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A statistical analysis is conducted to identify which physically relevant non-dimensional parameters influence
the total (neutral, ion, and electron) static pressure inside thermionic orificed hollow cathodes. It is critical to
uncover and order the importance of the physical mechanisms that affect the pressure inside hollow cathodes
because it influences the plasma attachment length, the electron temperature, and the sheath potential. These
plasma parameters, in turn, affect the emitter lifetime. A principal component analysis of total pressure data
obtained from the literature reveals that four non-dimensional variables can account for most of the variation
in the total-to-magnetic pressure ratio over five orders of magnitude. The relevant variables are identified with
a backward stepwise selection process and an exhaustive grid search and include, by order of importance: the
gasdynamic-to-magnetic pressure ratio, the ratio of the mass flow rate to the discharge current, the orifice-to-
insert diameter ratio, and the orifice Reynolds number. It is also shown, using various models and regression
analyses, that empirical, Poiseuille, or isentropic flow models should not be used for predictive cathode design
work. The data-driven study suggests that, while viscous effects may be important, the variation in those
effects between cathodes are negligible compared to the effects of the modification of the gas constant due to
the plasma, the transitional flow, the flux of heavy species on the orifice plate, and the Lorentz force.

I. INTRODUCTION

A variety of industrial and scientific applications use
thermionic orificed hollow cathodes: neutral beam in-
jectors for fusion devices,1–3 surface processing,4–6 and
electric space propulsion.7,8 These cathodes consist of a
hollow tube capped by an orifice plate and in which a low-
work-function material is inserted. A “keeper” electrode
is placed downstream of the cathode orifice to initiate
the discharge and to prevent high-energy ions from sput-
tering the orifice plate. The insert material is brought
to emitting temperatures with an external heater and a
neutral gas is then introduced into the tube before the
discharge is established with the keeper and an external
anode.

In the context of electric space propulsion, the reli-
able operation of hollow cathode neutralizers and plasma
sources is critical for successful long-term operation of
Hall and ion thrusters. Missions with operational life-
times of up to 100 kilo-hours9,10 without servicing and
with estimated thruster power of 100–200 kW11 (or,
equivalently, discharge currents of up to 800 A12) have
been proposed. While Hall thrusters are approaching this
power level,13–15 the lifetime of high-current cathodes has
been estimated to be only tens of kilo-hours. To enable
next-generation missions, there is a critical need to in-
crease cathode performance for the combined discharge
current and lifetime requirements.

The lifetime of thermionic orificed hollow cathodes
is limited by erosion of external surfaces, and, funda-
mentally, by the evaporation and/or sputtering of the
thermionic emitter. The attachment length, or the length

a)Electronic mail: ptaunay@princeton.edu

over which the plasma is dense enough to “absorb” all
emitted electrons, is a measure of the plasma coupling
to the emitter. Under the reasonable assumptions of
constant insert pressure and charge-exchange-dominated
ambipolar diffusion, the attachment length (defined as
the plasma density decay length scale) depends predom-
inantly on the neutral gas pressure, Pn, and the insert
geometry.16 The neutral gas pressure can be estimated
in both the cathode insert and in the orifice regions
from the total pressure and ionization fraction. The
latter may be estimated with a 0-D model (see, e.g.,
12). Methods of calculating the total pressure include:
an empirical relationship designed for a mercury hollow
cathode,17–21 isentropic22 or isothermal23,24 flow models,
Poiseuille flow theory,25–27 a modification of Poiseuille
flow theory28,29 (to take into account compressibility
and molecular flow effects), an “equivalent temperature”
or modified specific gas constant approach taking into
account the ionization fraction,23,24,30,31 and a hybrid
framework that combines scaling laws for both electron
temperature and attachment length16 with a control-
volume-based model of the insert and orifice plasma.12

The empirical models to compute the total pres-
sure suggested by Siegfried and Wilbur17–21 for mercury
hollow cathodes, and by Friedly32 and Patterson and
Fearn33 for xenon cathodes, use fits based on individual
cathodes. The resulting relationships from these mod-
els cannot be generalized to other cathodes or operating
conditions, as we later show in Section III.

The isentropic flow model of 22 relies on the assump-
tions that the flow is choked at the outlet plane, that
the flow rate is sufficient to ensure continuum flow in the
orifice region, and that both viscous losses and heat addi-
tion due to Joule heating are negligible. Similar assump-
tions are made in 23 and 24 for an isothermal flow. The
choked-flow assumption is justified as long as the ratio of

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
67

27
1

mailto:ptaunay@princeton.edu


2

upstream stagnation pressure P0 to vacuum background
pressure Pb satisfies:

P0

Pb
> G ≡

(
γ + 1

2

)γ/(γ−1)

, (1)

where γ is the ratio of heat capacities. This condition is
met for all cathodes operating in vacuum: for monatomic
propellants, γ = 5/3 and G = 2.05. Because most cath-
odes operate at an internal pressure P0 in the range of
1–100 Torr, in a vacuum chamber with Pb ≈ 10−5 Torr
or lower or in the vacuum of space, P0/Pb � G.

For most cathodes, however, the continuum assump-
tion in the orifice is not guaranteed to hold: the
Knudsen number, Kn, is in the range of 0.01–10, as
shown in Figure 2(a), which indicates that the flow
is in the transition regime from continuum to molec-
ular flow. The values shown in Figure 2(a) are com-
puted using a set of experimental data from Siegfried
and Wilbur’s cathode operating on mercury34 and argon
and xenon,21 Friedly’s cathode,32 Salhi’s cathode oper-
ating on xenon and argon,24 Domonkos’s SC012, EK6,
and AR3 cathodes,28 the T6 cathode from the Royal
Aerospace Establishment,33,35 the NSTAR and NEXIS
cathodes from the Jet Propulsion Laboratory (JPL),36–40

and the JPL 1.5 cm cathode.41,42 The neutral gas temper-
ature is estimated to be either three times the maximum
insert wall temperature (in Kelvin),25 or 3000 K if wall
temperature data are unavailable. We use the following
expression to estimate Kn:43

Kn =
Ma

Re

16

5

√
γ

2π
, (2)

where Re and Ma are the Reynolds and Mach num-
bers, respectively. We assume that the flow is sonic in
the orifice (Ma = 1). The dynamic viscosity for the
Reynolds number is calculated using results from Stiel
and Thodos44 for xenon and argon. For mercury va-
por, we use the Chapman-Enskog method applied to
the Lennard-Jones 12-6 potential (for simplicity) with
σ = 2.898 Å and ε/kB = 851.0 K45. This method pro-
duces good agreement with experimental viscosity data
for temperatures less than 1,500 K as shown in Figure 1.
We are not aware of the existence of data for tempera-
tures higher than 1,500 K for mercury.

It has been suggested that viscosity is an important
contributor to the flow dynamics inside the cathode in
2-D simulations in 39. Computed Reynolds numbers,
Re, in Figure 2(b) indicate that the flow through the
cathode can be considered laminar (Re � 1000) and
that viscous effects may be important (0.1 < Re < 10).
The assumptions required for Poiseuille flow analysis ap-
pear to be valid in the section upstream of the plasma
in the cathode tube: the flow is incompressible, fully-
developed, laminar, and with a no-slip condition at the
wall. Poiseuille flow theory, however, is not applicable
in the orifice or insert plasma regions: in the orifice re-
gion, the flow may be laminar and may feature a no-slip
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FIG. 1: Viscosity of mercury vapor computed using the
Chapman-Enskog method applied to a Lennard-Jones

12-6 potential. Experimental data from 45–49. Adapted
from “Pierre-Yves C. R. Taunay, Scaling Laws in

Orificed Thermionic Hollow Cathodes, Ph.D.
dissertation, Princeton University, 2020.”50 Copyright

2020, Pierre-Yves C. R. Taunay.

condition at the wall but it becomes compressible and is
not fully-developed. Poiseuille flow theory also assumes
adiabatic flow, which is not valid in most regions of the
cathode. The flow transitions from a low Mach number
in the insert region to a sonic condition at the orifice
outlet and therefore shows strong compressibility effects.
The length over which the flow travels before becoming
fully-developed, or “entrance length”, can be estimated
with:51

Lfd ≈ 0.06Redo (3)

The range of ratio of Lfd to the orifice length Lo is shown
in Figure 2(c) for various cathodes. For most cathodes
the effect of the orifice constriction invalidates the as-
sumption of fully-developed flow over the entire length of
the orifice. The Poiseuille flow model also does not take
into account plasma effects, and therefore fails to cap-
ture the dependence of the total pressure on gas/plasma
properties and discharge current.

More complex theoretical models such as those pro-
posed by Domonkos28,29 and Albertoni et al.,30,31 and in
our own work12 attempt to address some of the aforemen-
tioned issues. Domonkos suggests combining Poiseuille
flow with a choked flow condition at the orifice outlet,
and adds a modification to the obtained result to ac-
count for the insert-to-orifice constriction and transition
to molecular flow.

Albertoni et al.31 introduce the effect of the plasma
through the ionization fraction and electron temperature,
which are computed as part of a 0-D model. The rela-
tionship proposed by Albertoni et al. is used to compute
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FIG. 2: Range of (a) orifice Knudsen number, (b) Reynolds number for both insert and orifice, and (c) orifice
entrance length (as a fraction of total orifice length). Adapted from “Pierre-Yves C. R. Taunay, Scaling Laws in

Orificed Thermionic Hollow Cathodes, Ph.D. dissertation, Princeton University, 2020.”50 Copyright 2020,
Pierre-Yves C. R. Taunay.

the total static pressure and is valid at the orifice outlet
where choked flow conditions are assumed. This model
relies on Domonkos’s modified Poiseuille flow model to
predict the pressure drop across the orifice, and there-
fore suffers from the problems associated with violating
the required assumptions in the orifice section. Use of
the Poiseuille flow model with choked flow as a down-
stream boundary condition may also be fundamentally
inconsistent if the upstream stagnation pressure is used
in the choked flow calculation.

An analytical description of the flow within hollow
cathodes is challenging: heat addition from Joule heating
in the orifice, frozen flow and wall losses due to ionization
and plasma sheath fluxes, a transition from incompress-
ible to sonic flow over the length of a short orifice, viscous
effects, and a transition to molecular flow all complicate
the governing flow equations. We have presented a self-
consistent theoretical framework in 12 that attempts to
include some of these effects to study scaling laws for the
total pressure within cathodes. The pressure is modeled
based on the combined three-fluid flow and is shown to
be a combination of magnetic pressure, gasdynamic pres-
sure modified to take into account transitional flow and
plasma effects, and a term that corresponds to the mo-
mentum flux of heavy species on the orifice plate. The
present study is a complementary approach to the afore-
mentioned theoretical framework. Using a data-driven
perspective, our goal is to confirm the relative impor-
tance of the parameters that appear in the theoretical
derivation presented in 12.

In this work, we use a data-driven approach to identify
the physical mechanisms that influence the total static
pressure inside orificed hollow cathodes. We gather ex-
perimental data and uncover non-dimensional parame-
ters in Section II. We demonstrate in Section III that
previous empirical and theoretical models cannot account
for the variation in the total pressure data. We then

perform a statistical analysis to extract the most perti-
nent non-dimensional variables, rank their relevance, and
infer the relative importance of the controlling mecha-
nisms. We finally discuss the physical meaning of the
non-dimensional variables in Section IV and show that a
theoretical framework that accounts for the modification
of the gas constant due to the plasma, the transitional
flow, the flux of heavy species on the orifice plate, and the
Lorentz force can account for the variation in the total
pressure data.

II. PRESSURE DIMENSIONAL ANALYSIS

A. Experimental dataset

We have compiled a database of existing data from
the available literature containing 422 data points and
spanning 40 years of hollow cathode experimental work
for multiple gases (mercury, argon, xenon). The total
pressures, discharge currents, and mass flow rates are
in the range of 0.7–610 Torr, 0.5–307 A, 0.05–6.5 mg/s
(0.35–218 sccm), respectively. In addition to the existing
data, we have collected data from our own hollow cathode
(Princeton Large Hollow Cathode, PLHC)12 operating
at up to 307 A of discharge current on argon. We have
described in details the database in 52, and we give a
permanent DOI that links to the database in the “Data
Availability” section of the manuscript.

We define the pressure as the total static pressure up-
stream of the cathode emitter. That pressure is typically
measured upstream of the cathode active zone, some-
times multiple cathode lengths away from the plasma
(see, e.g., 28). In most cases, however, feed-system losses
are small. For the cathodes described in 28, the feed-
system loss is estimated to be less than 0.01% of the
measured pressure (28, p.26). For the NSTAR, NEXIS,
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JPL 1.5 cm, PLHC, Salhi’s cathodes, the pressure mea-
surement point is situated less than 20 cm away from the
cathode active zone. Assuming an upper bound for the
gas temperature (upstream of the active zone) of 1,000 K
and a Poiseuille flow model (which is valid upstream of
the active zone), the feed-system loss is estimated to be,
on average, 3%. We therefore assume that the pressure
data are representative of the total static pressure up-
stream of the active zone.

B. Π products

As observed in the experimental data, we expect the
cathode pressure to exhibit dependence on geometry,
mass flow rate, discharge current, gas species, gas tem-
perature, and viscosity. We neglect the effect of an
externally applied magnetic field on the total pressure:
Friedly32 did not observe any effect of the magnetic field
on the total pressure, and the Hall parameter in the in-
sert and orifice regions for both electrons and ions is
small.53–55 We therefore consider a general expression for
the pressure in the insert region,

P = f (do, dc, Lo, ṁ, Id,M, a, εiz, µ, µ0) , (4)

where do and dc are the orifice and insert diameters, re-
spectively, Lo is the orifice length, Id is the discharge
current, ṁ is the mass flow rate, M is the atomic mass
of the propellant considered, a is its speed of sound, εiz is
its (first ground-state electron-impact) ionization energy
in V, µ is the dynamic viscosity, and µ0 is the perme-
ability of vacuum. All quantities are in S.I. units unless
otherwise specified.

There are four physical dimensions (mass, length,
time, charge) and 11 parameters. The Buckingham Π
theorem56 indicates that there should be seven non-
dimensional Π-products. We use Ipsen’s method57 to
find the Π-products by successively eliminating physical
dimensions from Equation 4. We consider the following
Π-products:

Π1 =
P

Pmag
, (5)

Π2 =
do
dc
, (6)

Π3 =
do
Lo
, (7)

Π4 =

(
ṁe

MId

)2(
Mdo
µ0e2

)
, (8)

Π5 =
Pgd
Pmag

, (9)

Π6 =

(
Pionization

Pmag

)(
Lo
do

)
, and (10)

Π7 = Re, (11)

where we defined the magnetic and gasdynamic pres-
sures, and orifice Reynolds number as:

Pmag =
µ0I

2
d

π2d2
o

, (12)

Pgd =
4ṁa

πd2
o

, and (13)

Re =
4ṁdo
µπd2

o

, (14)

respectively. We defined an “ionization pressure” as:

Pionization =
4eεiz
πd2

oLo
. (15)

We recognize the ratio of total to magnetic pressures
in the orifice as the first Π-product. The second and
third Π-products are geometric aspect ratios. The term
(ṁe/MId) in the fourth Π-product is the total heavy-
particle number flux divided by that of electrons. It is
related to the ionization fraction and mass utilization ef-
ficiency. The second term in Π4 involves both geometry
and gas species. The fifth Π-product is the ratio of gas-
dynamic to magnetic pressures. The numerator of Π6

is the ionization energy density inside the orifice. It is
multiplied by the inverse of Π3. The seventh Π-product
is the orifice Reynolds number and accounts for viscous
effects.

The above process could be repeated using a differ-
ent order for removing the physical dimensions. This
would result in a different set of Π-products. However,
we have found that the Π-products we obtained are the
most physically meaningful.

C. Neutral gas temperature

The neutral gas temperature is necessary to calculate
the speed of sound that appears in Pgd. It is estimated
to be three times that of the insert wall temperature (in
Kelvin), Tc, as suggested in 25 (p.465). For each cathode,
we first seek an estimate of the wall temperature based on
the available data. For the NSTAR and NEXIS cathodes,
experimental and numerical fits for the wall temperature
in Kelvin are given in 58 and 25 (p.301) as:

TNSTAR [K] = 1191.6I0.0988
d , and (16)

TNEXIS [K] = 1370 + 3.971× 10−7I6
d , (17)

respectively. These fits are used when no experimental
data are directly available. Orifice plate temperature is
reported in 42 as a function of both mass flow rate and
discharge current for the JPL 1.5 cm cathode. A linear
fit captures the variation of the data:

TJPL 1.5 cm [◦C] = 1144 + 5.56Id. (18)

We use this fit for the wall temperature for the cases re-
ported in 41 because the cathodes are identical. Because
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the geometry of the AR3, EK6, and SC012 cathodes
from 28 are similar, we simply use the average value of the
available temperature data when no data are available. A
similar procedure is performed for Salhi’s cathode24 and
Siegfried’s cathode operating with noble gases,21 sepa-
rating the cases with different orifice sizes and different
operating species:

TAR3, EK6, SC012 = 980◦C, (19)

TSalhi (Ar),do=0.76mm = 891◦C, (20)

TSalhi (Ar),do=1.21mm = 999◦C, (21)

TSalhi (Xe) = 991◦C, and (22)

TSiegfried (Xe) = 1097◦C. (23)

If no temperature data are available (as is the case for
the T6 and our cathode), the temperature is estimated
to be that which yields the total discharge current from
thermionic emission:

Id = DRDT
2
c exp

(−eφw
kBTc

)
2πrcLeff, (24)

where rc is the insert radius, Leff is the attachment
length, φw is the work function, DRD is the Richardson-
Dushman constant, Tc is the wall temperature, and kB
is the Boltzmann constant. The attachment (or emis-
sion) length may be estimated to 0th order as the insert
radius:16,59 Leff ≈ rc.

III. PRESSURE STATISTICAL ANALYSIS

A. Review of previous models

We start our analysis by reviewing previous empirical
and theoretical models and demonstrating that they can-
not capture the behavior of the nondimensionalized total
pressure with operating conditions for the entire dataset.

1. Empirical models

We consider the total pressure models from Siegfried
and Wilbur,17–21 Capacci et al.,60 and Patterson and
Fearn33. The total pressure for those models is given
by

PS =
ṁA

d2
o

(β0 + β1Id) , (25)

PC =
ṁA

d2
o

(
β0 + β1Id + β2I

2
d

)
, and (26)

PP = β0 + β1ṁ+ β2ṁ
2 + β3ṁId + β4Id + β5I

2
d , (27)

respectively. The constants βk are to be determined with
a non-linear fit of the non-dimensional data. The mass
flow rate ṁA is given in units of equivalent-amperes.

We normalize the pressure models by the magnetic
pressure:

Π1S =
ṁA

Pmagd2
o

(β0 + β1Id) , (28)

Π1C =
ṁA

Pmagd2
o

(
β0 + β1Id + β2I

2
d

)
, and (29)

Π1P =
1

Pmag

(
β0 + β1ṁ+ β2ṁ

2 + β3ṁId + β4Id + β5I
2
d

)
,

(30)

and perform a non-linear fit in logarithmic space (i.e., we
fit log10 (Π1)) with the lmfit Python package61 and the
dataset described in the previous section. The R-squared
value (R2) and average total pressure error of each model
are reported in Table I. Both values are calculated with
the dimensionless and dimensional expressions, respec-
tively. The models from both Siegfried and Wilbur and
Capacci et al. converge to the same values for β0 and β1,
with β2 ≈ 0 for the latter model. They therefore have
an identical R2 and average error. The dimensionless ex-
pressions are illustrated in Figure 4, where the straight
dashed line indicates perfect agreement between experi-
mental data and model.

None of the proposed models are able to account for
the variation in the data. They all display either a high
R2 and average error, which indicates that the model is
lacking a feature necessary to account for data variation,
or have a high average error and low R2 value, indicating
poor agreement overall. These models, however, perform
better on a per-cathode basis. For example, the empirical
models feature an R2 of 0.63–0.95 and an average error
of 14.1–41.8% when applied to the T6 cathode alone.
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FIG. 3: Comparison between Π1 and its estimate as
obtained with previous empirical models.
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TABLE I: R2 and average error for the studied flow
models.

Approach Flow model R2 Average error (%)

Empirical

Siegfried and Wilbur17–21 0.89 69.0
Capacci et al.60 0.89 69.0

Patterson and Fearn33 0.48 231.3
Power law (this work) 0.97 22.7

Theoretical
Isentropic 0.36 65.1
Poiseuille 0.57 57.4

Taunay et al.12 0.98 25.4

2. Poiseuille and isentropic flow

We now consider two commonly used theoretical mod-
els for the total pressure, Poiseuille flow and isentropic
flow, as both can be expressed directly in terms of the
derived Π-products. We emphasize that the Poiseuille
flow model cannot, in practice, be applied in the orifice
for the reasons discussed in the Introduction. It is in-
structive, however, to find an expression for the ratio of
total-to-magnetic pressure that depends only on the Π-
products. The pressure expressions as derived from the
isentropic and Poiseuille models are given by:

P = Cif
ṁa

πr2
o

, and (31)

P = CP

(
Lo
ro

)1/2
1

Re1/2

ṁa

πr2
o

, (32)

respectively. The constants Cif and CP are the scaling
constants:

Cif =
1

γ

(
γ + 1

2

)γ/(γ−1)

≈ 1.23, (33)

CP = 4
√

2γ−1/2 ≈ 3.1. (34)

To obtain Equation 31 the static temperature is used in
the definition of the speed of sound. We assume that
the static temperature (and, therefore, speed of sound)
is constant in the orifice and use the orifice diameter as
the characteristic length for the orifice Reynolds number
to obtain Equation 32. The results from the isentropic
and Poiseuille flow models depend only on Π5, and on
Π3, Π5, and Π7, respectively:

Π1 = CifΠ5, (35)

Π1 = CPΠ
−1/2
3 Π5Π

−1/2
7 . (36)

Neither model includes a direct dependence on the
plasma quantities (except possibly through the gas tem-
perature and/or sound speed) and therefore neither re-
sult depends on discharge current. The R2 and average
total pressure error of each model are reported in Table I.
The low values of R2 and high average error for both
isentropic and Poiseuille flow indicate that they do not

adequately capture the variation of the total pressure in-
side hollow cathodes. The dimensionless expressions are
illustrated in Figure 4, where the straight dashed line
indicates perfect agreement between experimental data
and model.

10 0

10 1

10 2

10 3

10 4

10 5

100

101

102

103

104

105

Poiseuille

Isentropic

Γ (Π)

Π
1

FIG. 4: Comparison between Π1 and its estimate as
obtained with an isentropic (Γ (Π) = CifΠ5) and a

Poiseuille flow model (Γ (Π) = CPΠ
−1/2
3 Π5Π

−1/2
7 ).

B. Power law approach

Because both Equations 35 and 36 take the form of a
power law, we now assume a more general form for Π1

as a function of all Π-products:

Π1 = C

7∏

k=2

Π
βk−1

k = Γ (Π) , (37)

where C is a scaling constant, and the βk−1 are exponents
to be determined. After applying the base-10 logarithm
to both sides of Equation 37, we obtain a linear relation-
ship:

Y = β0 +

7∑

k=2

βk−1Xk, (38)

where Y = log10 Π1, Xk = log10 Πk, and β0 = log10 C.
Equation 38 is a multivariate linear expression, which
we fit to the experimental data using a least-squares ap-
proach. We show in Table II the least-squares coefficients
along with their 95% confidence intervals as computed
from the covariance matrix. The corresponding constant
for the power law is C = 1.16 × 107, and the power law
may be written as:

Π1 ≈ 1.2× 107 Π0.79
2 Π0.23

3 Π−0.27
4 Π0.82

5 Π0.25
6 Π0.41

7 . (39)
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FIG. 5: Proposed power law (Equation 37) applied to the entire data set:
Γ (Π) = 1.2× 107 Π0.79

2 Π0.23
3 Π−0.27

4 Π0.82
5 Π0.25

6 Π0.41
7 . Regression colorized by (a) ratio of gasdynamic to magnetic

pressure (Π5), and (b) individual cathode. The horizontal error bars in (a) represent the 95% confidence interval for
the predicted Π1 value as obtained from the bootstrap method applied to the multivariate linear regression. Figures
5(a) and (b) were adapted and reproduced (respectively) from “Pierre-Yves C. R. Taunay, Scaling Laws in Orificed
Thermionic Hollow Cathodes, Ph.D. dissertation, Princeton University, 2020.”50 Copyright 2020, Pierre-Yves C. R.

Taunay.

TABLE II: Power law coefficients and associated 95%
confidence interval.

Π-product Coefficient Lower bound Value Upper bound
— β0 6.41 7.06 7.73
Π2 β1 0.70 0.79 0.88
Π3 β2 0.13 0.23 0.33
Π4 β3 -0.44 -0.27 -0.09
Π5 β4 0.44 0.82 1.19
Π6 β5 0.06 0.25 0.45
Π7 β6 0.34 0.41 0.47

1. Qualitative analysis

The power law fit applied to the entire experimental
dataset is shown in Figures 5(a) and (b). The data col-
lapse onto a single line, indicating good agreement with
the proposed empirical relationship over a range of five
orders of magnitude of Π1. The error bars shown in Fig-
ure 5(a) indicate the 95% confidence intervals of the pre-
dicted values as obtained with the bootstrap method.
The bootstrap method consists of performing the follow-
ing steps repeatedly: (i) generate a dataset of 422 ran-
domly sampled points (with replacement) from the orig-
inal dataset, (ii) perform the least-squares regression to

obtain the βk coefficients, and (iii) calculate Π̂1 = Γ (Π),

where Π̂1 is the predicted value of Π1. We perform those
steps 50,000 times to gather statistically significant vari-

ation for Π̂1.

The groupings of data by value of Π5 in Figure 5(a)
and by cathode in Figure 5(b) show that the relationship
between Π1 and Π5 is nearly linear. This implies that
the total pressure is nearly proportional to the gasdy-
namic pressure. The cathodes that operate at high cur-
rent (> 20 A: PLHC, Friedly’s cathode, NEXIS) feature
a larger magnetic pressure contribution to the total pres-
sure than those that operate at low current (< 5 A: AR3,
EK6, SC012). Because the NSTAR, T6, Salhi’s, and
Siegfried’s cathodes all have similar dimensions, there is
an accumulation of data points at the center of the plot
(≈ 50 < Π1 < 1, 000).

2. Error analysis

The obtained R2 and average error for the least-
squares fit are reported in Table I. They are equal to
0.97 and 22.7%, respectively. Figure 6 shows the distri-
bution of the absolute value of the relative pressure error
both as a histogram and as a continuous distribution es-
timated with the Kernel Density Estimate method. It
indicates that the proposed fit is mostly within a factor
of 1.3 of the experimental data.
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0 20 40 60 80 100

0

0.02

0.038

Pressure error (%)

FIG. 6: Error histogram for the power-law fit
(Equation 37). Reproduced from “Pierre-Yves C. R.
Taunay, Scaling Laws in Orificed Thermionic Hollow
Cathodes, Ph.D. dissertation, Princeton University,
2020.”50 Copyright 2020, Pierre-Yves C. R. Taunay.

C. Statistical analysis

1. Principal Component Analysis

Principal Component Analysis (PCA) is a tool for di-
mensionality reduction. The goal of PCA is to identify
the number of relevant features from a given dataset,
as a smaller number of uncorrelated features can often
account for most of the variation within the dataset.
Figure 7 shows the explained variance as a function of
the total number of principal component variables con-
sidered. PCA calculations were performed using the
scikit-learn API62. With a single variable, the dataset
has an explained variance of 0.825, which indicates that
one parameter is enough to account for most of the vari-
ation in the data. The explained variance ceases to in-
crease for three or more dimensions which indicates that
three parameters could account for the variation in the
total pressure Π-product, Π1. The PCA parameters are
not identical to the original set of Π-products, but this
suggests that we may be able to reduce the dimension-
ality of the original set of Π-products, as they may be
correlated to one another.

2. Backward stepwise selection with randomized
Π-products

The randomized selection test consists of rearranging
the samples of one Π-product at a time at random, per-
forming a linear regression (Equation 38), and calculat-
ing both the R2 and average error. The randomization
of a superfluous Π-product has little to no effect on these
metrics. The process is repeated 1,000 times to gener-
ate representative values of R2 and average error. The
corresponding R2 and average error resulting from this
operation are shown in Table III. We observe that the

1 2 3 4 5 6

0.83

0.91

1.0

Dimensions

E
x
p
la
in
ed

va
ri
a
n
ce

FIG. 7: Explained variance for the dataset. Reproduced
from “Pierre-Yves C. R. Taunay, Scaling Laws in

Orificed Thermionic Hollow Cathodes, Ph.D.
dissertation, Princeton University, 2020.”50 Copyright

2020, Pierre-Yves C. R. Taunay.

randomizations of Π3 and Π6 have the smallest effect on
the overall fit.

The process can be repeated once these products are
discarded. We find that both Π2 and Π7 have the next
smallest effect on the fit during the second iteration and
can also be removed from the fit without introducing
large errors. The products that remain are Π4 and Π5;
the latter was shown to be qualitatively important in
Figure 5(a).

3. Exhaustive grid search

Methodology The results of the backward stepwise se-
lection can be verified with an exhaustive grid search.
We now apply the linear least-squares fit and consider
all possible variable combinations: each Π-product may
or may not be included in the power-law least-squares fit.
For the six Π-products considered (Π2 through Π7), this
corresponds to 26 = 64 combinations. In practice, we ex-
clude the case where no Π-products are included in the
least-squares fit and consider a maximum of 63 possible
combinations.

We use the Akaike information criterion63 (AIC) to
score each regression. The AIC ensures that higher com-
plexity models are appropriately penalized when models
are compared. For a linear regression, the AIC can be
written as:

AIC = 2p+N log (MSE) , (40)

where p is the total number of parameters in the regres-
sion (here, 2 to 7), N is the total number of samples used
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TABLE III: R2 and average error for the linear fit with a randomized Π-product. The calculated values for the
unperturbed fit in each iteration are shown on the “Reference” line.

Perturbed Iteration 1 Iteration 2
Π-product R2 Average error (%) R2 Average error (%)
Reference 0.98 22.7 0.978 23.5

2 0.965 30.0 0.965 29.8
3 0.978 23.6 – –
4 0.978 24.0 0.936 45.3
5 0.978 24.5 0.482 709.
6 0.979 22.4 – –
7 0.971 29.9 0.971 30.4

for scoring, and MSE is the mean squared error:

MSE =
1

N

N∑

i=1

(
Yi − Ŷi

)2

, (41)

where Ŷi is the predicted Yi as calculated from Equa-
tion 38 using the input Π-products and the coefficients
determined by each individual linear regression.

To reduce bias, we perform the grid search with a k-
fold approach where only a fraction of the entire dataset
is used at a time for a given number of variables consid-
ered. For each set of variables considered among the
63 possible combinations, the linear regression is per-
formed on a subset of the data (training phase) and is
scored on the remaining data (testing phase). This pro-
cedure is repeated k times and yields k training and k
testing fold(s), which represent fractions (k − 1) /k and
1/k of the original dataset, respectively. The reported
score is the average of all test set scores. Figure 8 il-
lustrates the procedure. The portion of the dataset that

Dataset

j = 1

j = 2

j = k

...
...

...

Train Test AIC1

AIC2

AICk

AICc =
1

k

k∑

j=1

AICj

FIG. 8: Schematic of the k-fold method for a given
possible combination c of Π-products.

is considered is also randomized (i.e., not contiguous)
to avoid bias towards any particular cathode. We use
k = 10 folds in this study.

The exhaustive grid search yields the following set of
Π-products: (Π2,Π4,Π5,Π7). The results are similar to

the first “randomization” iteration: both Π3 and Π6 are
not necessary to explain most of the variation in the data.

Restricted number of variables We now restrict the
maximum number of variables that can be included in
the regression and perform the exhaustive grid search
again. Table IV shows the Π product combination with
the “best” score and the corresponding coefficients, R2,
and average error, respectively. The results are similar
to the second iteration of the randomization process: Π2

and Π7 are shown to be the additional Π-products that
can be removed from the linear regression if the fit is
restricted to two parameters. If the maximum number
of variables is restricted to one, the remaining Π-product
is Π5. The corresponding expression is similar to that
obtained with an isentropic flow model and echoes the
near-linear relationship between Π1 and Π5: Π1 ∝ Π5.
However, the multiplicative constant obtained with the
least-squares fit is different from the theoretical value for
isentropic flow. The difference arises from the inclusion
of other plasma effects in our model.

IV. DISCUSSION

A. Physical explanation

The four dimensions removed from the original Π-
product relationship are Π2, Π3, Π6, and Π7. Because
most cathodes studied operate with xenon (identical ion-
ization energy), εiz does not show much variation in the
dataset. The remaining terms in Π6 are related to the
geometry (orifice diameter, do) and the magnetic pres-
sure and are better captured by the other geometric Π-
products (Π2 and Π3) and Π5.

The Reynolds number (Π7), cathode orifice-to-insert
diameter ratio (Π2), and cathode orifice diameter-to-
length ratio (Π3) are limited to nearly a single order of
magnitude: 90% of the calculated Reynolds numbers, Π2,
and Π3 lie between 1.3 and 15, 0.07 and 0.5, and 0.2 and
3.7, respectively. More variation in the data is needed to
assess where these Π-products are relevant.

Π4, which represents the mass utilization or ionization
fraction, and ratio of gasdynamic to magnetic pressure
(Π5) can account for most of the variation in the data.
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TABLE IV: Π-product combination for multiple maximum number of allowed Π-products.

Number of parameters Π-product set β0 β1 β2 β3 β4 β5 β6 R2 Average error (%)
1 Π5 0.64 0 0 0 0.98 0 0 0.94 45.3
≤2 Π4,Π5 3.95 0 0 -0.28 1.13 0 0 0.96 32.2
≤3 Π2,Π4,Π5 5.07 0.44 0 -0.35 1.22 0 0 0.97 30.5
≥4 Π2,Π4,Π5,Π7 5.80 0.71 0 -0.41 1.22 0 0.33 0.98 23.5

Both the gasdynamic and plasma effects are relevant in
this context and represent two mechanisms for pressure
changes due to changes in mass flow rate, current, or
both.

B. Limitations

The proposed scaling relationship and analysis are lim-
ited by the data on which they rely. The analysis does
not apply to cathodes which operate with a much longer
orifice or a propellant with a much lower ionization en-
ergy (e.g., lithium). Although the relationship spans five
orders of magnitude in variation of the non-dimensional
variables, it would be difficult to confidently extrapolate
the relationship outside the bounds of the dataset for
some of these parameters because the variation in some
Π-products (e.g., the orifice aspect ratio, Π3) is much
smaller than in others. Finally, it is likely that the true
dependence of the pressure on the Π-products does not
follow a power law. Although the latter is a simplifica-
tion, it is useful for rapid estimation of the total pressure.

C. Link to theory

Can the simplified Π-product result be derived from
theory? Using the scaling law for the total pressure in
cathodes we derived from first principles in 59 we now
attempt to obtain a semi-empirical relationship for the
non-dimensional Π-products.

1. Simple theoretical model

Under the assumption that the momentum flux of
heavy particles on the orifice plate and the magnetic pres-
sure are negligible, the scaling law for the total pressure
in cathodes we derived in 59 from the plasma momentum
balance can be written in its simplest form as:

Π1 = C (αo, Te,o, Tn,Kn, γ) Π5 (42)

where C is a scaling factor that includes transitional flow
effects and depends non-linearly on the operating condi-
tions through the orifice electron temperature, Te,o, ion-
ization fraction, αo, neutral (static) gas temperature, Tn,
and the Knudsen number. In the absence of reliable data
for the values on which the scaling factor depends, C can

be found through a fit to the entire experimental dataset
with a 95% confidence interval: Cexp ≈ 4.03± 0.22.

As suggested by the statistical analysis and shown in
Figure 9(a), Π5 is able to account for much of the vari-
ation in the data. The R2 and average error are 0.94
and 46.1%, respectively. While the relationship is sim-
ilar to the isentropic flow equation (Equation 35), the
scaling factor C (αo, Te,o, Tn,Kn, γ) differs from that ob-
tained with the isentropic flow model. The results of the
statistical analysis and Equation 42 indicate that most
of the variance in total pressure in hollow cathodes can
be accounted for by the gasdynamic pressure modified to
incorporate transitional flow effects and changes in the
gas constant due to the plasma (see, e.g., 64) through
C (αo, Te,o, Tn,Kn, γ).

2. Complete theoretical model

The total pressure inside an orificed hollow cathode
(neglecting viscosity) can be represented as a balance
between the momentum flux, gasdynamic pressure, and
magnetic pressure:59

P =

(
1

4
− ln Π2

)
Pmag+C (αo, Te,o, Tn,Kn, γ)Pgd+Pmf ,

(43)
where Pmf is the momentum flux of heavy particles on
the orifice plate. The momentum flux is given by:

Pmf =

(
r2
c

r2
o

− 1

)
ens,ins

e T ins
eV

(
1 +

ns,ins
e

nins
n

)
, (44)

where ns,ins
e is the insert sheath-edge electron density,

nins
n is the insert neutral density, and T ins

eV is the insert
electron temperature in V. Excluding the momentum flux
term, Equation 43 can be readily expressed in terms of
our Π-products:

Π1 =
1

4
− ln Π2 +C (αo, Te,o, Tn,Kn, γ) Π5 +

Pmf
Pmag

. (45)

Multiple functional forms of the momentum flux term
Pmf/Pmag can be tested and cross-validated across the
entire dataset using the k-fold and scoring methodologies
described previously. We use a power-law representation
for the momentum flux scaled by the magnetic pressure
and

(
Π−2

2 − 1
)
, to capture any other effects:

Π1 =
1

4
− ln Π2 +η0Π5 +η1

(
Π−2

2 − 1
)

Πη2
2 Πη3

3 Πη4
4 Πη5

5 Πη6
6 .

(46)
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FIG. 9: Theoretically derived expressions applied to the
entire experimental dataset. (a) Simplest model

(Equation 42) and (b) cross-validated complete model
(Equation 52). The horizontal error bars indicate the

95% confidence interval of the predicted Π1. Error bars
that are smaller than the symbol size are not shown.

Because the original theory does not consider viscosity,
we do not include the corresponding Π product (Reynolds
number, Π7) in the power law.

We perform a cross-validated non-linear fit across the
entire dataset with the lmfit Python package61 for
all possible Π-product combinations that appear in the
power law in Equation 46. The total number of combina-
tions is 32 because there are five Π products (Π2 through
Π6) and because η1 may be zero.

To help with convergence, we rescale the Π-products
that appear in the power law by their respective mean
and restrict the search range of the coefficients ηk.
Because the momentum flux on the orifice plate and(
Π−2

2 − 1
)

are positive, η1 is restricted to positive val-
ues. We search for the exponents ηk,k≥2 in the (arbitrar-

ily chosen) interval [−5, 5]. Finally, we expect η0 not to
vary by more than one order of magnitude. We therefore
restrict η0 to the 1–10 range because the scaling factor
C is equal to Ctheory ≈ 2.56+0.67

−0.55 for the following range
of typical orifice conditions: orifice electron temperature
of 2–5 eV, neutral gas temperature of 2000–4000 K, ori-
fice ionization fraction of 1–10%, and Knudsen number
of 0.1–10. To obtain this value, we computed the scaling
factor C from its theoretical expression:

C (αo, Te,o, Tn,Kn, γ) =
√

1 + αoT oe /Tn + F (Kn, γ) .
(47)

F (Kn, γ) includes transitional flow effects and is a func-
tion of the specific heat ratio and orifice Knudsen num-
ber:

F (Kn, γ) =

(
(1− θ) γ + θ

γ1/2

√
2π

(
γ + 1

2

)1/(γ−1)
)−1

,

(48)
where θ depends on the Knudsen number. It is given by
the empirical expression:65

θ =
kθKn

kθKn + 1
, (49)

where kθ = 28.
Because we perform a non-linear fit across the en-

tire dataset, an iterative algorithm is required to find
the ηk coefficients, which may yield different results de-
pending on the starting point. We also cross-validate
the model choice with multiple starting points that are
determined by first obtaining η0 from its theoretical ex-
pression (Equation 47), then using this value in a linear
regression for the momentum flux scaled by the magnetic
pressure and

(
Π−2

2 − 1
)

to determine ηk,k≥1:

Ymf = log10 (η1) +

6∑

k=2

ηkXk,mf , (50)

where Xk = log10 Πk and Ymf is given by:

Ymf = log10




Π1 −
(

1

4
− ln Π2 + η0Π5

)

(
Π−2

2 − 1
)


 . (51)

We include up to 20 sets of initial coefficients.
The resulting functional form with the best AIC score

is:

Π1 =
1

4
− ln Π2 + η0Π5 + η1

(
Π−2

2 − 1
)

Πη2
2 Πη3

3 Πη4
4 Πη6

6 .

(52)
We report the coefficients obtained from the cross-
validation procedure in Table V along with their
95% confidence intervals computed with the bootstrap
method. The R2 and average error are 0.98 and 25.4%,
respectively. The relationship as applied to the entire
normalized pressure dataset is shown in Figure 9(b).
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Most of the variation is captured by the aforementioned
relationship. Deviations from the theoretical approxima-
tion are likely due to plasma and viscous effects that are
neglected in Equation 45.

TABLE V: Coefficients for the cross-validated
theoretical form and associated 95% confidence interval
as computed with the bootstrap method. There are no
data for η5 because the corresponding Π-product is not

part of the fit that features the best AIC score.

Coefficient Lower bound Value Upper bound
η0 2.23 2.44 2.65
η1 1.84×1010 3.05×1012 1.78×1013

η2 3.33 3.54 3.80
η3 -1.67 -1.05 -0.64
η4 -0.27 -0.20 -0.10
η5 — — —
η6 0.70 0.79 0.84

V. CONCLUSION

We have performed dimensional and cross-validated
statistical analyses of orificed hollow cathode experimen-
tal pressure measurements over three orders of magnitude
(five orders of magnitude in non-dimensional space) to
explain the physical mechanisms that control the total
pressure in hollow cathodes. The dimensional analysis
indicates that the total pressure (scaled by the magnetic
pressure) depends on six non-dimensional parameters,
and a principal component analysis suggests that a sub-
set of those parameters can account for the variation in
the experimental data. We revealed, through an exhaus-
tive grid search, that the gasdynamic pressure modified
to take into account the effect of the plasma (through its
effect on the gas constant) can account for most of the
variation in the experimental pressure data. We have
performed linear and non-linear regression analyses on
the experimental data using a variety of pressure mod-
els. We have demonstrated that previous empirical and
theoretical (Poiseuille and isentropic) flow models cannot
account for the variation in the experimental data (unless
restricted to a single cathode and a substantial number of
pressure measurements are already available), and have
shown that an empirical power-law model and the theo-
retical work from 12 provide qualitative agreement over
the entire range of experimental data.

The uncertainty in the neutral gas temperature and
viscous and applied magnetic field effects (which were
not included in 12) may account for some of the discrep-
ancies observed. We estimated that the pressure drop
that occurs between the pressure measurement location
and the cathode active zone can be neglected. The pres-
sure measurement is typically performed upstream of the
insert plasma and can be multiple cathode lengths away
(see, e.g., 28). The relationships derived in this work are

therefore representative of ideal experimental conditions
in which the pressure is measured immediately upstream
of the insert plasma.

The study demonstrates that previous empirical and
theoretical (Poiseuille and isentropic) flow models should
not be used to estimate the total pressure inside hollow
cathodes, as they cannot account for the variation in the
pressure data in most instances. Although the gas flow
is laminar and with low insert and orifice Reynolds num-
ber (Re < 100), most of the variation in the data can be
accounted for without considering viscous effects. This
result does not necessarily imply that the total pressure
contribution of viscous effects is negligible. However, be-
cause of the lack of variation of the Reynolds number
in the experimental data, other parameters can more
readily account for the variation in the total pressure
data (i.e., viscous effects do not change substantially be-
tween operating conditions). As shown in our theoretical
model,12 the parameters that can account for the vari-
ation in the data include, by order of importance, the
gasdynamic pressure modified to take into account the
modification of the gas constant due to the plasma and
transitional flow effects, the momentum flux of heavy
species on the orifice plate, and the magnetic pressure
(through the Lorentz force).

DATA AVAILABILITY

The data and software that support the findings of this
study are openly available at the following DOI:

� 10.5281/zenodo.3956853: Cathode experimental
data and software to assemble the corresponding
database.

� 10.5281/zenodo.5765632: Software to reproduce
the results presented in this article.

ACKNOWLEDGMENTS

This work was supported by the Princeton Program in
Plasma Science and Technology (PPST).

1A. T. Forrester, D. M. Goebel, and J. T. Crow, Applied Physics
Letters 33, 11 (1978).

2S. Tanaka, H. Morita, and J. Sakuraba, Japanese Journal of Ap-
plied Physics 19, 1703 (1980).

3P. P. Deichuli, G. F. Abdrashitov, A. A. Ivanov, V. V. Kol-
mogorov, V. V. Mishagin, G. I. Shul’zhenko, N. V. Stupishin,
D. Beals, and R. Granetz, Review of Scientific Instruments 77,
03B514 (2006).

4Y. S. Kuo, R. F. Bunshah, and D. Okrent, Journal of Vacuum
Science & Technology A: Vacuum, Surfaces, and Films 4, 397
(1986).

5A. Lunk, Vacuum 41, 1965 (1990).
6H. Morgner, M. Neumann, S. Straach, and M. Krug, Surface and
Coatings Technology 108–109, 513 (1998).

7J. J. Szabo, B. Pote, R. Tedrake, S. Paintal, L. Byrne, V. J.
Hruby, H. Kamhawi, and T. Smith, in 52nd AIAA/SAE/ASEE
Joint Propulsion Conference & Exhibit (2016) AIAA-2016-4830.

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
67

27
1

https://doi.org/10.1063/1.90174
https://doi.org/10.1063/1.90174
https://doi.org/10.1143/JJAP.19.1703
https://doi.org/10.1143/JJAP.19.1703
https://doi.org/10.1063/1.2171754
https://doi.org/10.1063/1.2171754
https://doi.org/10.1116/1.573890
https://doi.org/10.1116/1.573890
https://doi.org/10.1116/1.573890
https://doi.org/10.1016/0042-207X(90)94146-H
https://doi.org/10.1016/S0257-8972(98)00633-1
https://doi.org/10.1016/S0257-8972(98)00633-1
https://doi.org/10.2514/6.2016-4830
https://doi.org/10.2514/6.2016-4830


13

8J. R. Brophy, Review of Scientific Instruments 73, 1071 (2002).
9D. M. Goebel and E. Chu, in 32nd International Electric Propul-
sion Conference (2011) IEPC-2011-053.

10R. Hofer, T. Randolph, D. Oh, J. Snyder, and K. de Grys, in
42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference &
Exhibit (2006) AIAA-2006-4469.

11D. L. Brown, B. E. Beal, and J. M. Haas, in IEEE Aerospace
Conference (2010).

12P.-Y. C. R. Taunay, C. J. Wordingham, and E. Y. Choueiri,
Plasma Sources Science and Technology (2021), submitted.

13S. J. Hall, B. J. Jorns, A. D. Gallimore, H. Kamhawi, T. W. Haag,
J. A. Mackey, J. H. Gilland, P. Y. Peterson, and M. Baird, in 35th

International Electric Propulsion Conference (2017) IEPC-2017-
228.

14B. Jorns, A. D. Gallimore, S. J. Hall, P. Y. Peterson, J. E.
Gilland, D. M. Goebel, R. Hofer, and I. Mikellides, in AIAA
Propulsion and Energy Forum (2018) AIAA-2018-4418.

15S. W. Shark, S. J. Hall, B. Jorns, R. R. Hofer, and D. M. Goebel,
in AIAA Propulsion and Energy Forum (2019) AIAA-2019-3809.

16C. J. Wordingham, P.-Y. C. R. Taunay, and E. Y. Choueiri,
Plasma Sources Science and Technology (2021), in press.

17D. E. Siegfried and P. J. Wilbur, in 14th International Electric
Propulsion Conference (1979) AIAA-1979-2056.

18D. E. Siegfried, A Phenomenological Model for Orificed Hollow
Cathodes, Ph.d., Colorado State University (1982).

19D. E. Siegfried and P. J. Wilbur, AIAA Journal 21, 5 (1983).
20D. E. Siegfried and P. J. Wilbur, AIAA Journal 22, 1405 (1984).
21P. J. Wilbur, “Advanced Ion Thruster Research,” Tech. Rep.

CR-168340 (NASA, 1984).
22D. E. Siegfried and P. J. Wilbur, in 13th International Electric

Propulsion Conference (1978) AIAA-1978-0705.
23A. Salhi and P. J. Turchi, in 23rd International Electric Propul-

sion Conference (1993) IEPC-1993-024.
24A. Salhi, Theoretical and experimental studies of orificed, hollow

cathode operation, Ph.d., The Ohio State University (1993).
25D. Goebel and I. Katz, Fundamentals of Electric Propulsion: Ion

and Hall Thrusters (John Wiley & Sons, Inc., 2008).
26J. P. Mizrahi, V. Vekselman, Y. Krasik, and V. Gurovich, in 32nd

International Electric Propulsion Conference (2011) IEPC-2011-
334.

27J. Mizrahi, V. Vekselman, V. Gurovich, and Y. E. Krasik, Journal
of Propulsion and Power 28, 1134 (2012).

28M. T. Domonkos, Evaluation of low-current orificed hollow cath-
odes, Ph.d., University of Michigan (1999).

29M. T. Domonkos, in 38th AIAA/ASME/SAE/ASEE Joint
Propulsion Conference & Exhibit (2002) AIAA-2002-4240.

30R. Albertoni, Cathode Processes in MPD Thrusters, Ph. d., Uni-
versita Degli Studi di Pisa (2012).

31R. Albertoni, D. Pedrini, F. Paganucci, and M. Andrenucci, IEEE
Transactions on Plasma Science 41, 1731 (2013).

32V. J. Friedly, Hollow Cathode Operation at High Discharge Cur-
rents, Master’s thesis, Colorado State University (1990), M.Sc.

33S. W. Patterson and D. G. Fearn, in 26th International Electric
Propulsion Conference (1999) pp. 695–702, IEPC-1999-125.

34P. J. Wilbur, “Ion and Advanced Electric Thruster Research,”
Tech. Rep. CR-165253 (NASA, 1980).

35D. G. Fearn and S. W. Patterson, in 34th

AIAA/ASME/SAE/ASEE Joint Propulsion Conference &
Exhibit (1998) AIAA-1998-3346.

36D. M. Goebel, K. K. Jameson, and I. Katz, in 40th

AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Ex-
hibit (2004) AIAA-2004-3430.

37K. K. Jameson, D. M. Goebel, and R. M. Watkins, in 41st

AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Ex-
hibit (2005) AIAA-2005-3667.

38K. K. Jameson, D. M. Goebel, and R. M. Watkins, in 29th Inter-
national Electric Propulsion Conference (2005) IEPC-2005-269.

39I. G. Mikellides, Physics of Plasmas 16 (2009),
10.1063/1.3056397.

40J. Polk, A. Grubisic, N. Taheri, D. M. Goebel, and S. E. Horn-
beck, in 41st AIAA/ASME/SAE/ASEE Joint Propulsion Con-
ference & Exhibit (2005) AIAA-2005-4398.

41G. Becatti, D. M. Goebel, J. E. Polk, and P. Guerrero, Journal
of Propulsion and Power 34, 893 (2017).

42E. Chu and D. M. Goebel, IEEE Transactions on Plasma Science
40, 2133 (2012).

43This expression can be derived from kinetic theory by assuming
a hard-sphere potential for the gas. The mean free path and
dynamic viscosity are then given by (see, e.g., 66 pp. 359, 430)

λ = m/
(√

2πσ2ρ
)

and µ = 5/
(
16πσ2

)√
πmkBT , respectively,

where m is the gas atomic mass, ρ the gas mass density, σ the
interatomic distance, kB the Boltzmann constant, and T the gas
temperature.

44L. I. Stiel and G. Thodos, A.I.Ch.E. Journal 7, 611 (1961).
45L. F. Epstein and M. D. Powers, The Journal of Physical Chem-

istry 57, 336 (1953).
46N. B. Vargaftik, Tables on the thermophysical properties of liq-

uids and gases, 2nd ed. (Hemisphere Publishing Corp., Washing-
ton, DC, 1975) p.152.

47H. v. Tippelskirch, E. U. Franck, F. Hensel, and J. Kestin,
Berichte der Bunsengesellschaft für Physikalische Chemie 79, 889
(1975).

48A. I. Ivanov, V. E. Lyusternik, and L. R. Fokin, Journal of En-
gineering Physics 39, 1360 (1980).

49V. N. Popov, High Temperature 50, 700 (2012).
50P.-Y. C. R. Taunay, Scaling Laws in Orificed Thermionic Hollow

Cathodes, Ph.d., Princeton University (2020).
51F. White, Fluid Mechanics, Sixth Edition (McGraw-Hill Higher

Education, 2008) p. 347.
52P.-Y. C. R. Taunay, C. J. Wordingham, and E. Y. Choueiri, in

AIAA Propulsion and Energy Forum (2020) AIAA-2020-3638.
53I. G. Mikellides, I. Katz, D. M. Goebel, and J. E. Polk, Journal

of Applied Physics 98, 113303 (2005).
54L. Cassady, Lithium-fed Arc Multichannel and Single-Channel

Hollow Cathode: Experiment and Theory, Ph.D. thesis, Prince-
ton University (2006), p.15.

55G. Sary, L. Garrigues, and J.-P. Boeuf, Plasma Sources Science
and Technology 26, 55007 (2017).

56E. Buckingham, Physical Review 4, 345 (1914).
57E. C. Ipsen, Units, Dimensions, and Dimensionless Numbers

(McGraw-Hill, 1960).
58D. M. Goebel, I. Katz, J. E. Polk, I. G. Mikellides, K. K. Jame-

son, T. Liu, and R. Dougherty, in Space Conference & Exhibit
(2004) AIAA-2004-5911.

59P.-Y. C. R. Taunay, C. J. Wordingham, and E. Y. Choueiri,
Plasma Sources Science and Technology (2021), submitted.

60M. Capacci, M. Minucci, and A. Severi, in 33rd

AIAA/ASME/SAE/ASEE Joint Propulsion Conference &
Exhibit (1997) AIAA-1997-2791.

61M. Newville, T. Stensitzki, D. B. Allen, and A. Ingargiola, “LM-
FIT: Non-Linear Least-Square Minimization and Curve-Fitting
for Python,” (2014).

62F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, Journal of Machine Learning Research 12,
2825 (2011).

63H. Akaike, IEEE Transactions on Automatic Control 19, 716
(1974).

64C. H. Chang and E. Pfender, Plasma Chemistry and Plasma
Processing 10, 473 (1990).

65D. J. Santeler, Journal of Vacuum Science & Technology A: Vac-
uum, Surfaces, and Films 4, 348 (1986).

66D. A. McQuarrie, Statistical Mechanics (Harper’s Chemistry Se-
ries, 1976).

Th
is 

is 
the

 au
tho

r’s
 pe

er
 re

vie
we

d, 
ac

ce
pte

d m
an

us
cri

pt.
 H

ow
ev

er
, th

e o
nli

ne
 ve

rsi
on

 of
 re

co
rd

 w
ill 

be
 di

ffe
re

nt 
fro

m 
thi

s v
er

sio
n o

nc
e i

t h
as

 be
en

 co
py

ed
ite

d a
nd

 ty
pe

se
t.

PL
EA

SE
 C

IT
E 

TH
IS

 A
RT

IC
LE

 A
S 

DO
I: 

10
.10

63
/5.

00
67

27
1

https://doi.org/10.1063/1.1432470
http://electricrocket.org/IEPC/IEPC-2011-053.pdf
http://electricrocket.org/IEPC/IEPC-2011-053.pdf
https://doi.org/10.2514/6.2006-4469
https://doi.org/10.2514/6.2006-4469
https://doi.org/10.1109/AERO.2010.5447035
https://doi.org/10.1109/AERO.2010.5447035
http://electricrocket.org/IEPC/IEPC_2017_228.pdf
http://electricrocket.org/IEPC/IEPC_2017_228.pdf
https://doi.org/10.2514/6.2018-4418
https://doi.org/10.2514/6.2018-4418
https://doi.org/10.2514/6.2019-3809
https://doi.org/10.2514/6.1979-2056
https://doi.org/10.2514/6.1979-2056
https://doi.org/10.2514/3.8022
https://doi.org/10.2514/3.8796
https://ntrs.nasa.gov/citations/19840011399
https://doi.org/10.2514/6.1978-705
https://doi.org/10.2514/6.1978-705
http://electricrocket.org/IEPC/IEPC1993-024.pdf
http://electricrocket.org/IEPC/IEPC1993-024.pdf
http://electricrocket.org/IEPC/IEPC-2011-334.pdf
http://electricrocket.org/IEPC/IEPC-2011-334.pdf
https://doi.org/10.2514/1.B34406
https://doi.org/10.2514/1.B34406
https://doi.org/10.2514/6.2002-4240
https://doi.org/10.2514/6.2002-4240
https://doi.org/10.1109/TPS.2013.2266512
https://doi.org/10.1109/TPS.2013.2266512
http://electricrocket.org/IEPC/9125.pdf
http://electricrocket.org/IEPC/9125.pdf
https://ntrs.nasa.gov/citations/19810016609
https://ntrs.nasa.gov/citations/19810016609
https://doi.org/10.2514/6.1998-3346
https://doi.org/10.2514/6.1998-3346
https://doi.org/10.2514/6.1998-3346
https://doi.org/10.2514/6.2004-3430
https://doi.org/10.2514/6.2004-3430
https://doi.org/10.2514/6.2004-3430
https://doi.org/10.2514/6.2005-3667
https://doi.org/10.2514/6.2005-3667
https://doi.org/10.2514/6.2005-3667
http://electricrocket.org/IEPC/269.pdf
http://electricrocket.org/IEPC/269.pdf
https://doi.org/10.1063/1.3056397
https://doi.org/10.1063/1.3056397
https://doi.org/10.2514/1.b36659
https://doi.org/10.2514/1.b36659
https://doi.org/10.1109/TPS.2012.2206832
https://doi.org/10.1109/TPS.2012.2206832
https://doi.org/10.1002/aic.690070416
https://doi.org/10.1021/j150504a019
https://doi.org/10.1021/j150504a019
https://doi.org/10.1002/bbpc.19750791011
https://doi.org/10.1002/bbpc.19750791011
https://doi.org/10.1007/BF00825710
https://doi.org/10.1007/BF00825710
https://doi.org/10.1134/S0018151X12050161
https://doi.org/10.2514/6.2020-3638
https://doi.org/10.1063/1.2135409
https://doi.org/10.1063/1.2135409
https://doi.org/10.1088/1361-6595/aa6217
https://doi.org/10.1088/1361-6595/aa6217
https://doi.org/10.1103/PhysRev.4.345
https://doi.org/10.2514/6.2004-5911
https://doi.org/10.2514/6.1997-2791
https://doi.org/10.2514/6.1997-2791
https://doi.org/10.2514/6.1997-2791
https://doi.org/10.5281/zenodo.11813
https://doi.org/10.5281/zenodo.11813
https://doi.org/10.5281/zenodo.11813
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1007/BF01447204
https://doi.org/10.1007/BF01447204
https://doi.org/10.1116/1.573925
https://doi.org/10.1116/1.573925

	Total pressure in thermionic orificed hollow cathodes: controlling mechanisms and their relative importance
	Abstract
	Introduction
	Pressure dimensional analysis
	Experimental dataset
	 products
	Neutral gas temperature

	Pressure statistical analysis
	Review of previous models
	Empirical models
	Poiseuille and isentropic flow

	Power law approach
	Qualitative analysis
	Error analysis

	Statistical analysis
	Principal Component Analysis
	Backward stepwise selection with randomized -products
	Exhaustive grid search


	Discussion
	Physical explanation
	Limitations
	Link to theory
	Simple theoretical model
	Complete theoretical model


	Conclusion
	Data availability
	Acknowledgments


