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A 0-D model for orificed hollow cathodes with
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A scaling relationship for the total pressure inside orificed hollow cathodes is derived
from a theoretical zero-dimensional model from which plasma quantities are computed,
including the total pressure. The variation of total pressure with controllable parameters
must be properly evaluated because it is critical for determining the lifetime of thermionic
inserts. The model is based on the conservation of energy and momentum for the combined
plasma-neutral fluid and on the assumption of charge-exchange-dominated ambipolar dif-
fusion in the insert region plasma. The controllable inputs of the model are the cathode
geometry, the gas species used, and the operating conditions (discharge current and mass
flow rate). The neutral gas temperature and sheath potential are two non-controllable
parameters. Good agreement is obtained with pressure data from the literature and new
experimental total pressure data measured at up to 300 A of discharge current in a large
hollow cathode. A scaling relationship for the total pressure is derived from the plasma
fluid momentum balance and the numerical results of the theoretical model. The total
pressure is found to scale with the square of the mass flow rate multiplied by a weak func-
tion of discharge current, and with the square of the discharge current. The nature of the
scaling is interpreted physically to be due to the relative importance of the magnetic pres-
sure and the gasdynamic pressure modified to take into account the plasma contribution
to the orifice speed of sound.

List of Symbols

Constants

µ0 Permeability of vacuum 4π × 10−7 H/m

C Electron-ion collision frequency constant
2.9× 10−12

e Elementary charge 1.602× 10−19 C

kB Boltzmann’s constant 1.38× 10−23 J/K

m Electron mass 9.1× 10−31 kg

Circuit parameters

Id Discharge current A

Rp Plasma resistance Ω

Geometry

Lemit Emission length m

Lo Orifice length m

rc Cathode (insert) radius m

ro Orifice radius m

Plasma parameters

α Ionization fraction

ln Λ Coulomb Logarithm

φs Sheath potential V

fs Ratio of sheath-edge to volume-average elec-
tron density

Ii Ion current A

Ir Random electron current A
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Iem Thermionic current A

ne Electron density m−3

nse Sheath-edge electron density m−3

ng Neutral gas density m−3

Te Electron temperature K

Tg Neutral gas temperature K

TeV Electron temperature V

vB Bohm velocity m/s

Collisions

νei Electron-ion collision frequency s

νen Electron-neutral collision frequency s

σen Electron-neutral collision cross section m2

σex Excitation cross section m2

σiz Ionization cross section m2

Thermionic emission

φw Surface work function V

DRD Richardson-Dushman constant A/(m2·K2)

Tc Cathode wall temperature K

Gas properties

εi Ionization energy eV

εex Excitation energy eV

M Ion or neutral particle mass kg

Flow properties

ṁ Mass flow rate kg/s

γ Ratio of heat capacities

vg Neutral fluid velocity m/s

vi Ion fluid velocity m/s

v Mean mass fluid velocity m/s

ρ Mean mass density kg/m3

Kn Knudsen number

Re Reynolds number

a Speed of sound m/s

P Total pressure Pa

Pexit Orifice outlet exit pressure Pa

Pgd Gasdynamic pressure Pa

Pmag Magnetic pressure Pa

Pmf Orifice plate momentum flux Pa

Rg Gas constant J/(kg·K)

I. Introduction

Reliable operation of hollow cathode electron sources is critical for successful long-term operation of
Hall and ion thrusters. Both lifetime and operational power requirements for these thrusters continue
to increase. “Near-term” next-generation thrusters are expected to operate at discharge powers of 100 −
200 kW1 with proposed missions that require operational lifetimes of up to 100 kh.2,3 Cathode discharge
currents approaching 700 A may be required4,5 for specific impulses in the range of 2000 to 6000 s. Existing
thrusters are starting to approach or exceed this power level.6,7 Discharge currents of up to 400 A have been
demonstrated,8,9 with expected cathode lifetime in the range of 10 to 20 kh.9 However, without experimental
measurements of the emitter temperature profile and internal axial plasma density profile, it is challenging
to predict the operational lifetime. Robust cathode models that are widely-applicable and that do not use
cathode-specific experimental data for input are necessary for the development of next-generation hollow
cathodes.

The neutral gas pressure in an orificed hollow cathode affects physical quantities such as the ratio of
sheath-edge plasma density to average plasma density and electron temperature,10,11 and, therefore, the
total lifetime of the insert. The electron temperature depends only on the geometry of the cathode and
the neutral gas density (or pressure for a constant temperature) if ambipolar diffusion is assumed to be
charge-exchange-dominated.11 It is critical to obtain an accurate value of the neutral gas pressure to ensure
that the lifetime of the thermionic insert is maximized. To estimate the neutral gas pressure, both the
total pressure and ionization fraction can be used. Multiple models exist to estimate the total pressure:
empirical relationships, designed for a mercury hollow cathode12–17 or based on the available data from the
literature,18 isentropic19 or isothermal20,21 flow approaches, Poiseuille flow theory,22–24 a modification of
Poiseuille flow theory,25,26 and an “equivalent temperature” or modified specific gas constant taking into
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account the ionization fraction.20,21,27,28 The ionization fraction may be estimated through a zero-dimension
model.

We have shown in Ref. 18 that the empirical relationship developed by Siegfried et al. does not generalize
to other cathodes and that the assumptions of isentropic, isothermal, or viscous Poiseuille flow are invalid in
the flow regime in which cathodes operate. The empirical relationship we proposed in Ref. 18 covers available
data from the literature but may not generalize to new designs unless they are similar to cathodes included
in the analysis used to derive the relationship. It is also limited by its data-driven approach which does not
explain the physical phenomena governing the total pressure in orificed hollow cathodes. In our extensive
review of 0-D cathode models10 we have also shown that current models cannot be applied to cathodes that
are different from the design for which they were originally developed. It is therefore not possible to use
those models to estimate the ionization fraction for a wide variety of cathodes and operating conditions.

In this work, we propose a theoretical zero-dimension model to calculate all plasma quantities in a cathode
that addresses the critical issues of 0-D models found in Ref. 10. The model is based on conservation of energy
for the electron fluid, conservation of momentum for the plasma fluid (both neutral and charged particles),
and electron temperature and attachment length results from Ref. 11. We first present our experimental
setup and discuss the assumptions of the theoretical model. We then delineate the theoretical model and
show that our results agree with experimental data on a variety of cathodes. We finally use the model to
derive a scaling relationship for the total pressure and we interpret the physical nature of this scaling.

II. Experimental setup

A. Cathode configuration

The Princeton large hollow cathode (PLHC) is a 20 cm long (8-in.) cathode with an inner bore of 3.26 cm
(1.284-in.). The cathode material is AXM-5Q POCO graphite. The PLHC features a 2.715 cm inner
diameter, 8.04 cm long lanthanum hexaboride (LaB6) insert. The insert is heated via an external graphite
heater described in Ref. 29. A heat shield made of multiple layers of 200 µm (0.008-in.) thick grafoil and
of 50 µm (0.002-in.) thick molybdenum is used to reduce radiative heat loss. The cathode has a tungsten
orifice plate which is 1.5 mm thick and which has a 5.6 mm (7/32-in.) diameter orifice. The cathode is
mounted on a block of 253MA stainless steel and is held in place by a clamp ring of the same material.
Interfaces between materials are sealed with graphite gaskets.

In front of the cathode is a 6.35 mm (1/4-in.) thick graphite keeper plate with a 9.52 mm (3/8-in.)
diameter orifice and a water-cooled, aluminum anode. Figure 1a shows the cathode, anode, and heater. The
cathode with keeper and heat shielding installed is shown in Fig. 1b.

20 cm
(8 in.)

(a) Cathode without heat shield.
(b) Cathode with heat shield.

Figure 1: Princeton large hollow cathode.
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B. Facilities

The cathode is installed in a 2 m diameter by 5 m long vacuum vessel evacuated to less than 7× 10−5 Torr
without gas flow, or 2×10−4 Torr at the maximum tested flow rate (290 sccm of argon). The graphite heater
is powered by a 13.3 kW American Reliance power supply with a maximum output of 32 V or 400 A. In all
of our experiments the cathode operates in triode mode (cathode, keeper, anode). The cathode discharge is
sustained by a 30 kW Miller SRS-1000-C1 welding power supply configured for a maximum output of 150 V
or 500 A. A 50 Ω resistor is used upstream of the keeper to limit the total keeper current to 3 A. The total
current from the power supply is controlled with a manual dial. An electrical diagram of the setup is shown
in Fig. 2. The experimental circuit features current shunts Rc, Ra, Rk, and Rh that are used to measure the
current flowing through the cathode, anode, keeper, and heater, respectively.

50
Ω

150 V/500 A
30 kW

Ra

Rk

Rc

Heater

32 V/400 A
13.3 kW

Rh

Cathode

Keeper

Anode

Figure 2: Electrical diagram of the experiment.

C. Measurement system

We measure the total pressure upstream of the cathode with a Posifa PVC1000 Pirani gauge connected to
the stainless steel support block through a 3/8-in. NPT fitting. The pressure tap is located approximately
22 cm (8.75 in.) from the upstream surface of the cathode orifice. The housing of the Pirani gauge is
water-cooled to keep the gauge below its maximum operating temperature. The Pirani gauge is powered by
a custom-built ultra-precision constant-current power supply (6.7 mA). We calculate the pressure using the
measured resistance of the MEMS gauge resistor. The gauge was calibrated to within ±0.1 Torr for argon
gas with a separate MKS baratron gauge.

A National Instruments (NI) NI-9206 data acquisition system (DAQ) is used to perform differential
voltage measurement across the Pirani gauge and current shunts. The NI-9206 is attached to a NI-cDAQ
9274 chassis which is used to communicate via USB to a computer. The voltage difference across each current
shunt is amplified by an AD623 instrumentation amplifier before being measured by the DAQ. Special care is
taken for the high-side current shunts (keeper and anode); because the operating voltages of both the anode
and keeper are higher than that tolerated by our DAQ, we isolate these measurements with an HCPL-7520
isolation amplifier.
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III. Theory

In this section we present a theoretical framework to explain the variation of total pressure with mass
flow rate, discharge current, cathode geometry, and gas species. The main assumptions for our analysis are
given in the following section. We then delineate the fluid and plasma models.

A. Assumptions

We make the following assumptions:

1. The plasma is treated as a continuum fluid in the insert and orifice regions.

2. The heavy-particle stagnation temperature in both regions is constant and is a free parameter.

3. The flow in the orifice is frozen.

4. The total static pressure is constant in the insert region.

5. The flux of ions to the walls is equal to the Bohm flux and is not modified by the presence of an
emitting sheath.

6. The fluid is inviscid.

7. The electron temperature is constant in each region.

8. The electron inertia is negligible compared to that of the heavy species.

9. Inelastic collisions other than direct ionization and ground-state excitation are ignored.

10. Steady-state conditions are reached.

Our first assumption is justified for cathodes with a small orifice-to-insert diameter ratio (i.e., most orificed
hollow cathodes).18 The Knudsen number is generally less than 1 for those cathodes. This assumption is
invalid when the flow becomes molecular, such as in the downstream portion of the orifice, in cathodes that
have an orifice-to-insert diameter ratio close to 1 (i.e., tube cathodes), and in cathodes with a low mass
flow rate. We use empirical corrections to compensate for transitional flow effects at the orifice outlet. The
second assumption implies that the ion and neutral static temperatures are equal, which is justified because
of the large cross section for resonant charge exchange between heavy species in noble gases. We specify
the static temperature in the orifice region and calculate the stagnation temperature under the assumption
of an adiabatic flow. It is challenging to experimentally obtain the temperature of the neutral particles or
ions in either the insert or orifice regions, and it is therefore difficult to evaluate the validity of the second
assumption. This assumption is nonetheless used in most cathode models.19,22–24,30–35

Because the mean free path for inelastic electron-neutral collisions is much larger than the orifice size,
and because the residency time is smaller than the time between inelastic collisions for neutral particles in
the orifice, the assumption of frozen flow (assumption 3) is justified. The ratio of mean free path to orifice
length Lo and the ratio of inter-collision time to residency time for the neutrals are given by

λ̄ =
1

neσ (TeV )Lo
, (1)

and

τ̄ =
vg
Lo

1

ne 〈σ (TeV ) v〉
=
vg
ve
λ̄, (2)

respectively. ne is the electron density, σ is the inelastic reaction cross section, TeV is the electron tempera-
ture, vg is the local sound speed, and ve is the average electron velocity. Figure 3 shows the two ratios for
xenon and two orifice aspect ratios Λor (orifice length over orifice diameter), where we assume a gas temper-
ature of 2,000 K to calculate the speed of sound. The electron temperature is calculated from the neutral
gas density using the ambipolar diffusion model from Ref. 11. The excitation cross section is computed from
the sum of all excited states. The mean free path for inelastic collisions is much longer than the orifice
length for all neutral densities of interest. As indicated by the variation of the ratio of inter-collision time to
neutral gas residency time, the frozen flow approximation may be challenged for large orifice aspect ratios.
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Figure 3: Left: Ratio of mean free path to orifice length for total inelastic electron-neutral collisions. Right:
ratio of inter-collision time to neutral gas residency time.

The likelihood that a neutral atom undergoes many inelastic collisions before exiting the orifice channel is
then very high. In general, however, this approximation allows us to provide a bound on the flow variables.

Assuming a constant total static pressure (assumption 4) in the insert region is justified because pressure
gradients are small in the insert region for cathodes with small orifice-to-insert-diameter ratio. We note,
however, that pressure gradients occur near the orifice inlet, where the flow is constricted. The flow gains
kinetic energy at the expense of pressure energy in this region. The pressure difference between the upstream
section and the orifice plate results in an additional force which increases the momentum flux through the
orifice.36 Ignoring this effect should result in an under-prediction of the total pressure.

It is necessary to estimate the flux of ions to the walls to include particle effects in the fluid model.
Assuming that ions achieve the Bohm velocity at the edge of an emitting sheath (assumption 5) is not
necessarily justified10 but it is a common assumption to all cathode models. Using the model from Ref. 37
it is possible to estimate the modification of the Bohm velocity by an emitting sheath. For typical cathode
current densities, the presence of an emitting sheath may modify the Bohm velocity by up to 20%.

Neglecting the viscosity (assumption 6) is motivated by the statistical analysis presented in Ref. 18. This
study showed that viscous effects on the total pressure are likely negligible as compared to gasdynamic and
plasma effects. Viscosity can nonetheless be implemented by considering that most of the viscous losses come
from the feed system. Experimental measurements of the pressure data we used are gathered upstream of
the insert region (sometimes multiple cathode lengths away, see, e.g., Ref. 25). This means that the viscous
pressure drop within the feed system contributes to the measured total pressure. A Poiseuille flow assumption
is justified in this section: the flow is neutral, isothermal, viscous, laminar, incompressible, fully-developed,
and not near a constriction. We use the heavy-particle temperature as the effective gas temperature when
estimating the viscous losses in the feed system.

Experimental data13,21,38–40 suggest that the assumption of constant electron temperature (assumption 7)
in the insert region is appropriate. We do not expect large gradients in electron temperature the orifice region.
In effect, this assumption means that the fluid is isothermal in each individual region.

B. Fluid model

We use the two-dimensional axisymmetric momentum equations for each species, applied to the geometry
shown in Fig. 4. Boundaries II, III, and IV are chosen to be at the sheath edge. The emission length,
Lemit, is the length over which the plasma is able to support temperature-limited thermionic emission. We
approximate this length with the plasma density decay length scale in the axial direction, as calculated in
Ref. 11. The emission length is smaller the insert length and we consider that the fluid is neutral upstream
of the emission zone.

The momentum equations for each species are summed to provide a simpler single-fluid framework. Under
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Cathode tube

Insert / Emitter

Lemit Lo

2rc 2roI

II III

IV V

Figure 4: Fluid control volume considered in the analysis.

the assumptions delineated in the previous section, we obtain:

∇ · (ρvv) +∇P = ∇ · β, (3)

where v is the mean mass velocity of the combined fluid, ρ its density, and β the magnetic stress tensor. P

is the total static pressure. Equation 3 may also be written as

∇ · (Mngvgvg +Mnevivi) +∇P = ∇ · β, (4)

where the subscripts g, e, and i denote neutral, electron, and ion quantities, respectively. nx and vx are the
number density and velocity of the species x, respectively. M is the mass of the heavy particles.

To satisfy conservation of mass, ions return to the control volume as neutrals after having recombined on
any of the sheath-facing surfaces (II, III, and IV). The flux of each species is therefore equal in magnitude
and opposite in direction:

ngvg = −nsevB , (5)

where nse is the electron density at the sheath edge.
An upper-bound on the magnetic pressure on surfaces III and V can be obtained by considering that the

magnetic field B on these surfaces is due only to the current flowing through the orifice, which is assumed
to be purely axial. The magnetic field is then purely azimuthal:

B = (0, Bθ, 0)(r̂,θ̂,ẑ) . (6)

The magnetic stress tensor can then be expressed as:41

β =

−B2
θ/2µ0 0 0

0 B2
θ/2µ0r

2 0

0 0 −B2
θ/2µ0

 , (7)

where µ0 is the permeability of vacuum. The azimuthal component of the magnetic field can be estimated
by further assuming constant current density in the orifice:

Bθ =


−µ0Id

2πr
if r > ro

−µ0Id
2πr2

o

r if r < ro

(8)

where ro is the orifice radius and Id is the discharge current.
We integrate Equation 4 over the volume shown in Fig. 4, and apply Gauss’s theorem. In the z-direction,

we obtain:

−
[
πr2
cP
]
I

+ π
(
r2
c − r2

o

) [
P +Mnsev

2
B

(
nse
ng

+ 1

)]
III

+ πr2
o

[
ρv2
z + P

]
V

= −µ0I
2
d

4π

(
ln
rc
ro

+
1

4

)
, (9)
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where rc is the insert radius and vz is the fluid velocity on the surface V. To obtain Eqn. 9 we further
assumed that

• the upstream momentum is negligible as compared to the static pressure contribution,

• surface quantities other than the magnetic field are constant over their respective surfaces,

• the heavy particles have equal tangential velocity on each surface, and

• the radial velocity of the heavy particles on surface V is much smaller than the axial one.

The third assumption combined with the flux condition given in Eqn. 5 causes the cross-term in the dyad
product to vanish. For example, on surface II, the cross-term resulting from the momentum balance in the
axial direction is

D = Mnsevi,rvi,z +Mngvg,rvg,z.

Because the particle fluxes normal to the wall are equal in magnitude and in opposite direction (Eqn. 5), we
have

D = MnsevB (vi,z − vg,z) .
The assumption of equal tangential velocity, motivated by frequent collisions between ions and neutrals,
implies that vi,z = vg,z on this surface. The dyad terms then simplify to zero. �

Outlet (V) The frozen-flow approximation allows us to define the Mach number and specific heat ratio
γ. Under this assumption, the flow is choked and becomes sonic at the exit of the orifice because it expands
into a vacuum. The flow velocity is therefore given by the local speed of sound a for the combined fluid:

vz,V = a =
√
γRg (Tg + αTe), (10)

where Rg is the gas constant of neutral species, α is the ionization fraction, and Tg and Te are the neutral
and electron temperatures in Kelvin, respectively. This expression can be readily derived for an ideal gas
where a =

√
γP/ρ. The ionization fraction is defined as:

α =
ne

ne + ng
. (11)

Using the conservation of mass, we also have πr2
o (ρvz)V = ṁ.

Because the Knudsen number in the orifice, Kn, is within the range of 0.1 – 10 the flow is considered
transitional. We therefore estimate PV with a molecular flow correction. We use a similar framework to
Refs. 42–44. Under the assumption that the pressure downstream of the cathode orifice (vacuum vessel
pressure) is much smaller than the exit plane pressure, the stagnation pressure P ∗V is given by

P ∗V =
Q̇

(θCm + (1− θ)Cv)
, (12)

where Q̇ is the total throughput and Cm and Cv are the molecular flow and viscous flow aperture conduc-
tances, respectively. The linear weight θ is a function of the Knudsen number. The expression proposed in
Ref. 42 can be written as suggested by Refs. 43 and 44:

θ =
kθKn

kθKn + 1
, (13)

where kθ = 28. This value of kθ corresponds to equal weighing of molecular and viscous flows (θ ≈ 0.5)
when the average pressure in the orifice is equal to the midpoint pressure of the transition range.42 This
corresponds to Kn ≈ 0.04. The throughput and the conductance of the orifice aperture for the flow is given
by

Q̇ =
kB
M
Tg

(
γ + 1

2

)
ṁ, and (14)

Ca = πr2
o

√(
γ + 1

2

)
kBTg
2πM

, (15)
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respectively. The (γ + 1) /2 term comes from the conversion from static to stagnation quantities in the insert
region. Because the throughput is referenced to upstream stagnation quantities, the plasma contribution to
the sound speed does not appear in Q̇. The molecular and viscous flow conductances are42,43

Cm = Ca

(
2

γ + 1

)1/2

, and (16)

Cv =
√

2π

(
γ

(
2

γ + 1

)(γ+1)/(γ−1)
)1/2

Ca, (17)

respectively. The static pressure on surface V is retrieved from the definition of the stagnation pressure at
a Mach number of 1:

PV = P ∗V

(
2

γ + 1

)γ/γ−1

. (18)

Orifice plate (III) Because we have assumed a constant total pressure in the insert volume, the total
static pressure on the orifice plate is equal to that at the inlet: PIII = PI.

Combined expression We reorganize Equation 9 to obtain an expression for the total (static) pressure:

P = Pmag + Pgd + Pmf + Pexit (19)

where Pmag, Pgd, Pmf , Pexit are the magnetic pressure on surfaces III and V, gasdynamic pressure contribu-
tion, orifice plate momentum flux, and orifice outlet exit pressure, respectively. These quantities are defined
as

Pmag =
µ0I

2
d

4π2r2
o

(
ln
rc
ro

+
1

4

)
, (20)

Pgd =
ṁ

πr2
o

√
γRg (Tg + αoTe), (21)

Pmf =

(
r2
c

r2
o

− 1

)
enseTeV

(
1 +

nse
ng

)
, and (22)

Pexit = P ∗V

(
2

γ + 1

)γ/γ+1

, (23)

respectively. For Pmf , nse and TeV are calculated using insert-region quantities. The fluid speed of sound
appearing in the gasdynamic pressure is computed with orifice-region quantities. αo denotes the ionization
fraction in the orifice.

Equation 19 states that the total static pressure upstream of the cathode emission zone is the balance
between the particle momentum leaving the volume, the magnetic pressure, and the downstream static
pressure.

C. Plasma model

To close the system of equations, estimates of the degree of ionization, neutral density, and electron temper-
ature are required for both the insert and orifice regions. In the insert region an estimate of the attachment
length, or length over which the plasma is dense enough to support temperature-limited thermionic emission,
is also required. Because the ionization fraction may not be negligible (especially in the orifice region) we do
not employ the typical approximation α� 1; we retain all terms in the resulting equations in both regions.
For all of our calculations, the collision frequencies are computed using Maxwellian-averaged collision cross
sections.

1. Electron temperature and attachment length

We employ the method delineated in Ref. 11 to calculate the electron temperature in both insert and orifice
regions, as well as the attachment length. The method is based on a charge-exchange-limited ambipolar dif-
fusion model of the plasma. Application of this method gives an analytical approximation of the attachment
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length and the electron temperature in both regions as functions of the neutral-pressure-diameter product
only. We define the “attachment length” as the plasma density decay length-scale for the first-order eigen-
mode of the full 2D solution in the insert. The insert electron temperature is not sensitive to the neutral gas
temperature in that region; we therefore ran the 2D solution with an assumed neutral gas temperature of
3,000 K in the insert region. The orifice electron temperature, however, can vary by up to 20% with a change
in neutral gas temperature. The solution is therefore calculated with multiple neutral gas temperatures.

We use the following approximations for the insert and orifice electron temperature,

T insert
eV =

ti,0

(ngkBTg (2rc))
ti,1

+ ti,2, (24)

T orifice
eV =

to,0

(ngkBTg (2rc))
to,1 + to,2

+ to,3, (25)

and for the attachment length,

Lemit = rc

(
l0 +

l1

ln6 (ngkBTg (2rc) + l2)

)
, (26)

respectively. The coefficients ti,k, to,k, and lk for xenon and argon gases are shown in the Appendix. In all
cases, the pressure-diameter product that appears in the denominator is in Torr-cm.

2. Insert region

The conservation of charge in the insert region gives the total discharge current Id as

Id = Ii + Iem − Ir, (27)

where Ii, Iem, and Ir are the ion, thermionic, and random electron currents, respectively. Assuming that all
ions created in the volume go to the insert wall, the ion current is either given by its volumetric definition,
or by its value at the sheath edge,

Ii = engne < σizv > πLemitr
2
c = ensevB2πrcLemit, (28)

where σiz is the ionization cross-section. Using Eqn. 28, we obtain the sheath-edge density:

nse =
ngne < σizv > rc

2vB
=

α

1− α
n2
g < σizv > rc

2vB
. (29)

We use this result to define fs, the ratio between the sheath-edge and the volume-averaged electron density,
as a function of volume-averaged quantities:

fs =
ng < σizv > rc

2vB
. (30)

The random electron current can be expressed in terms of volumetric quantities:

Ir = e
1

4

(
8M

πm

)1/2

ngne < σizv > πLemitr
2
c exp (−φs/TeV ) , (31)

where m is the mass of the electron and φs is the sheath potential.
We integrate the electron energy equation over a cylindrical volume of length Lemit and radius rc with

the face fluxes estimated using a zeroth-order upwind scheme as suggested in Ref. 22. We obtain

Iemφs +RpI
2
d = Iiεi +

5

2
TeV Id + (2TeV + φs) Ir, (32)

where εi is the ionization energy of the species of interest, and Rp is the plasma resistance. The plasma
resistance is given by

Rp =
m

nee2

Lemit

πr2
c

(νei + νen) , (33)
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where νei and νen are the electron-ion and electron-neutral collision frequencies, respectively.
We use the conservation of charge (Eqn. 27) to eliminate the thermionic current terms from the electron

energy equation. The resulting equation is expressed in terms of the ionization fraction and the neutral gas
density by replacing the electron density with the definition of the ionization fraction (Eqn. 11). This yields
a quadratic expression for the unknown ionization fraction:

α2

[
en2

g < σizv > πLemitr
2
c

(
εi + φs + 2TeV

1

4

(
8M

πm

)1/2

exp (−φs/TeV )

)
+ en2

g < σexv > πLemitr
2
cεex

+
mLemit

πr2
ce

2
C ln ΛT

−3/2
eV I2

d − Id
(

5

2
TeV − φs

)
− mLemit

πr2
ce

2
I2
d < σenv >

]
+ α

[
Id

(
5

2
TeV − φs

)
− mLemit

πr2
ce

2
C ln ΛT

−3/2
eV I2

d + 2
mLemit

πr2
ce

2
I2
d < σenv >

]
− mLemit

πr2
ce

2
I2
d < σenv >= 0, (34)

where C = 2.9 × 10−12, and ln Λ ≈ 10 is the Coulomb logarithm. σen and σex are the electron-neutral
cross sections for elastic and excitation collisions, respectively. εex is the average electron excitation energy.
We use data from the Hayashi database45 as retrieved from the LXCat website46 for the electron-neutral,
ionization, and excitation cross sections. The excitation cross section in Eqn. 34 is the total cross-section
for all ground-state excitation reactions. The excitation energy is computed as the average of all excitation
energies weighted by their respective Maxwellian-averaged reaction rates.

3. Orifice region

In the orifice, the energy equation can be considerably simplified by neglecting thermionic emission and
electron backstreaming because of the higher sheath voltages due to the lower neutral densities than in the
insert region. We obtain the following orifice energy balance

α2
[
en2

g < σizv > πLor
2
oεi + en2

g < σexv > πLor
2
oεex

+
mLo
πr2
oe

2
C ln ΛT

−3/2
eV I2

d −
mLo
πr2
oe

2
I2
d < σenv > −

5

2
Id
(
TeV − T ins

eV

)]
+ α

[
5

2
Id
(
TeV − T ins

eV

)
− mLo
πr2
oe

2
C ln ΛT

−3/2
eV I2

d + 2
mLo
πr2
oe

2
I2
d < σenv >

]
− mLo
πr2
oe

2
I2
d < σenv >= 0, (35)

where Lo is the orifice length and T ins
eV is the insert electron temperature.

To obtain a relationship between the ionization fraction and neutral density, we use the conservation of
mass applied to the sonic condition at the orifice outlet. It results in a quadratic equation for the ionization
fraction.

ṁ = πr2
o

1

1− α
ngM

√
γRg (Tg + αTe), (36)

Solving this equation and keeping the root for which αo < 1 gives an expression for the ionization fraction,

α = 1 +
1

2v̄

(
1−

√
4v̄
(
1 + T̄

)
+ 1

)
, (37)

where T̄ = Tg/Te and v̄ is given by

v̄ =
1

γRgTe

(
ṁ

πr2
ongM

)2

(38)

The orifice energy equation (Eqn. 35) and the solution for the ionization fraction from conservation of mass
(Eqn. 37) are combined to obtain a single equation for the unknown neutral density in the orifice.
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D. Algorithm

Both the gas temperature and sheath voltage are free parameters. The expression for the sheath-edge density
factor (Eqn. 29) is used in the pressure balance (Eqn. 19) to form an expression that depends only on α and
ng:

P = Pmag + Pgd +

(
r2
c

r2
o

− 1

)
fs

αi
1− αi

ngeTeV

(
1 +

(
αi

1− αi

)
fs

)
+ P ∗V. (39)

To solve this equation, we use the perfect gas law to compute the total static pressure:

P = kBngTg +
αi

1− αi
ngeTeV +

αi
1− αi

ngkBTg (40)

Because we have used surface-integrated quantities when deriving the pressure balance, but re-expressed
these terms using volume-averaged quantities, there are (at least) two possible choices for the definition
of the total static pressure. Assuming constant total pressure in the insert region, we can either use the
sheath-edge density or the volumetric value to compute this pressure. We choose the latter option because
the sheath-edge terms balance the upstream portion, leaving only the pressure contribution on the orifice
inlet.

Solving the system of equations resulting from the combination of the pressure balance (Eqn. 39), the
perfect gas law (Eqn. 40), and the insert power balance (Eqn. 34) yields the solution for both ng and αi.
We combine the expressions into a single equation for the unknown neutral density which we then solve
using the bisection method in order to avoid solving the original multivariate nonlinear system. For each
proposed insert neutral density and sheath potential, we solve for the ionization fraction in the insert using
the insert power balance (Eqn. 34). The insert electron temperature is then obtained using the correlation in
Eqn. 24. The orifice neutral density is calculated using the orifice power balance (Eqn. 35), mass continuity
(Eqn. 37), and the insert electron temperature. The electron temperature for the orifice is then obtained
using Eqn. 24, and the ionization fraction for the orifice is computed with Eqn. 37. Finally, the total pressure
results calculated using the momentum balance (Eqn. 39) and the perfect gas law (Eqn. 40) are compared.
If both results agree, the algorithm has converged and the solution is reported.

For a given geometry and gas, the orifice quantities depend on the mass flow rate, the discharge current,
and the insert neutral density through the insert electron temperature. The orifice quantities can therefore
be pre-computed and stored as a lookup table for faster computation. The upper bound for the orifice
neutral density can obtained by imposing the conditions that αo > 0 and that the neutral density in the
insert is greater than that in the orifice.

E. Wall temperature

We note that while the emission current has been eliminated from the model equations, the wall temperature
may be retrieved from the total emitted current and the conservation of charge (Eqn. 27). The elimination
of the emitted current from the model equations also removes the dependence of the pressure on the choice
of emitter material, excluding any indirect dependence due to the heavy species temperature. Without the
Schottky effect, the total emitted current is given by Richardson-Dushman’s law,

Iem = 2πLemitrcDRDT
2
c exp

(
− eφw
kBTc

)
, (41)

where DRD is the Richardson-Dushman constant, Tc is the emitter temperature, and φw is the work function.
Because we have assumed that the emission length is defined such that the thermionic emission is thermally
limited inside the active zone, the current extracted is not modified by space-charge limitation.

F. Sheath potential

The algorithm may also be used as an indirect method to compute the sheath potential. The total pressure
calculated using the pressure balance (Eqn. 39) can be evaluated for multiple sheath potentials, and the
intersections of the resulting family of pressure curves with the experimental pressure data can be used to
estimate the variation of the sheath voltage over the experimental parameter range.
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IV. Results and discussion

We first show in this section the experimental results for the pressure measurement of the Princeton
Large Hollow Cathode and then compare the results of the algorithm to experimental results. Additional
experimental data are gathered from literature with data from the NSTAR,38,47,48 the NEXIS,49,50 Friedly’s
cathode,17 Salhi’s cathode,21 and the Jet Propulsion Laboratory’s (JPL) 1.5 cm diameter LaB6 cathode.40

The dimensions and operating conditions of each cathode are shown in the Appendix (Table 1). They span
a variety of geometries, gases, and operating conditions.

A. Pressure measurements

Figure 5 shows pressure measurements we performed with and without the cathode discharge. Without a
plasma, the pressure increases linearly with mass flow rate as is expected from a choked orifice. During
operation the pressure increases both with mass flow rate and discharge current, a behavior similar to other
cathodes.17,49,51
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Figure 5: Total pressure measurements

B. Algorithm verification

1. Wall temperature

We show in Fig. 6 a comparison of our model to experimental data of the insert temperature. We applied
the algorithm to both Salhi’s cathode operating with argon and to the NSTAR cathode. The cathode wall
temperature is reported in Refs. 21 and 48, respectively. We used the work function from Ref. 22 for the
barium-oxide insert installed in the NSTAR cathode. Salhi’s cathode uses a material with an estimated work
function of 1.8–2.0 eV.21 The results from our algorithm are averaged over all of the values tested for the two
free parameters. We have performed sweeps with sheath voltages between 1 and 10 V and gas temperatures
between 2000 K and 4000 K. The algorithm returns values within 10% of the experimental values for both
cathodes. We find that the trend of the predicted wall temperature agrees with the experimental data, both
with increasing discharge current and mass flow rate.

We also applied the algorithm to Friedly’s cathode17 with an estimated work function of 2 eV for the insert
material (as reported in Ref. 13, p.91). We found results to be within 20% of experimental data, but did not
have the same agreement as that of the NSTAR. We note that the temperatures reported by Friedly are that
of the exterior of the cathode and are higher than the typical application range of barium-based emitters.
We hypothesize that the emitter depleted its coating, especially at higher discharge currents, which would
explain the reported high temperatures. The uncertainty in the work function of the material would explain
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Figure 6: Left: Peak insert temperature of the NSTAR cathode. Right: cathode external wall temperature
of Salhi’s cathode. Error bars on the model indicate the minimum and maximum values obtained from a
sweep of the two free parameters (sheath voltage and gas temperature) with values between 1–10 V and
2000–4000 K, respectively.

the discrepancy observed between the results of the model and the experimental measurements. We found
that the observed trend of the results of the algorithm agrees with experimental results if we assume that the
work function is that of tantalum (4.1 eV). Additionally, the assumptions made in Ref. 11 to estimate the
emission length become invalid at high discharge currents for this particular cathode. The ionization fraction
is indeed large in both the orifice (up to 60%) and in the insert (up to 30%) at high discharge currents and
therefore challenges the assumption of charge-exchange-dominated ambipolar diffusion. A possible remedy
is to include all interactions between particles when considering ambipolar diffusion.

2. Electron temperature

Both predicted and experimental insert electron temperature are shown in Fig. 7 for the JPL’s 1.5 cm LaB6

hollow cathode40 and for Salhi’s cathode21 operating on argon and with an orifice size of 1.21 mm. The
insert electron temperature for the JPL’s cathode is reported at the location of peak insert electron density.
We use the highest reported values for Salhi’s cathode, close to the peak insert electron density. We observe
in all cases that the trend of decreasing electron temperature with increasing discharge current and mass
flow rate is correctly captured. We note, however, that the electron temperature is over-predicted, which is a
consequence of an under-prediction of the neutral density and is consistent with an under-predicted neutral
gas pressure.

3. Pressure prediction

We now compare the typical models used for calculating the pressure inside hollow cathodes to our algorithm
for the NEXIS cathode. The models are delineated in Ref. 18. For the NSTAR cathode we also perform
a comparison with results of a 2-D axisymmetric solver from Ref. 47. For the NEXIS, we compute the
pressure for a gas temperature of 2,000 K for all models, and sheath voltages between 1 and 4 V. The results
for the NSTAR are computed with 3,000 K and sheath voltages between 1 and 10 V. Results are shown
in Fig. 8. Pressures predicted with both our theoretical model and the empirical correlation derived from
literature data vary with discharge current and mass flow rate, while other existing models do not. These
two approaches yield results that are close the experimentally measured pressure. Results for the NSTAR
are similar to that of the 2-D axisymmetric solver, although the latter uses a discharge current 10% higher
than the nominal current of 12 A. For cathodes that reasonably satisfy the model assumptions, the numerical
algorithm allows us to bound the pressure for a cathode for which no pressure data are available.
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Figure 7: Comparison of calculated and experimentally measured insert electron temperature.

We note that in all cases, knowledge of the sheath potential is required. The family of curves generated
by the model intersect experimental data at different sheath voltages. As mentioned in the previous section,
this may be used to compute the sheath voltage from the experimental data.

C. Pressure scaling

1. Experimental data

Figure 9 shows the variation of the ratio of the measured pressure (P ) to the magnetic pressure (Pmag).
Results are presented as a function of the dimensionless ratio Id/ṁ where the mass flow rate is expressed
in equivalent-Ampères. Experimental data suggest that P/Pmag ∝ (Id/ṁ)

−r
where 1 < r < 2. This trend

is captured for most cathodes. The algorithm however overestimates the pressure for our cathode. We
hypothesize that

• the magnetic pressure is overestimated because we did not take into account the net current of charged
particles from the insert volume directed towards the orifice plate,

• gas leaks occur through the grafoil seals at graphite/stainless steel interfaces at high temperatures,
thus decreasing the experimentally measured pressure, and

• gas leaks occur through the NPT fittings on the feed lines and pressure tap because they are sealed
only with anti-seize compound as typical thread sealant compounds would not tolerate the operating
temperature of the PLHC.

2. Theoretical approach

We obtain a scaling relationship for the total pressure by first rewriting the momentum balance (Eqn. 39)
as

P =

(
µ0I

2
d

πr2
o

)[
1

4π

(
1

4
+ ln

rc
ro

)
+

(
ṁA

Id

)2(
Mro
µ0e2

)(
1

πr3
on

o
g

)[
1 +

F (γ)√
1 + αoTe/Tg

]
+

Pmf
µ0I2

d/πr
2
o

]
, (42)

where the mass flow rate is in equivalent-Ampères, nog is the orifice neutral density, and F (γ) is a function
of γ only:

F (γ) =
√

2πγ−1/2

(
γ + 1

2

)1/γ+1

. (43)
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Figure 8: Comparison of pressure models used for the calculation of the total pressure inside hollow cathodes.

16 of 23

American Institute of Aeronautics and Astronautics



We show in Fig. 10 the variation with discharge current of the ionization fraction, the quantity < σizv > T
1/2
eV

which appears in the sheath-edge ratio, the orifice neutral density, and the term
√

1 + αoTe/Tg that appears
in the above equation. The results are shown for a single illustrative cathode (NSTAR cathode with mass
flow rate of 3.7 sccm) for the given quantity averaged over the entire parameter space (neutral temperature
varying from 2,000 K to 4,000 K and sheath voltages between 1 and 10 V). Similar results are obtained with
other cathodes. For a given mass flow rate, we can approximate the variation of those quantities with a
semi-empirical functional form: √

1 + αoTe/Tg = Cs,0 + Cs,1Id + Cs,2I
2
d , (44)

αi = CαI
η
d , and (45)

nog = Cn,0 + Cn,1Id. (46)

In the region of typical operation of hollow cathodes (pressure-diameter product greater than 1), the term

that appears in the sheath-edge ratio can be given as < σizv > T
1/2
eV = Cσ (Pd)

2
.

From Eqn. 42 we can now write the ratio of total to magnetic pressure as

P

Pmag
= 1 + k1

(
ṁA

Id

)2
1

1 + Cn,1/Cn,0Id

(
1 +

F (γ)

Cs,2I2
d + Cs,1Id + Cs,0

)
+ k2I

η−2
d , (47)

where the two constants k depend on gas, geometry, and chosen value of heavy particle temperature:

k1 =

(
Mro
µ0e2

)(
1

πr3
oCn,0

)
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1

4π

(
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) , and (48)
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8µ0rc
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)
1
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) . (49)

To obtain k2 in this form we assumed that αi � 1 and fs � 1. We also assumed that the flow was purely
molecular (θ = 1) at the orifice outlet to obtain k1. The rational function in the discharge current that
arises from the orifice neutral density can always be approximated by a power law in a region where the two
functions 1/(1 + x) and b/xδ are reasonably close. This region can be defined as the values of x, b, and δ
such that the Taylor expansion of either function around any point x0 are equal to the first order or differ
only by numerical constant ε� 1. This in turn means that the gasdynamic term can be rewritten as(

ṁA

Id

)2
1

1 + Cn,1/Cn,0Id
∝
(
ṁA

Id

)2−δ

ṁδ
A. (50)

We recognize in 2− δ the exponent r suggested by the experimental data.
We note that the dimensional total pressure can be written as

P = aI2
d + b

ṁ2
A

1 + cId
(1 +G (Id)) + dIηd , (51)

where a, b, c, d, and G are found from the above expressions. We recognize in the total pressure scaling
(Eqn. 51) the magnetic pressure (∝ I2

d), the gasdynamic pressure (∝ ṁ2) modified to take into account the
plasma effects (∝ 1/ (1 + cId) (1 +G (Id))) and an additional momentum flux term from the ions that are
accelerated towards the orifice plate (∝ Iηd ). At low current (Id → 0) the polynomials with the discharge
current terms become constant, the momentum flux term vanishes, and we recover the conservation of
momentum for a gas flowing through an orifice plate. At high current (Id → +∞) the expression becomes

P = aI2
d + b∗

ṁ2
A

Id
+ fIηd , (52)

which indicates that magnetic pressure and momentum flux terms become dominant. In the intermediate
range, however, all terms must be kept.
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V. Conclusion

Based on the lessons learned in our review of prior cathode modeling efforts,10 we have developed a
0-D model for orificed hollow cathodes and computed volume-averaged plasma quantities for a large variety
of cathodes and operating conditions. Good agreement is obtained with both literature data and with
experimental pressure data we gathered on our own large hollow cathode running on argon at up to 300 A
of discharge current. We have uncovered a scaling relationship for the total pressure with both mass flow
rate and discharge current and have given a physical interpretation for it.

We were able to bound both the sheath potential and neutral gas temperature and found that the
solutions of the algorithm are not sensitive to these parameters. These two parameters can be self-consistently
incorporated into the model through a potential solver and the energy equation for the heavy particles,
respectively. The values for the neutral gas temperature remain to be experimentally validated.

This work can be used in conjunction with the charge-exchange-dominated ambipolar diffusion model for
the insert region we presented in Ref. 11 to find the electron density distribution within a hollow cathode. We
also note that the proposed model is not limited to the study of scaling relationships for the total pressure.
The model can also be applied to the study of additional scaling relationships, for example the variation
of electron temperature or attachment length as a function of discharge current and mass flow rate, which
would illuminate the underlying physics of thermionic orificed hollow cathodes. The model is also a building
block for insert performance prediction if coupled to an erosion model for the thermionic material and for
cathode performance prediction if coupled to a cathode thermal and plume model.
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P
/P

m
a
g

Salhi (argon, 2ro = 1.21 mm)

101 102
10−1

100

101

102

103

104

Id/ṁ
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Appendix

Cathodes studied

Cathode

Dimension

Gas
ṁ Id

Insert Orifice

L (cm) I.D. (cm) L (mm) D (mm) (sccm) (A)

NSTAR Discharge38,47,48 2.54 0.38 0.74 1.02

Xe

2.47 – 10.0 5.95 – 15

NEXIS49,50 2.54 1.27∗ 0.74† 1.5 – 2.8 4–10 4–32

Friedly17 2.5 0.47 1.0‡ 0.74 2.5 – 6.4 5–60

JPL 1.5 cm LaB6 cathode40 2.54 0.7 1.0‡ 0.38 8–12 20–100

Salhi21 2.54 0.38 1.24 1.21
Ar

6, 13 2–20

Princeton 8.0 2.715 1.5 0.8 109–218 125–325

∗Refs. 52,53 consider an insert inner diameter of 1.20 cm, though later work by Goebel and Katz22 suggest an insert diameter
of 1.27 cm.
†Measured from plots in Ref. 53.
‡The length of the orifice is not specified an is set to 1 mm.

Table 1: Dimensions of the benchmark cathodes.

Correlation coefficients

Species Quantity
Index

0 1 2

Xe
TeV 1.3 0.34 0.48

Lemit 0.75 1.0 3.0

Ar
TeV 1.91 0.341 0.945

Lemit 0.86 0.613 1.89

Table 2: The coefficients used for the insert electron temperature and attachment length correlations
(Eqns. 24 and 26).

Species Temperature
Index

0 1 2 3

Xe 2000 K 1.230 -0.0052 0.313 0.429

3000 K 1.290 -0.0062 0.337 0.503

4000 K 1.300 -0.0068 0.365 0.591

Ar 2000 K 1.889 -0.0197 0.287 0.793

3000 K 1.941 -0.0250 0.320 0.935

4000 K 1.723 -0.0257 0.401 1.250

Table 3: The coefficients used for the orifice electron temperature (Eqn. 24).
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