propulsion Conference, 2013.

6Wordingham, C. J., Taunay, P.-Y. C. R., and Choueiri, E. Y., “Multiple-Kilowatt-Class Graphite Heater for Large Hollow
Cathode Ignition,” 51st AIAA/SAE/ASEE Joint Propulsion Conference & Exhibit, 2015, AIAA-2015-4010.

7Goebel, D. M., Becatti, G., Reilly, S., Tilley, K., and Hall, S. J., “High Current Lanthanum Hexaboride Hollow Cathode
for 20-200 kW Hall Thrusters,” 35th International Electric Propulsion Conference, 2017, IEPC-2017-303.

8Chu, E., Goebel, D. M., and Wirz, R. E., “Reduction of Energetic Ion Production in Hollow Cathodes by External Gas
Injection,” Journal of Propulsion and Power, Vol. 29, No. 5, 2013, pp. 1155–1163.

9Wordingham, C. J., Taunay, P.-Y. C. R., and Choueiri, E. Y., “Theoretical Prediction of the Dense-Plasma Attachment
Length in an Orificed Hollow Cathode,” 35th International Electric Propulsion Conference, 2017, IEPC-2017-566.

10Taunay, P.-Y. C. R., Wordingham, C. J., and Choueiri, E. Y., “A 0-D model for orificed hollow cathodes with application
to the scaling of total pressure,” AIAA Propulsion and Energy Forum, 2019, AIAA-2019-4246.

11Goebel, D. M., Jameson, K. K., Watkins, R. M., Katz, I., and Mikellides, I. G., “Hollow cathode theory and experiment.
I. Plasma characterization using fast miniature scanning probes,” Journal of Applied Physics, Vol. 98, No. 11, 2005.

12Jameson, K. K., Goebel, D. M., and Watkins, R. M., “Hollow Cathode and Keeper-Region Plasma Measurements,” 41st
AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005, AIAA-2005-3667.

13Jameson, K. K., Goebel, D. M., and Watkins, R. M., “Hollow Cathode and Thruster Discharge Chamber Plasma
Measurements Using High-Speed Scanning Probes,” 29th International Electric Propulsion Conference, 2005, IEPC-2005-269.

14Goebel, D. M. and Polk, J. E., “Lanthanum Hexaboride Hollow Cathode for the Asteroid Redirect Robotic Mission 12.5
kW Hall Thruster,” 34th International Electric Propulsion Conference, 2015, IEPC–2015–43.

15Salhi, A., Theoretical and experimental studies of orificed, hollow cathode operation, Ph.d., The Ohio State University,
1993.

16Mikellides, I. G., Katz, I., Goebel, D. M., and Polk, J. E., “Hollow cathode theory and experiment. II. A two-dimensional
theoretical model of the emitter region,” Journal of Applied Physics, Vol. 98, 2005.

17Chu, E. and Goebel, D. M., “High-current lanthanum hexaboride hollow cathode for 10-to-50-kW hall thrusters,” IEEE
Transactions on Plasma Science, Vol. 40, No. 9, 2012, pp. 2133–2144.

18Wilbur, P. J., “Ion and Advanced Electric Thruster Research,” Tech. Rep. CR-165253, NASA, 1980.
19Friedly, V. J., “Hollow Cathode Operation at High Discharge Currents,” 1990, M.Sc.
20Fearn, D. G. and Patterson, S. W., “Characterisation of the high current hollow cathode for the T6 thruster,” 34th

AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 1998.
21Patterson, S. W. and Fearn, D. G., “The Generation of High Energy Ions in Hollow Cathode Discharges,” 26th

International Electric Propulsion Conference, 1999, pp. 695–702, IEPC-1999-125.
22Domonkos, M. T., Evaluation of low-current orificed hollow cathodes, Ph.d., University of Michigan, 1999.
23Mikellides, I. G., “Effects of Viscosity in a Partially Ionized Channel Flow with Thermionic Emission,” Physics of Plasmas,

Vol. 16, 2009.
24Polk, J., Grubisic, A., Taheri, N., Goebel, D. M., and Hornbeck, S. E., “Emitter Temperature Distributions in the NSTAR

Discharge Hollow Cathode,” 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2005, AIAA-2005-4398.
25Goebel, D. M. Jameson, K. K. and Katz, I., “Hollow Cathode and Keeper-Region Plasma Measurements Using Ultra-Fast

Miniature Scanning Probes,” 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2004, AIAA-2004-3430.
26Mikellides, I. G., Katz, I., Goebel, D. M., Polk, J. E., and Jameson, K. K., “Plasma processes inside dispenser hollow

cathodes,” Physics of Plasmas, Vol. 13, 2006.
27James, G., Witten, D., Hastie, T., and Tibshirani, R., An Introduction to Statistical Learning, Springer, 2013, p.66.
28Albertoni, R., Pedrini, D., Paganucci, F., and Andrenucci, M., “A Reduced-Order Model for Thermionic Hollow Cath-

odes,” IEEE Transactions on Plasma Science, Vol. 41, No. 7, 2013, pp. 1731–1745.
29Goebel, D. and Katz, I., Fundamentals of Electric Propulsion: Ion and Hall Thrusters, John Wiley & Sons, Inc., 2008.
30Siegfried, D. E. and Wilbur, P. J., “A model for mercury orificed hollow cathodes - Theory and experiment,” AIAA

journal, Vol. 22, No. 10, 1984, pp. 1405–1412.
31Lidsky, L. M., Rothleder, S. D., Rose, D. J., Yoshikawa, S., Michelson, C., and Mackin Jr., R. J., “Highly ionized hollow

cathode discharge,” Journal of Applied Physics, Vol. 33, 1962, pp. 2490–2497.
32Delcroix, J.-L. and Trindade, A. R., “Hollow cathode arcs,” Advances in Electronics and Electron Physics, Vol. 35, 1974,

pp. 87–190.
33Siegfried, D. E. and Wilbur, P. J., “Studies on an experimental quartz tube hollow cathode,” 14th International Electric

Propulsion Conference, 1979.
34Rohrbach, G. and Lunk, A., “Characterization of plasma conditions in a hollow cathode arc evaporation device,” Surface

and Coatings Technology, Vol. 123, 2000, pp. 231–238.

9
The 36th International Electric Propulsion Conference, University of Vienna, Austria

September 15–20, 2019



35Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R.,
Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E., “Scikit-learn: Machine
Learning in Python,” Journal of Machine Learning Research, Vol. 12, 2011, pp. 2825–2830.

36Anderson, T. V. and Mattson, C. A., “Propagating Skewness and Kurtosis Through Engineering Models for Low-Cost,
Meaningful, Nondeterministic design,” Journal of Mechanical Design, Vol. 134, 2012, pp. 100911–1 – 100911–9.

10
The 36th International Electric Propulsion Conference, University of Vienna, Austria

September 15–20, 2019



Appendix

Correlation coefficients

Species Quantity
Index

0 1 2

Xe
TeV 1.3 0.34 0.48

Lemit 0.75 1.0 3.0

Ar
TeV 1.91 0.341 0.945

Lemit 0.86 0.613 1.89

Table 1: The coefficients used for the insert electron temperature and attachment length correlations (Eqns. 6
and 7).

Expansion of functions of a random variable

Theorem 1. If X is a random variable that follows a normal distribution of mean µX and variance σ2
X

(X ∼ N
(
µX , σ

2
X

)
) and f : X 7→ f (X) is an arbitrary function then the mean of f (X) is given by

E [f (X)] =

N−1∑
n=0

σ2n
X (2n− 1)!!

(2n)!
f (2n) (µX)

+O
(
σ2N
X (2N − 1)!!

(2N)!
f (2N) (µX)

) (9)

Proof. The Taylor expansion of f (X) around µX is given by

f (X) =

N−1∑
k=0

1

k!
f (k) (µX) (X − µX)

k

+O
(

1

N !
f (N) (µX) (X − µX)

N

)
.

The expected value of the sum is the sum of expected values:

E [f (X)] =

N−1∑
k=0

1

k!
f (k) (µX)E

[
(X − µX)

k
]

+O
(

1

N !
f (N) (µX)E

[
(X − µX)

N
])

Because X ∼ N
(
µX , σ

2
X

)
its odd moments are zero:

∀k = 2n+ 1, n ∈ N,E
[
(X − µX)

k
]

= 0,

and its even moments are given by

∀k = 2n, n ∈ N,E
[
(X − µX)

k
]

= σkX (k − 1)!!

Replacing the k-th order moment with the two previous formulas in the Taylor expansion for the expected
value yields the theorem for the expected value of f (X).

Theorem 2. If X is a random variable that follows a normal distribution of mean µX and variance σ2
X

(X ∼ N
(
µX , σ

2
X

)
) and f : X 7→ f (X) is an arbitrary function then the variance of f (X) is approximated

by

Var [f (X)] ≈ σ2
X

(
f1 (µX)

)2
+

1

2

(
f2 (µX)

)2
σ4
X (10)
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Proof. See Ref. 36

Lemma 1. If X is a random variable that follows a normal distribution of non-zero mean µX and variance
σ2
X and σX/µX � 1, then Y = lnX can be approximated as a normal distribution of mean µY = lnµX−σ2

X/2

and variance σ2
Y = σ2

X/µ
2
X . The truncation error for the mean is equal to 3/4 (σX/µX)

4
.

Lemma 2. If X is a random variable that follows a normal distribution of non-zero mean µX and vari-
ance σ2

X and σX/µX � 1, then Y = 1/X can be approximated as a normal distribution of mean µY =
1/µX

(
1 + σ2

Xµ
2
X + 3σ4

X/µ
4
X + 15σ6

X/µ
6
X

)
and variance σ2

Y = σ2
X/µ

2
X . The truncation error for the mean is

equal to 105σ8
X/µ

9
X .

Proof. This is a direct application of Theorems 1 and 2 where f (X) = lnX and f (X) = 1/X

Validity of approximations

Because of the increasing value of the moments of a normal distribution the truncation error of the expected
value for both lnX and 1/X grows without bounds. We retain only the first few terms for the above
approximations. The approximations are valid as long as σX/µX � 1 and µX is non-zero.
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