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Abstract

Scaling laws for the total pressure, attachment length, and electron temperature

within thermionic orificed hollow cathodes, an essential source of electrons for indus-

trial and scientific applications, are developed. Total pressure, electron temperature,

and attachment length are critical as they control the operational life of thermionic

hollow cathode inserts, and, therefore, of the hollow cathode.

The scaling laws are derived from first principles for the total pressure, and from

a semi-analytical approach for the electron temperature and attachment length. The

model presented herein addresses critical issues of past, zero-dimensional models that

are reviewed in this work. The model, which combines a zero-dimensional approach to

the conservation of energy and momentum for the combined plasma-neutral fluid and

a charge-exchange-limited ambipolar diffusion model, allows for the computation of all

plasma quantities, including the total fluid pressure. The assumptions on which the

model relies are partially informed by an empirical analysis of the total pressure. The

model depends on the operating conditions (discharge current and mass flow rate),

cathode geometry, and the gas species, along with two non-controllable parameters:

the neutral gas temperature and the sheath potential. Total pressure data at up to

300 A of cathode discharge current was obtained experimentally and was used, along

with data from the literature, to verify the model. Good agreement is obtained for

all quantities.

The total pressure is found to scale both with the square of the mass flow rate

multiplied by a weak function of discharge current, and with the square of the dis-

charge current. This scaling can be physically interpreted as due to the relative

importance of the magnetic pressure and the gasdynamic pressure. Both electron

temperature and attachment length are found to vary inversely with the neutral gas

pressure-cathode diameter product. The predicted emission length is found to be

between 0.8–1.2 times the insert radius, to scale weakly with the pressure-diameter
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product, and to be nearly independent of the orifice diameter. The analysis sug-

gests that the diffusion-dominated nature of the insert plasma can account for the

scaling of the emission length. Cathode design rules are formulated based on the

results of the analysis: insert length and radius should be similar to optimize the

usage of the thermionic emitter, and the mass flow rate can be bounded such that

the pressure-insert diameter product is close to the empirically determined value of

3.7 Torr-cm.

iv



Acknowledgements

It would never have been possible to pass this finish line without the help of many

others. I would like first to thank my advisor Prof. Edgar Choueiri. Eddie, thank you

for accepting me into the Princeton EP family and for giving me the foundation on

which I built and honed my skills for both the cathode experiment and other interests.

You have shown me what great science and writing is about and have pushed me to

become not only an engineer, but also a physicist.

The cathode experiment was possible largely because of the help of Bob Sorenson.

Bob, thank you for teaching me about electronics, HAM radio, machining, how to

“thimk,” and so much more. Thank you also for putting up with us “hacks” and for

being available to extensively discuss some black magic RF problems, even during

your well-deserved retirement. The Smith chart should more aptly be called the

Sorenson chart.

I would like to thank my committee and readers who took the time to guide me

through my doctoral work and provide me with valuable feedback: Dr. Yevgeny

Raitses, Dr. Mikhail Shneider, Prof. Samuel Cohen, Dr. Dan Lev, and Prof. Michael

Littman.

Thank you to my EPPDyL and 3D3A colleagues and friends: Chris, Matthew,

Mike, Sebastián, Will, Joe, and Rahul. You have all made this time in the

lab/dungeon much more enjoyable than it would have been otherwise. Chris (my lab

partner), I don’t think I could have finished this dissertation without your help and

your original work on the cathode. You’ve been extremely patient in dealing with

my cathode-physics musings, editing papers, and teaching me about machining and

LabView. I have decided that I won’t hold a grudge against you for breaking the

first cathode. Matt, you have made sure that I was ready to stand for generals. After

hearing my response a 1001 times, I hope that you will remember what a plasma

is. Mike, thank you for your all-around enthusiasm and the great evenings with a

v



homemade pizza around a fire. Sebastián, your eclectic music selection (thanks in

part to WPRB) was always a treat when walking into and through the lab. Thank

you also for always being available to discuss a math or physics question and for

being the lab’s grammarian who knows how to properly use hyphens. Will, you have

shown me that sometimes the brute-force approach (both numerical and physical) is

the correct approach. I will never forget the momento you left on my desk after I

got married. Joe and Rahul, you brought a different and welcome perspective from

the audio lab. Thank you for all of your helpful discussions. Finally, thank you to

the undergraduate researchers Jordan, David, and Sydney. Your helping with the

cathode diagnostics pod was invaluable and your questions made me a better teacher.

Dave, Jim, and Matthew, a big thank you for keeping the E-Quad from collapsing.

Thank you especially for your help in dealing with sub-basement equipment and the

(never-ending) issues with the cooling water (a.k.a. sludge). Glenn and Al, your

expertise and help in machining cathode materials was greatly appreciated. I promise

we are done with breaking drill bits and dulling end-mills on RA-253MA! A particular

thank you to Jon Prévost, a colleague and a friend. You have helped me with all of the

custom-made electronics circuits that were used for the cathode experiment. Thank

you, too, to Jill Ray, the ever-amazing graduate program administrator. You were a

never-ending source of useful information and unwavering support through all of the

ups and downs.

I would like to thank the many Princeton friends that I have made along the way.

From first year homework sessions to FPO by way of preparation for generals, you

have made my time at Princeton memorable. Thank you to the D-Bar trivia team

for the great deal of fun in crushing opposition every other week. The snack prizes

(especially ¡Sponch!) and debates about last-round jokers will never be forgotten.

Thank you also to the MAE friends for a fantastic ski trip in Vermont.

vi



I want to thank my family and friends around the globe for their constant support

and for not questioning my never-ending schooling. À mes parents: le travail sur les
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Chapter 1

Introduction

1.1 Background and motivation

Thermionic, orificed hollow cathodes serve as plasma sources of electrons and have

been used for a variety of applications, such as surface processing [1–3], neutral beam

injectors for fusion devices [4–6], and electric space propulsion [7,8]. The cross section

of a typical orificed hollow cathode is shown in Figure 1.1.

Heat shield

Keeper
Cathode tube

Insert / Emitter

Heater

Gas Input
Plasma

Figure 1.1: Schematic of typical orificed hollow cathode
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Hollow cathodes feature a hollow tube (made of either a refractory metal or graphite)

which is capped by an orifice plate and in which a low-work-function thermionic

material is inserted. A keeper electrode is placed around and/or in front of the

cathode to initiate the discharge and to protect the orifice plate from high-energy

ions (hypothesized to be generated by ion acoustic instabilities in the plume [9]) that

are accelerated towards the cathode. An external heater is used to bring the insert

material to emitting temperatures. It is surrounded by heat shields to ensure that

heat is efficiently transferred to the emitter. A neutral gas (e.g., xenon) is then

introduced in the tube and a discharge is established with an external anode.

Once steady-state is achieved, hollow cathodes operate in a self-heating mode and

the heater is unnecessary. In this mode, the emitter is heated both by electrons and

ion impact. Heat is lost through radiative and conductive processes, and through

thermionic cooling. The ratio of power deposited by electrons to that deposited by

ions depends on the plasma condition (electron temperature and sheath potential).

The cathode can be split into three distinct regions:

• the insert region,

• the orifice region, and

• the plume.

The insert region is of particular interest because the plasma processes in that region

influence the total lifetime of the emitter. The orifice constriction ensures that the

plasma in the insert region stays highly collisional by keeping the insert total pressure

high (∼1–10 Torr) and constant. The study of the plume region can be entirely

decoupled from that of the rest of the cathode because of the existence of a Mach 1

surface at or near the orifice exit. This sonic condition is due to the expansion of the

ionized gas into vacuum.
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1.1.1 Scope of this work

Emission process While electrons can be emitted from a material through other

physical processes (e.g., secondary or photoelectric emission), we restrict the scope of

this work to cathodes that emit electrons through thermionic emission.

Applications We will consider only applications to electric space propulsion. Ex-

amples of space propulsion thrusters that require a cathode are Hall-effect thrusters,

ion thrusters, and magnetoplasmadynamic thrusters (MPDTs). Orificed hollow cath-

odes are typically used for the former two, though exploratory work has been con-

ducted with MPDT [10–14] at low current (< 200 A).

Cathode type Other types of cathodes for space propulsion include solid (rod),

tube, and multi-channel cathodes. Tungsten rod cathodes are typically used in both

arcjets and high-power MPDT (Megawatt-level) that operate with noble gases or hy-

drogen. The high temperature required for emission with pure tungsten (∝ 2,700◦C

for a current density of 10 A/cm2) shortens the lifetime of rod cathodes because of

evaporation, localized melting, and embrittlement. The latter is due to recrystalliza-

tion of refractory metals at high temperatures: tungsten undergoes recrystallization

at or below a temperature of 1,500◦C [15].

Tube and multi-channel cathodes are also “hollow” and operate with a neutral

gas introduced in a single or multiple channels that is then ionized. Tube cathodes

do not have an orifice plate and are therefore subject to large pressure gradients

within the internal plasma region. Because of the low internal pressure, the electron

temperature is higher than that of orificed hollow cathodes. In turn, the sheath

potential of the plasma inside the tube cathode is also higher, and so is the energy of

ions that impact the thermionic emitter. This contributes to material sputtering and

increases the temperature of operation of the emitter, and, therefore, its evaporation
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rate. Both increased sputtering and evaporation contribute to the reduction of the

operational lifetime of tube cathodes.

The low internal pressure of tube cathodes is circumvented by either capping the

cathode tube or using multiple channels. Both orificed hollow cathodes and multi-

channel hollow cathodes are able to deliver higher currents than solid or tube cath-

odes and have a longer lifetime than tube cathodes for similar operating conditions.

Multi-channel cathodes have been demonstrated both with condensible propellant

(e.g., lithium) in applied-field magnetoplasmadynamic thrusters (AF-MPDTs) [16]

and with noble gases. Orificed hollow cathodes operate at a lower temperature than

multi-channel ones because they typically use a low-work-function thermionic emitter

which provides cooling through electron emission. The lower operating temperature

also leads to a lower evaporation rate of the emitter and increases the lifetime of the

cathode.

Range of operation of hollow cathodes Because orificed hollow cathodes are the

most promising type of cathodes for future missions, their reliable operation is critical.

In the context of space propulsion, proposed missions require operational lifetimes of

up to 100,000 hours (100 kh) [17,18] without servicing, with estimated total discharge

powers in the range of 100–200 kW [19], or, equivalently, for up to 800 A of current

for a typical Hall-effect thruster (assuming an efficiency of 100%, a specific impulse

of 2,000 s, and xenon gas). Existing thrusters are starting to approach or exceed

this power level [20–22]. Alternative thrusters such as the AF-MPDT are attractive

alternatives to Hall-effect and ion thrusters for high-power, manned missions to Mars

and beyond because of their high thrust density, specific impulse, and thrust efficiency.

However, they also require long lifetimes with even higher discharge currents of 1 kA

or more.
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To date, only cathodes that operate at low current (< 20 A) have undergone life

testing and the lifetime of high-current (> 100 A) cathodes has only been estimated

to be in the tens of kilo-hours (see Figure 1.2). There is a clear need for technological

improvements to increase cathode performance to a combined range of discharge

current and lifetime that can enable next-generation missions. High discharge currents

can be achieved by scaling the cathodes to larger sizes. It is unclear, however, how

the cathode lifetime is affected by an increase in discharge power.
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Figure 1.2: Demonstrated (solid) and estimated (open) lifetime of hollow cathodes
for given discharge currents. None of the cathodes for which lifetime testing was
conducted reached end-of-life.
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1.1.2 Lifetime-limiting factors

The lifetime of a thermionic orificed hollow cathode is limited by the erosion of exter-

nal surfaces, by its heater failing prematurely, and by the evaporation and material

sputtering of the thermionic emitter.

Surface erosion

The erosion of the orifice plate and keeper is due to high-energy plume ions that

are accelerated towards the cathode and sputter the electrode. The orifice plate is

protected by the keeper electrode so that only the latter can be considered as the

lifetime-limiting factor. A possible solution to extend the lifetime of both surfaces

is to either quench the energy of the high-energy ions with external gas injection

or to simply use a thicker keeper electrode. The former has been demonstrated in

high-current cathodes [31]. We use the latter in our experimental work for simplicity.

Heater failure

Large hollow cathodes require an external heater to start the thermionic emission

process. Heaters based on refractory metals (e.g., swaged tantalum) suffer from grain

growth, embrittlement, and are difficult to manufacture. Graphite-based heaters, on

the other hand, are only limited by the sublimation of their carbon surface and are

easily fabricated. Their expected lifetime is well over 100 kh [32], and are therefore

not a critical component, though they remain to be demonstrated in space.

Emitter failure

Evaporation and sputtering Both evaporation and sputtering of the emitter

depend on the behavior of the plasma in the insert region and on the choice of emitter

material. Emitter material include pure or thoriated refractory metals (e.g., tungsten

and thoriated tungsten), refractory metals impregnated with a low-work function
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Table 1.1: Work function and Richardson coefficient of a few materials.

Material Work function
Richardson coefficient

Reference
(A·cm−2K−2)

BaO-W 1.67 + 2.87×10−4Tc 120 [42] (p.252)
C12A7 0.5–3.5 N/A [37,38,40,41]
IrCe

2.57 120 [33]
IrLa
LaB6 2.70 29 [42] (p.252)

Ta (polycrystalline) 4.25 37
[43]

W (polycrystalline) 4.55 70

material (e.g., barium oxide (BaO)-impregnated tungsten), borides (e.g., LaB6), and

less-common compounds such as iridium-cerium (IrCe) [33–36] or calcium-aluminate

electride [Ca24Al28O64]4+(e−)4 (C12A7) [37–41]. Table 1.1 shows the work function

of select emitter materials. It is preferable to use a thermionic emitter with a low

work function, as it reduces the temperature of operation and therefore material

evaporation for a given target emission current density. We show in Figure 1.3 the

evaporation rate and emitter temperature as a function of current density. For a

given current density Jem the emitter temperature Tc is obtained with the Richardson-

Dushman equation:

Jem = DRDT
2
c exp

(
− eφw
kBTc

)
, (1.1)

where DRD is a material-dependent constant, e is the electron charge, kB is the

Boltzmann constant, and φw is the work function of the emitter, in eV. To limit

evaporation low-temperature (∼1000◦C) operation of the emitter is preferable. This

requires the thermionic emitter to be efficiently used so that the total current density

is low. The attachment length, or length over which the plasma is dense enough

to “absorb” all emitted electrons, is a direct measure of the plasma coupling to the

emitter. For efficient operation, the attachment length should match the length of the

thermionic insert. Sputtering can be limited by reducing the plasma sheath potential

to limit ion acceleration in the sheath. Low sheath potentials can be achieved at
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Figure 1.3: Comparison of material evaporation for different emitter materials. For
a given current density, the emitter temperature is calculated with Richardson-
Dushman equation and the work function from Table 1.1. Evaporation data from [33]
for IrLa, IrCe, Ta, and LaB6 at low current density, and from [42] (p.255) for BaO-W,
W, and LaB6 at high current density.

low electron temperature (less than 2 eV) for typical cathode plasma densities (1018–

1021 m−3).

We note that the C12A7 electride has a theoretical work function in the range

of 0.5–3 eV [37, 38, 40, 41] and can also be an excellent candidate for orificed hollow

cathodes. However, it is unclear if plasma-wall interactions may damage the structure

that enables low-temperature emission.

Poisoning Impurities in the operating gas may increase the work function of a

material (“poisoning” of the material). Both BaO dispenser materials and iridium-

based compounds are attractive because of their low work function and evaporation

rate, respectively. However, they do suffer from poisoning [35,44] and therefore require

the use of high-purity gases for space applications. While lanthanum hexaboride has

a larger work function (and therefore operating temperature) than both of those
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materials it is a robust material that does not suffer as much from poisoning [45]. Its

characteristics make it an excellent emitter material for orificed hollow cathodes.

1.2 Dissertation focus

Our goal is to provide tools that enable the design of cathodes for given performance

targets (discharge current and lifetime) without any prior experimental quantities.

Because the lifetime of the cathode is intimately tied to the behavior of the internal

cathode plasma, we seek to quantify the variation of plasma quantities with control-

lable parameters (e.g., cathode geometry and discharge current).

The core idea of this work is that is that the fundamental quantities dictating the

lifetime of cathodes can be derived from simplified fluid models for a partially-ionized

plasma. In this approach, we will:

1. perform a dimensional analysis on experimental data and determine which pa-

rameters are relevant to the flow regime in which cathodes operate,

2. use a fluid theoretical framework based on the results of the dimensional analysis

to formulate scaling relationships, and

3. apply and verify the developed correlations to a cathode regime that has never

been tested.

1.3 Previous work

Previous scaling relationships have been proposed to quantify the lifetime of a cathode

[46], to establish the operating envelope of cathodes [47,48], or to evaluate the plasma

attachment length [49].
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Kaufman et al. [46] Kaufman empirically developed some of the first scaling

relationships for the lifetime of hollow cathodes under the assumption that it is limited

by the erosion of the cathode tip:

Id
do
≤ 12 A/mm, (1.2)

where Id is the total discharge current in amperes, and do is the orifice diameter.

Because the empirical correlations were developed from mercury hollow cathode

data they are not applicable to modern cathodes which operate on noble gases. The

life-limiting process of tip erosion is also mitigated by the presence of a keeper in a

modern cathode.

Salhi et al. [47,48] Salhi et al. find that the plasma effective length is proportional

to the internal diameter of the cathode (Lemit ∝ dc) by solving the Laplace equation

in the insert region. The authors also find that the maximum discharge current that

can be drawn by a cathode is proportional to the cathode inner diameter (Id ∝ dc)

by arguing that resistive heating is balanced by convection losses. The use of the

Laplace equation to solve for the potential distribution within a plasma, however, is

not justified because the assumption of quasineutrality does not imply that the charge

density in Poisson’s equation must vanish [50].1 The fact that Salhi et al. obtain the

correct scaling for the attachment length is likely due to the exponential nature of the

potential distribution decay in the axial direction. We have found that our cathode

(whose experimental setup will be described in the following chapter) can operate

above the maximum current suggested by Salhi et al., which implies that including

only resistive heating and convection losses limits the domain of applicability of the

relationship for the maximum discharge current that can be drawn by a cathode.

1To correctly obtain the potential distribution from the plasma density in a collisional and
weakly-ionized plasma the current continuity may be used [51].
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Albertoni et al. [49] The empirical analysis performed by Albertoni et al. suggests

that the attachment length Lemit is inversely proportional to the total pressure P in

hollow cathodes:

Lemit = K/P, (1.3)

where K is a constant between 5–15 Pa-m. This result is similar to that found

in [52] for sheath voltages less than 8 V for xenon. However, the observed scaling of

attachment length cannot be captured by the electron transport phenomena suggested

in [52], nor by the purely empirical relationship given in [49] (which does not offer a

mechanistic explanation).

1.4 Dissertation outline and methodology

In the next chapter, we review past attempts at a theoretical model of the cathode

insert plasma. We then present the experimental setup we developed and derive

empirical scaling relationships based on experimental data measured with our setup

and from the literature. In the following two chapters, we derive our own cathode

model based on the lessons learned from our review and empirical study, and we

apply the theoretical model to the derivation of rigorous scaling laws. We discuss the

physical meaning of those scaling laws and provide design rules for future cathodes.
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Chapter 2

Review of 0-D cathode models
1

Several approaches have been used to model the physical processes within orificed

hollow cathodes, often restricting their focus to the “active zone” or insert plasma

region [42, 52, 55] where significant electron emission is supplied to the plasma by

the emitter. In turn, sufficient ion current is generated from the plasma for the

discharge to be self-sustaining and to avoid space-charge-limited emission. The insert

plasma is usually modeled with either zero-dimensional (0-D) or two-dimensional (2-

D) axisymmetric approaches, either including the orifice as a coupled region or using

a separate model implemented as a boundary condition.

While there exists several elaborate 2-D fluid [56,57], hybrid-particle in cell (PIC)

[58], and full PIC models [59] to describe the behavior of the plasma inside hol-

low cathodes, none have been applied or used to elucidate the underlying physics

governing hollow cathodes over a wide range of operating conditions. All existing

two-dimensional models require experimental data as an input and are therefore lim-

1This chapter is based on work presented in References

• [53]: Wordingham, C. J., Taunay, P.-Y. C. R., and Choueiri, E. Y., “A Critical Review of
Orificed Hollow Cathode Modeling: 0-D Models,” 53rd AIAA/SAE/ASEE Joint Propulsion
Conference & Exhibit, 2017, AIAA-2017-4888, and

• [54]: Taunay, P.-Y. C. R., Wordingham, C. J., and Choueiri, E. Y., “An Empirical Scal-
ing Relationship for the Total Pressure in Hollow Cathodes,” AIAA Propulsion and Energy
Forum, 2018, AIAA-2018-4428.
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ited to cathodes for which such data exist. Moreover, in the case of existing fluid

models, the treatment of the sheath is inconsistent with the physics involved. The

latest iterations [56] of the “OrCa2D” code [60] use the work of Prewett and Allen [61]

to compute the wall electric field in order to calculate emission enhancement due to

the Schottky effect when the field is non-zero at the wall. The OrCa2D code relies

on the assumptions made in [61], which limit it to cases where the emitter does not

feature a virtual cathode and does not operate at the sheath space-charge limit, which

is a possibility in thermionic hollow cathodes. Sary et al. [57] use the image-charge

approach developed for vacuum emission by Lin and Eng [62] to treat the emitter wall

boundary condition and add the fluxes of ions and random electrons from the bulk

plasma. However, Sary et al. only include the image-charge created by the emitted

electrons and ignore the one generated by both plasma ions and electrons. This likely

does not enforce the zero-potential boundary condition at the wall and it is unlikely

that results from vacuum emission can be directly applied to thermionic emission in

the presence of a plasma. Because they require experimental data and, in the case of

fluid models, inconsistently treat the sheath, two-dimensional models in their current

form cannot be used for predictive purposes or to formulate scaling laws.

The 0-D approach relies on a control volume with volume-averaged plasma prop-

erties. While important processes such as the variation of the plasma density along

the cathode axis or the plasma potential along its radial direction may be neglected,

0-D models can still provide useful results and scaling relationships. Any choice of

simulation dimension requires the inclusion of plasma-wall interactions for a compre-

hensive model, ideally implemented in the form of a double- or emitting-sheath model

at the surface of the emitter. The emission mechanism is typically assumed to be

field-enhanced thermionic emission [49,63,64], governed by the Richardson-Dushman

equation. The work function is often modified to account for the Schottky effect due

to the sheath electric field (though this correction is sometimes neglected [42]). In
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order to estimate the electric field at the emitter surface, the double-sheath analysis of

Prewett and Allen [61] is typically employed, although other authors use the plasma

potential in place of the sheath potential in the equations from [61]; the effect of this

simplification will be discussed in later sections. Other important emission processes,

such as space-charge-limited emission, are often ignored or implicitly handled through

the use of the emission length or “active zone” where the plasma density is assumed

to be sufficient to avoid limitation of the extracted thermionic current.

One of the primary difficulties associated with the assumption of uniform plasma

properties is that it requires a description of the appropriate boundaries of the active

zone in order to model the insert emission region. The calculation of the emission

length, Lemit, or active zone length, in the axial direction typically requires a separate

model, as the 1-D axial variation of the plasma and neutral densities appears to

govern the formation of this region.

Approaches for calculating the attachment length include: 1) using a fixed multiple

of the mean free path for energy exchange [52,65] of the emitted electrons, 2) assuming

ambipolar-diffusion-dominated density decay [42], 3) using empirical correlations that

yield Lemit as a function of the cathode internal pressure [49], 4) iterative calculations

of the discharge power (selecting Lemit such that the power is minimized) [55], 5)

using Lemit as a free parameter to fit experimental data [49], or 6) taking Lemit from

experimental data [42].

While various models have been proposed, few are completely self-consistent or

self-contained and readily available to extend the domain of operation of hollow cath-

odes. This chapter will review 0-D models developed since the advent of the orificed

hollow cathode and provide critical insight on their quality and validity. Comparisons

between the various 0-D model results and experimental data for two benchmark cath-

odes are given in Section 2.9. When possible, the algorithm of the original authors are

re-implemented using Python and its Numpy [66] and Scipy [67] packages. Non-linear
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systems of equations are solved in a least squares approach with Scipy’s root solver

configured with the Levenberg-Marquardt algorithm [68]. The critical modeling issues

we identified in our review are discussed in Section 2.10.

2.1 Siegfried and Wilbur [69]

A simple first-principles approach was initially chosen by Siegfried and Wilbur to

model orificed hollow cathodes operating on mercury, employing tantalum-foil inserts

coated with the low-work-function material R-500 (φw of approximately 2.3–2.4 eV).

Their work follows modeling efforts from Bessling [70]. Plasma-wall interactions are

entirely neglected in this model, but it allows for the calculation of the local plasma

density and ionization fraction as a function of the measured electron temperature

and the — calculated or measured — cathode pressure. The cathode stagnation

pressure, P , is estimated assuming choked-sonic flow at the orifice,

P =
ṁ
√
Tn

πr2
o

[
γ

Rg

(
2

γ + 1

) γ+1
γ−1

]−1/2

, (2.1)

where the neutral gas temperature Tn is a stagnation quantity. ṁ, γ, Rg, and ro are

the input mass flow rate, ratio of heat capacities, specific gas constant, and orifice

radius, respectively. Using the set input mass flow rate for ṁ in Equation 2.1 implic-

itly assumes that 100% of the propellant gas leaves the cathode in a neutral state,

and therefore neglects ionization processes that decrease the total number density of

neutrals as well as any pressure contributions from plasma ions or electrons. It also

neglects viscous effects within the orifice and insert region and the heating of the

neutral gas by the plasma, as the derivation of Equation 2.1 relies on the assumption

of isentropic flow. The effect of the discharge current on the pressure is also neglected,

though the authors note that the variation was only 15% of the total over the range

of discharge currents examined. Siegfried and Wilbur also report good agreement
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between measured and calculated pressures, despite the apparent inapplicability of

the flow model used.

The ionization fraction α is determined based on a two-temperature Saha model,

α1+τge

(1− α)τge (1 + α/τge)
=

1

P

(2πm)3/2

h3
e5/2TnV T

3/2
eV

(
Σi

Σ0

)τge
exp

(
− εiz
TeV

)
, (2.2)

where α = ne/ (ne + nn). ne and nn are the electron and neutral densities, respec-

tively. m, e, h designate the mass and charge of the electron, and the Planck constant,

respectively. εiz is the ionization energy of the gas considered, in eV. Both the neutral

gas temperature, TnV , and electron temperature, TeV are here in eV. Σi and Σ0 are

the partition functions of the ions and of the neutral gas, respectively. τge is the

ratio of the neutral gas temperature to the electron temperature. The total pressure

is expressed in Pascals in Equation 2.2, and the ions/neutrals are assumed to be in

thermal equilibrium with one another, but not with the electrons, which are further

assumed to have equilibrated amongst themselves.

The total pressure is linked to the heavy particle density and plasma density using

the perfect gas law, under the assumption that the densities and temperatures are

uniform within the cathode:

P = e (neTeV + nnTnV + niTiV ) , (2.3)

where ni and TiV are the ion density and temperature in eV, respectively. The neutral

temperature is also assumed to be equal to the ion temperature and is calculated

as the average of the estimated internal cathode temperature and the orifice plate

temperature (≈ 0.1 eV for Siegfried and Wilbur’s experiment).
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Evaluation

The authors demonstrate good agreement between calculated and experimental data

for their mercury cathode operating in spot mode (Id = 6.0 A at ṁ = 100 mA). In

plume mode (Id = 2.0 A at the same ṁ), the authors experimentally measured a flat

electron temperature profile, but chose to use a linear fit for the electron temperature

when implementing their model as it gives better agreement with the experimental

data. Siegfried and Wilbur also demonstrate that the model results are sensitive to

the chosen neutral gas temperature. They compare the results of the algorithm for

two values of TnV : TnV = 0.1 eV and TnV = TeV . The latter value results in an

increase in the ionization fraction, and therefore the plasma density, of several orders

of magnitude.

2.2 Siegfried and Wilbur [52, 63, 65, 71, 72] — a

refined approach

Siegfried and Wilbur refined their original model in a series of articles and reports

[52,63,65,71,72]. In this refined model, the authors assume that the plasma properties

are uniform within an “ion production region” that coincides with the insert emission

length (or attachment length, Lemit). An early version of the new model is described

in [63] and [71]. It consists of a current balance and insert power balance, with the

assumption that ions are either collected at the emitter or the orifice plate, leave the

cathode through the orifice, or travel toward the upstream region of the cathode at the

Bohm velocity. The sheath electric field is described using Child’s law and an assumed

sheath thickness of one Debye length (thereby assuming a single-species, space-charge-

limited sheath). The unknowns of this system are the plasma potential, electron

temperature, emitter temperature, and plasma density. This version of the model

requires two measured quantities (electron temperature and plasma potential), the
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emission length, and the heat loss from the emitter (through conduction, radiation,

and convection) in order to solve for the two other quantities of interest. This model

is still a notable improvement over the initial one, as it does not rely on a Saha-type

equation for the ionization fraction, the use of which is generally not justified [49].

A later, improved approach introduces a flow model, a double-sheath approach

to treat the electric field at the cathode surface, and a plasma volume power bal-

ance. The emission length is linked to the energy-exchange mean free path of the

emitted electrons. The introduction of two additional physical constraints allows for

four physical quantities to be computed — the plasma density, plasma potential, neu-

tral gas density, and emitter temperature. The electron temperature remains a free

parameter. This improved version is described and critiqued below.

Total pressure The cathode pressure upstream of the orifice is assumed to be equal

to the stagnation pressure, which is roughly constant along the cathode length. It is

given by an empirical relationship,

P =

(
ṁA

4r2
o

)
(c1 + c2Id)× 10−3, (2.4)

where P is in Torr, ṁA in mA-equivalent, and ro in mm. The constants c1 and c2 de-

pend on the gas of interest. Equation 2.4 addresses the shortcomings of Equation 2.1,

as it is empirically derived and does not neglect the effects of the plasma on the flow.

Current balance The ion and electron currents, Ii and Ie, are related to the total

discharge current through a net current balance:

Id = Ie + Ii = JemAemit + Ji
(
Aemit + 2πr2

c

)
, (2.5)
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where Aemit is the total emission area and rc is the (inner) radius of the insert. Ions

are lost from the plasma volume at the emitter and orifice boundaries and in the

upstream portion of the cathode. Siegfried and Wilbur assume that the ions are lost

upstream at the Bohm velocity, as opposed to the ion thermal velocity. This leads to

an ion current contribution approximately 2 times higher at the upstream boundary

as compared to the ion thermal current (using TeV = 0.8 eV and TiV = 0.1 eV). The

ion current is obtained with the Bohm velocity, which is assumed to be valid even

with a boundary emitting electrons, a common assumption that yields reasonable

results but that is not entirely justified. We discuss this assumption in more details

in Chapter 5. The effect of the pre-sheath on the ion density is also neglected in the

expression for the ion current density, Ji:

Ji = ene

(
eTeV
M

)1/2

, (2.6)

where M is the ion mass. It is assumed that no electrons return to the insert from

the plasma so that only thermionic electrons contribute to the total current, in sharp

contrast with later models [42, 49, 73]. This assumption does not hold under all

conditions encountered in orificed hollow cathodes. Assuming that the collection

areas for back-streaming electrons and ions are the same, the ratio of back-streaming

electrons, Ir, to ion current, Ii, at the insert surface may be calculated as:

Ir
Ii

=

(
M

2πm

)1/2

exp (−φs/TeV ) , (2.7)

where φs is the sheath potential. Figure 2.1 illustrates this ratio for common oper-

ating conditions found in orificed hollow cathodes, for both mercury and xenon as

propellant. For the case where the sheath potential is taken to be equal to the plasma

potential, this assumption may be valid at low electron temperatures (1–1.5 eV).
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Figure 2.1: Ratio of thermal electron current backstreaming to ion current for varying
sheath voltage and electron temperature.

The Richardson-Dushman relationship is used to calculate the thermionic current,

Jem = DRDT
2
c exp

(
− eφeff

kBTc

)
, (2.8)

with an effective work function, φeff , modified to take into account the finite electric

field at the cathode surface, Ec:

φeff = φw −
(
e |Ec|
4πε0

)1/2

. (2.9)

ε0 designates the permittivity of vacuum. The cathode surface electric field can be

calculated using an approximate form of the surface electric field expression from

Prewett and Allen’s double sheath model [61]:

Ec ≈
(
neeTeV
ε0

)1/2
(

2

(
1 + 2

φp
TeV

)1/2

− 4

)1/2

. (2.10)
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Siegfried and Wilbur use the plasma potential, φp, instead of the sheath potential in

Equation 2.10. The correction to the work function is not affected by this change, as

the plasma potential only appears to the 1/4-th power in Equation 2.9.

Power balance The model includes power balances for both the insert surface and

plasma volume, given by Equations 2.11 and 2.12, respectively:

JiAemit (φp + εiz − φw) + q̇dxAemit + q̇phAemit︸ ︷︷ ︸
neglected

= q̇th + Iemφeff , and (2.11)

φpIe = εizIi +
5

2
TeV Id. (2.12)

q̇th and Iem are the total heat loss (through conduction, convection, radiation) and to-

tal thermionic current, respectively. Power deposition to the insert by de-excitation

(q̇dx) and photon absorption (q̇ph) are neglected. Ohmic heating in the plasma is

ignored, which becomes more significant with increasing discharge current. The elec-

trons back-streaming to the surface are neglected here as well. The power contribution

of the backstreaming electrons may be compared to the ion contribution:

Pr
Pi

=

(
M

2πm

)1/2

exp (−φs/TeV )
2TeV + φw
εiz + φs − φw

. (2.13)

Figure 2.2 illustrates the power ratio for common operating conditions found in ori-

ficed hollow cathodes, for mercury and xenon propellants. Similar conclusions to

those drawn from Figure 2.1 can be reached: assuming a sheath potential equal to

the plasma potential (usually 8–12 V) and low electron temperature justifies neglect-

ing the random electron flux.

Attachment length The plasma attachment length is taken to be proportional to

the energy-exchange mean free path of the thermionically emitted electrons (primary
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Figure 2.2: Ratio of the contribution to the insert surface power balance from thermal
electrons backstreaming to ions for varying sheath voltage and electron temperature.

electrons), λpr:

Lemit = c3λpr, (2.14)

where c3 varies with the gas species [65]. The energy-exchange mean free path is the

mean free path of the primary electrons. For mercury, it may be estimated with:

λpr =

(
6.5× 10−17ne

φ2
p

+
103nnφp

2.83× 1023 − 1.5nn

)−1

, (2.15)

where the first term corresponds to elastic collisions, while the second approximates

inelastic collisions. Only electron-electron collisions are retained for elastic collisions,

as they dominate over electron-atom and electron-ion elastic collisions [72]. In Equa-

tion 2.15, the second term is a fit to the collisional-radiative model of Peters and

Wilbur [74], as the knowledge of the density of every gas state needs to be known.

For other species, the inelastic mean free path can be estimated using its usual defi-
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nition with the electron beam energy set equal to the plasma potential:

λpr =

(
6.5× 10−17ne

φ2
p

+ nnσinel (φp)

)−1

. (2.16)

The total inelastic collision cross section, σinel, includes excitation and direct ion-

ization reactions, both from ground states, but step-wise ionization is ignored. The

system is closed with the perfect gas law (Equation 2.3).

Additional details The final version of the model still relies on experimental data,

as it does not include any prediction of the electron temperature. The heat loss is

calculated by considering surface-to-ambient radiation and conduction through the

cathode back to the cathode base. Several other noteworthy assumptions and simpli-

fications exist in all versions of the model, including:

- Except in the calculation of the energy-exchange mean free path for mercury,

excitation and stepwise ionization are ignored. This is a common assump-

tion [42, 49] that appears to produce decent results despite being generally un-

justified.

- As a result of the assumption that plasma and sheath potentials are equal, the

energy of the primary electrons for use in calculating the energy-exchange mean

free path is assumed equal to the plasma potential, which may differ from the

energy the electrons would actually gain in the sheath.

Evaluation For a mercury cathode, the model shows relatively good agreement

for the evolution of the emitter temperature as a function of discharge current, and

plasma density as a function of internal pressure. However, the model predicts a non-

linear trend for the plasma density as a function of discharge current, in contradiction

with experimental data. The predicted plasma density evolves linearly as a function

of the internal pressure and does not capture the saturation of the plasma density for
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pressures above 3 Torr. The model also tends to under-predict the plasma potential

for the mercury cathode, with the caveat that it is only compared to a single value

for a different experiment. Calculations for the xenon cathode are shown later in

comparisons with other models.

In summary, the various incarnations of Siegfried and Wilbur’s model can produce

good agreement with experimental data, but cannot predict the electron temperature

and require an additional model for the insert heat loss, in addition to relying upon

a number of assumptions that may not hold for other cathode operating conditions.

2.3 Mandell and Katz [75–78]

Mandell and Katz offer a model of the orifice plasma only. It relies on the balance of

ion production and losses, a neutral gas flow model, and a plasma power balance.

Neutral gas flow From mass conservation, the total mass flow rate is equal to the

sum of the gas and ion mass flow rates:

ṁ = ṁg + ṁi. (2.17)

In units of equivalent-Ampères, the mass flow rates have the following form:

ṁg = πr2
onne

√
eTnV
2πM

, and (2.18)

ṁi = πr2
oJi. (2.19)

The ion current density is defined using the average velocity of a Maxwellian distri-

bution:

Ji = nee

√
eTiV
2πM

. (2.20)
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Ion balance The ion production through direct electron-impact ionization is bal-

anced by the losses to the boundaries of the system

(
dNi

dt

)
iz

=

(
dNi

dt

)
out

, (2.21)

where Ni is the total number of ions. The ionization rate is estimated using a

Maxwellian-averaged cross section:

(
dNi

dt

)
iz

=
(
πr2

oLo
)
nennσiz(TeV )

√
8eTeV
πm

, (2.22)

where Lo and σiz are the orifice length and ionization cross section, respectively. For

xenon, the ionization cross section is calculated with a fit to Hayashi’s experimental

data [79]:

σiz(TeV ) =
(
3.97 + 0.643TeV − 0.0368T 2

eV

)
exp

(
−12.127

TeV

)
× 10−20. (2.23)

Ion losses occur through the boundaries of the orifice. Mandell and Katz assume

that the ion losses are uniform at the orifice entrance, exit, and walls. Neglecting the

density and potential drop due to the pre-sheath, and using the thermal flux for ion

loss, the ion outflow is given by:

(
dNi

dt

)
out

= 2πro (ro + Lo)

√
eTeV
2πM

ne. (2.24)

Plasma power balance Ohmic heating, q̇Ω, is balanced by ionization, radia-

tion/excitation, and convection losses (q̇iz, q̇ex, q̇conv):

q̇Ω = q̇iz + q̇ex + q̇conv

⇔ RpI
2
d =

(
dNi

dt

)
iz

〈εiz〉+

(
dNi

dt

)
ex

〈εex〉+ Id
(
TeV − T ins

eV

)
,

(2.25)
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where

(
dNi

dt

)
ex

has the same expression as

(
dNi

dt

)
iz

, with the excitation cross section

substituted for the ionization cross section. Rp and εex designate the plasma resistance

and the excitation energy, respectively. For xenon, the excitation cross section can

be fit to Hayashi’s experimental data:

σex(TeV ) = 1.93× 10−19T
−1/2
eV exp

(
−11.6

TeV

)
. (2.26)

The average ionization and excitation energies are estimated as 12.2 eV and 10 eV,

respectively. The authors have omitted the factor of 5/2 for the convection losses in

Equation 2.25.

The plasma resistivity, ηp, contains contributions from both electron-ion and

electron-neutral collisions, and is given by:

ηp =
m

nee2
(νei + νen) , (2.27)

where νei and νen are the electron-ion and electron-neutral collision frequencies, re-

spectively. The plasma resistance is obtained from the resistivity and the orifice

geometry assuming axial current conduction:

Rp = ηp
Lo
πr2

o

. (2.28)

The electron-ion collision frequency is obtained using:

νei = Ceine ln ΛT
−3/2
eV , (2.29)

where Cei = 2.9× 10−12. The Coulomb logarithm, ln Λ, is expressed as:

ln Λ = 30− 1

2
ln
(
neT

−3
eV

)
. (2.30)
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The electron-neutral collision frequency may be defined with a hard-sphere model

with a constant collision cross section, σen, equal to 5 × 10−19 m2 (see, e.g., [75]).

Alternatively, it may be calculated based on the momentum transfer cross section.

The authors propose a fit to experimental cross section data [78]:

σen = 6.6× 10−19 TeV /4− 0.1

1 + (TeV /4)1.6 , (2.31)

but use the total electron-neutral collision cross section, which also includes inelastic

collisions, instead of the momentum transfer cross section. Figure 2.3 features a com-

parison of the fit to the total, Maxwellian-averaged, experimental cross section, and

to the Maxwellian-averaged momentum-transfer cross section, both from Hayashi’s

experimental data [79].

Equation 2.31

Momentum transfer

Total
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Figure 2.3: Comparison of Katz’s fit (Equation 2.31) to Hayashi’s recommended data
for total electron-neutral cross section, and to the electron-neutral elastic collisions
cross section from [79]. Momentum transfer cross sections are from [79] and [80].
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Equation 2.31 approximates Hayashi’s recommended data for the total electron-

neutral collision cross section for electron temperatures between 1 and 10 eV. The

numerical fit also approximates the momentum-transfer cross section for electron tem-

peratures between 0.8 and 2 eV. However, the fit overestimates momentum-transfer

data by a factor of 2 for electron temperatures above 2 eV. More recent elastic

electron-neutral cross section data also indicates that Equation 2.31 underestimates

the electron-neutral cross section at low electron energies. We retrieved the elastic

cross section data from the LXCAT website [81] (originally from [80]). We recom-

mend using the more recent elastic cross section data from Hayashi to estimate the

electron-neutral collision frequency.

Further assumptions are required to compute the plasma density, neutral gas

density, and electron temperature. The authors assume that:

- The ion temperature is equal to the electron temperature. This is in sharp

contrast with both earlier [52, 63, 69, 72] and later models [42], where the ion

temperature is set equal to the neutral gas temperature, a consequence of fre-

quent charge-exchange collisions in the plasma volume. The authors relax this

assumption in [78], and set TiV equal to 0.1 eV.

- The electron temperature from the insert T ins
eV is known.

- The neutral gas temperature is known.

Evaluation Because of the lack of experimental data in the orifice region of hollow

cathodes it is difficult to estimate the accuracy of orifice models. We compare this

model to other orifice models in a later section.
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2.4 Capacci et al. [82]

Capacci et al. propose a complete model of a hollow cathode, consisting of an in-

dependent insert model, a simple orifice model, and a plume model. The plume

is considered to extend from the cathode tip to the keeper plate. The goal of the

model is to predict the performance of new hollow cathode designs by calculating the

current-voltage characteristic of a cathode along with the cathode temperature.

2.4.1 Insert

The insert model is solved for the plasma and gas densities, the wall temperature,

the plasma potential, and the electron temperature. It follows the latest revision

of Siegfried and Wilbur outlined in [52], with an additional equation required to

close the system. Capacci et al. suggest the addition of a two-temperature Saha

equation (Equation 2.2), or an ion conservation equation (Equation 2.21). Additional

modifications are introduced in the determination of the pressure in the insert region,

evaluation of the emission length, and estimation of the heat loss in the insert surface

power balance.

Neutral flow Much like Siegfried and Wilbur, Capacci et al. use an empirical

relationship for the pressure in the insert region,

P =
ṁ

4r2
o

(
c1 + c2Id + c3I

2
d

)
, (2.32)

where c1, c2, and c3 are empirical constants. The expression differs from Equation 2.4

with the addition of a quadratic dependency on the current. We were not able to

compare the two empirical relationships, as the empirical constants are not specified

in [82].
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Emission length The emission length is defined without a thorough analysis of the

collision processes present in the insert region. It is posited that the emission length

is directly proportional to the insert radius, and is given by:

Lemit = c4rc, (2.33)

where c4 is another empirical constant. The authors indicate that c4 should take into

account the non-uniformity of the thermionic process — suggesting this term should

be evaluated with a separate model or experimental data. Capacci et al. set c4 to

a value of 0.5 in their study. This approach does not take into account any of the

processes that influence the emission length. For example, higher mass flow rates and

discharge currents typically reduce the emission length.

Heat loss The authors estimate the heat loss q̇th from a separate thermal analysis

of the insert region:

q̇th = 2rc (c5 + c6Tc)L
0.2
emit, (2.34)

where c5 and c6 vary based on cathode geometry.

The remaining insert model equations are identical to those of Siegfried and

Wilbur’s refined model.

2.4.2 Orifice

The orifice model serves as a bridge between the insert and keeper regions. It is

also used to estimate the voltage drop across the orifice. No plasma processes (e.g.,

ionization) are considered. Only electron-ion collisions are implemented in the finite

plasma resistance, in effect considering the plasma to be fully ionized. While the

approximation νei � νen may be true at low electron temperatures for sufficient

ionization fractions (less than 1 eV and 1%) or for high ionization fractions (greater
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than 10%), the electron-neutral collisions cannot be neglected for a typical cathode

orifice operational point (TeV ≈ 1 − 3 eV, α ≈ 1 − 10%) as shown on Figure 2.4 for

xenon.
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Figure 2.4: Ratio of electron-ion to electron-neutral collision frequencies, for increas-
ing ionization fraction α = ne/nn. The Coulomb logarithm is assumed to be equal to
7.1 — the average value for electron temperatures between 0.1 to 10 eV, and electron
densities between 1018 and 1022 m−3.

The temperature of the electrons in the orifice is a free parameter, and is assumed

to be equal to 1 eV in the calculations of Capacci et al.. The electron density is

obtained by considering that the current is entirely carried by the electrons, with the

fluid velocity of the electrons assumed to be equal to their thermal velocity:

Id = enorifice
e

(
eTeV
2πm

)1/2

πr2
o. (2.35)
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This assumption ignores the ions entrained outside of the orifice, and overestimates

the fluid velocity of the electrons. For a given cathode, with only electrons carrying

current, the fluid (or drift) velocity may be obtained as:

ue =
Id

neeπr2
o

. (2.36)

For the NSTAR neutralizer cathode (ro = 0.14 mm), 2-D simulations [83] have shown

a maximum orifice plasma density of 2.2× 1022 m−3, and an electron temperature of

2.2 eV for a mass flow rate of 3.6 sccm and discharge current of 3.26 A. This amounts

to an electron fluid velocity of 1.5 · 104 m/s, while the electron thermal velocity is

equal to 6.2 · 105 m/s. Capacci et al. clearly overestimate the fluid velocity of the

electrons, and, as a consequence, underestimate the plasma density in the orifice.

Neutral flow The orifice neutral density is estimated by assuming adiabatic and

isentropic flow conditions:

norifice
n = nn

(
γ + 1

2

)−1/(γ−1)

. (2.37)

Double sheath The authors assume the existence of a planar double sheath at

the entrance of the orifice, though they ignore any ion contribution from the orifice

in their insert model. A rigorous derivation of the double-sheath potential, φds, in

the space-charge limited case over a distance d is described in [84] by Langmuir.

Langmuir’s result can be rewritten as [85]:

φds =

(
9

4

(Je + Ji)d
2

ε0C0

√
m

2e

(
1 +

√
m

M

)−1
)2/3

. (2.38)

Capacci et al. consider the distance between the two planar sources of charged species

to be the Debye length, and introduce the approximations m/M � 1, C0 ≈ 7.5/4,
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and Je + Ji ≈ Id/πr
2
o. By conservation of current, the latter assumption amounts to

ignoring ion and electron currents to the orifice wall. The double sheath potential

can now be computed in terms of electron temperature, density, and total discharge

current:

φds =

(
9IdTeV

7.5πr2
onee

√
m

2e

)2/3

. (2.39)

Ohmic heating An additional voltage contribution across the orifice comes from

the plasma resistance:

VΩ = IdRor. (2.40)

The expression for the plasma conductivity of Capacci et al. artificially inflates the

contribution of the orifice to the total voltage drop from anode to cathode. The

scaling constant is off by multiple orders of magnitude.

The assumptions of adiabatic and isentropic flow are also contradicted by intro-

ducing Ohmic contributions in the orifice region — the power deposited by Joule

heating will clearly heat the neutral gas before it expands in vacuum. The existence

of a double-sheath at the entrance of the orifice region is also disputed.

2.4.3 Keeper

Spherical double sheath Capacci et al. consider the existence of an additional

double-sheath in the plume region, which has been observed by Siegfried and Wilbur

in the keeper region in the plume mode [69]. The authors assume that the double-

sheath is located at the tip of the cathode. This assumption implies the existence of

ions streaming towards the orifice region, which have been ignored in both the orifice

and insert models. The authors use a spherical model to estimate the current through

the double-sheath as described in [86], which assumes a space-charge-limited process.
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Assuming that Id ≈ Ie, the ion current and double sheath voltage are:

Itip
i = α

(
ro/r

tip
ds

)
Id

√
m

M
, and (2.41)

φtip
ds =

 Itip
i

4πε0j0

(
ro/r

tip
ds

)√M

2e

2/3

, (2.42)

respectively. Both α
(
ro/r

tip
ds

)
and j0

(
ro/r

tip
ds

)
are tabulated as functions of ro/r

tip
ds

in [86].

The authors propose to calculate the external double sheath radius at the cathode

tip by assuming that the Bohm criterion applies to the ions. This is in direct contra-

diction with the assumption of [86], where the ions are considered to be cold at the

sheath entrance. The proposed surface area over which the ions flow is incorrectly

assumed to be a circle. To be consistent with the assumption of a hemispherical

double sheath, it should be the area of a sphere, of radius rtip
ds . The ion current is

given by:

Itip
i = entip

e 2π
(
rtip
ds

)2

√
eT tip

eV

M
. (2.43)

Neutral flow The neutral gas density, electron density, and temperature in this

region are estimated assuming a spherical expansion and a simple two-temperature

Saha equation model (see Equation 2.2), respectively. The resulting expression for

the neutral density in the plume is:

ntip
n = norifice

n

(
ψro/ sinψ

(ro/ sinψ + Lck/2)ψ

)2

(2.44)

This approach is similar to Siegfried and Wilbur’s first attempt at hollow cathode

modeling presented in [69], with the choked flow (Equation 2.1) being replaced by

Equation 2.44.
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2.4.4 Evaluation

The authors apply their solver to three cathodes — NCC A300, A5000, and A10000.

The model seems to be insensitive to changes in the mass flow rate, and is unable

to reproduce the discharge characteristic of the cathode. The overall shape of the

characteristic seems qualitatively correct, but the model underpredicts the discharge

voltage by 8–45%, even though the orifice plasma resistivity is overestimated.

The results for the A300 cathode suggest that the majority of the discharge voltage

comes from the plasma potential drop. The electron temperature obtained in the

insert region is also quite low — around 0.7 eV. Capacci et al. do note that the

wall temperature is very sensitive to the effective work function. The introduction of

a simple constant value for the calculation of the effective length also decreases the

accuracy of the wall temperature prediction. The specific contributions of the orifice

and keeper models are not discussed, and no comparison with previous models is

offered. The approach is promising and reuses key elements of Siegfried and Wilbur’s

successful low-current approach, but some assumptions are questionable, and the

spherical double-sheath model is not implemented correctly. The plasma resistivity

is also overestimated in the orifice region, and the model relies on experimental data

(e.g., empirical pressure relationship). These factors combined render the approach

unreliable in its current form.

2.5 Domonkos [64,73]

Domonkos models cathode performance by considering the orifice and the insert re-

gions separately. The model for the orifice region is based on that of Mandell and

Katz [64,75] (with the addition of a current balance equation), and requires the orifice

wall temperature, mass flow rate, and discharge current as input. The full model is

comprised of current, ion, and energy conservation equations in each volume. The
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insert and orifice region models are coupled through the electron/ion exchange at

the orifice entrance and the insert electron temperature. The latter appears in the

electron convection term for the orifice.

Each of the coupled models has its own set of free parameters needed to approxi-

mate the excitation and ionization processes taking place and to describe the electron

emission and power deposition in the insert. Unfortunately, Domonokos’s model de-

scription contains typographical or physical errors in many of the equations (repeated

in all references for the model, and in later models citing his work [49,87]), making it

difficult to implement without ambiguity. We have attempted to correct typograph-

ical errors in the equations that follow, pointing out inconsistencies in the physical

treatment when they appear.

2.5.1 Orifice model

The orifice model uses ion conservation, current continuity, and conservation of energy

in the plasma volume to solve for the plasma density and electron temperature. In

order to evaluate the neutral density, the gas flow through the orifice is assumed to

occur at the sonic velocity characteristic of the orifice wall temperature.

Ion conservation The ion balance in the orifice region equates the gains of ions

through both electron-impact ionization and the influx from the insert region to the

ion losses through the orifice inlet, outlet, and walls:

(
dNi

dt

)
iz

+

(
dNi

dt

)
in︸ ︷︷ ︸

neglected

−
(
dNi

dt

)
out

= 0. (2.45)

The second term in Equation 2.45 is neglected due to the assumption that a double

sheath exists at the constriction of the orifice entrance, preventing the flow of ions

from the insert region. The ionization rate coefficient is calculated by integrating the
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product of the velocity-dependent ionization cross section and the electron velocity

over a Maxwellian Electron Energy Distribution Function (EEDF). Domonkos con-

siders only direct electron-impact ionization and neglects step-wise ionization in the

orifice:

(
dNi

dt

)
iz

=
(
πr2

oLo
)( m

2πeTeV

)3/2

4πnenn

∫ +∞

0

v3σiz(v) exp

(
− mv2

2eTeV

)
dv. (2.46)

The ions leaving the volume exit through either the sheath surrounding the orifice

surfaces (assumed to include the orifice inlet) or through thermal efflux at the orifice

outlet, towards the keeper and anode. The Bohm condition is used to calculate the

flux of ions towards the wall and through the double sheath:

(
dNi

dt

)
out

= 0.61ne

√
eTeV
M

(
2πroLo + πr2

o

)
︸ ︷︷ ︸

sheaths

+
1

4
ne

√
8eTiV
πM

πr2
o︸ ︷︷ ︸

thermal

. (2.47)

Using the Bohm criterion to calculate the ion flux to the orifice surfaces is justifiable,

due to the assumption that the orifice walls are not emitting. The ion acceleration

in the pre-sheath should therefore be unmodified [61]. However, applying the Bohm

criterion to the double sheath is questionable. The electrons and ions are counter-

streaming in the case of the double sheath, rather than traveling in the same direction,

as is the case for the wall sheath. The ion current should instead be solved for in a

manner consistent with the double sheath model used (e.g., using the Langmuir ratio√
m/M to find the ratio of ion to electron currents [84]).

Mass conservation The neutral gas density in the orifice is calculated using mass

conservation, assuming sonic flow:

nn =
ṁ

Mπr2
o

√
γRgTn

. (2.48)
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The (static) neutral gas temperature is assumed to be equal to the orifice plate tem-

perature, which must be obtained from experimental data. In using this equation

for the neutral density, Domonkos implicitly assumes that 100% of the neutral gas

input exits the cathode in the same state, disregarding ionization processes and the

electron pressure contribution. Domonkos seems to imply at various points within

the coupled models that nn instead refers to the density of heavy particles — both

ions and neutrals — which is more reasonable from a mass conservation standpoint.

However, Domonkos then uses this value as the neutral density for the purposes of

calculating the ionization rate, reducing it by the plasma (ion) density when calcu-

lating the excitation rate. The target species in both cases should have the same

density, unless excited ions or multiple ionization events are considered.

In addition, it is unclear whether the appropriate velocity for the ions leaving the

volume through the orifice outlet is that of the fluid (which would be required for con-

tinuity if the density calculated above is the heavy particle density) or the ion thermal

velocity. The difference between these values is relatively small, however, given that

the ratio of the neutral sound speed to the ion thermal velocity is
√

5π
24
≈ 0.81 for

a monatomic propellant. Domonkos uses the ion thermal velocity to calculate the

ion flux through the orifice outlet, but the overall contribution from the exiting ion

current is small regardless of the flow velocity used.

Current continuity Current continuity in the orifice region is used to find the

electron current entering the orifice from the insert region plasma. A simplified pic-

ture of the orifice currents is shown in Figure 2.5. Ions leave the orifice at the thermal

velocity through the outlet (Iemit
i ), at the Bohm velocity through the double sheath

(Ids
i ) at the orifice inlet, or recombine at the orifice walls (Iwalls

i ), having been accel-

erated to the Bohm velocity by the orifice wall sheath. No ion current flows from the

insert region into the orifice due to the double sheath.
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Figure 2.5: 0-D cell representation of the orifice currents.

The total discharge current can be calculated at the downstream end of the orifice

as the difference between the electron and ion currents leaving the orifice:

Id = Iorifice
e − Iemit

i , (2.49)

which, along with the ion flux terms in the orifice, can be used to calculate the

electron current from the insert. Domonkos gives the following expression for the

insert electron current:

Id = I insert
e + Iwall

i + Ids
i − Iemit

i . (2.50)

Domonkos’s proposed relationship (Equation 2.50) at the downstream end of the

orifice features an unnecessary term, Iemit
i , and consequently violates conservation of

charge. Because no electrons are lost in the orifice, the electron current at the outlet

should be equal to the sum of the electron current at the inlet and the electron current

generated by ionization in the orifice volume:

Iorifice
e = I insert

e + Icreated
e . (2.51)
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Because electrons and ions are created in pairs, and all ions created in the orifice

must also leave the orifice (for steady-state conditions), we can express the electron

current due to volume ionization in terms of the ion outfluxes:

Icreated
e = Iwall

i + Ids
i + Iemit

i . (2.52)

Equations 2.49, 2.51, and 2.52 can be combined to yield the correct relationship:

Id = I insert
e + Iwall

i + Ids
i . (2.53)

The terms Iwall
i , Ids

i , and Iemit
i are obtained as shown in Equation 2.47. They are

expressed separately below:

Iwall
i = 0.61nee

√
eTeV
M

(2πroLo) , (2.54)

Ids
i = 0.61nee

√
eTeV
M

(
πr2

o

)
, and (2.55)

Iemit
i = nee

1

4

√
8eTiV
πM

πr2
o, (2.56)

respectively.

In Domonkos’s approach, the two current continuity Equations 2.49 and 2.53 yield

both the electron current coming from the insert, I insert
e , and the electron current

leaving the orifice, Iorifice
e . Because the discharge current increases along the length of

the orifice, their determination is necessary for the calculation of the Ohmic losses in

the orifice. We note that either I insert
e or Ids

i is a known quantity, as these quantities

are tied together through the double sheath relationship [84],

I insert
e = Idsi

√
M

m
. (2.57)
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The double sheath ion current, Idsi , has been assumed to be known and set equal to

the Bohm current in Domonkos’s approach, which likely over-predicts the required

electron current, I insert
e , and, therefore, the double sheath voltage if calculated in a

self-consistent manner.

Energy conservation Power deposition in the orifice volume is assumed to take

place via Ohmic heating, balanced by losses due to ionization, excitation, and electron

convection:

q̇Ω = q̇iz + q̇ex + q̇conv. (2.58)

Domonkos assumes that the electron current increases linearly along the orifice length

due to the previously discussed ionization taking place in the orifice. The electron

current is given by:

Ie(x) = I insert
e + bx, (2.59)

where b =
Iorifice
e − I insert

e

Lo
. This assumption implies that the electron density increases

along the length of the orifice if the drift velocity is constant (no electron losses are

considered in the orifice). While this is inconsistent with the 0-D approach, it does

make sense to attempt to account for the increase in electron current across the orifice,

as volume ionization within the entire cathode has been estimated to account for up

to 30% of the total discharge current [52]. The Ohmic heating term is calculated

using the mean-square electron current over the length of the orifice:

q̇Ω = Ror〈Ie(x)2〉 = ηp
Lo
πr2

o

((
I insert
e

)2
+ I insert

e bLo +
1

3
b2L2

o

)
, (2.60)

where Ror is the resistance of the plasma in the orifice. Under the assumption of

constant resistivity, the difference in Ohmic power deposition obtained using the

mean-square current as opposed to using the outlet electron current is small. Even if
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the electron current were to increase by 50% along the orifice length, the difference

is only about 8%.

The orifice plasma resistivity is calculated using Equation 2.27, with the electron-

ion collision frequency from the NRL plasma formulary [88],

νei = 3.9× 10−12 ne

T
3/2
eV

ln Λ. (2.61)

The electron-neutral collision frequency is evaluated using a calculated reaction rate

based on experimental cross section data and a Maxwellian EEDF divided by the

plasma density. The Coulomb logarithm differs slightly from Mandell and Katz’s

definition given earlier:

ln Λ = 23− 1

2
ln

(
10−6ne
TeV

)
. (2.62)

The ionization losses are calculated by multiplying the ionization rate in the vol-

ume by the ionization energy:

q̇iz = eεiz

(
dNi

dt

)
iz

. (2.63)

The excitation losses are found in a similar manner:

q̇ex = eεex

(
dNex

dt

)
. (2.64)

The excitation rate,

(
dNex

dt

)
, is obtained by integrating over the total excitation

cross section:

(
dNex

dt

)
=
(
πr2

oLo
)( m

2πeTeV

)3/2

4πnenn

∫ +∞

0

v3σex(v) exp

(
− mv2

2eTeV

)
dv. (2.65)

In order to calculate the power loss due to excitation, the excited states are lumped

with the average excitation energy, εex, as a free parameter in the model. Its value
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is set at 10 eV, though a more rigorous model would consider the different excitation

levels in the gas of interest, and compute the average excitation energy. Doing so

would require knowledge of the densities of each excited state in order to evaluate the

contribution of stepwise excitations, which could be found using a collisional-radiative

model similar to that implemented by Peters and Wilbur [74] for mercury.

Finally, convection losses are given by the difference between the power carried

out of the orifice by the outgoing electron current and the power input from the insert

electron current. Following Mandell and Katz, Domonkos neglects the factor of 5/2

that should be present in each of the convection terms:

q̇conv = (IeTeV )orifice − (IeTeV )insert . (2.66)

2.5.2 Insert model

Similar balance equations are used to model the insert region: ion conservation,

current continuity, and energy conservation are considered. The total pressure is

calculated using a form of Poiseuille flow modified to take into account the pressure

drop encountered at the flow constriction of the orifice.

Flow model

In order to calculate the pressure in the insert region, the pressure drop along the

orifice length is estimated using Poiseuille flow and a correction due to the flow

constriction:

Pinsert =

√
ṁ

16µ

πr4
o

RgToLo + P 2
sonic +

1

2
ρ̄ū2 (1 +KL) , (2.67)

where Psonic is the pressure calculated in the orifice model for the assumed choked-

sonic flow through the orifice, ρ̄ is the average density, ū is the average flow velocity, µ
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is the dynamic viscosity, To is the orifice temperature, andKL is the loss coefficient due

to the constriction (≈ 0.5). The average density is evaluated as the arithmetic average

of the pressures at each end of the orifice, using the upstream pressure without the

correction as Pinsert. The average velocity can be found using the linearized pressure

gradient along the length of the orifice:

ū =
r2
o

8µ

(
Pinsert − Psonic

Lo

)
. (2.68)

This flow model yields reasonable, but low, values of the pressure in Domonkos’s

experimental cathodes. This may be due to the pressure contribution from the dis-

charge, or heating of the neutral gas by charge exchange [89]. A brief derivation of

this model is given in Appendix C in [64].

Ion conservation

Domonkos considers ionization due to both primary (thermionically emitted) and

plasma (thermalized/Maxwellian) electrons. Primary electrons contribute to the cre-

ation of excited states that are then ionized by the thermalized plasma electrons.

Primary electrons The primary electrons are emitted with a Maxwellian distribu-

tion at the emitter temperature, “shifted” to account for the acceleration of electrons

by the sheath potential. The sheath potential is assumed to be equal to the plasma

potential in this model. The distribution function used by Domonkos is given by:

fb(ve) = 4π

(
m

2πeTeV

)3/2

v2
e exp

(
−m (ve − vb)2

2eTeV

)
. (2.69)

The proposed distribution is incorrect as the shift is applied directly to the speed

distribution, as opposed to the velocity in the direction of beam propagation. The

distribution given in Equation 2.69 is also not properly normalized. A more accurate
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representation of the beam distribution is given by:

fb(v) = 2

(
m

2πeTeV

)3/2

exp

{
−
m
[
v2
x + v2

y + (vz − vb)2]
2eTeV

}
θ(vz − vb). (2.70)

In Equation 2.70, the velocity distribution is shifted only in the direction of the

electron beam acceleration (taken to be the z-direction). The Heaviside θ ensures

that no particle has a z-direction velocity less than that of the beam; such a particle

would have a negative z-direction velocity at the emitter surface and would not leave

the emitter. Equation 2.70 is more difficult to integrate than the original distribution.

However, it can be transformed into a form more appropriate for integration by

introducing the following definitions: v⊥ =
√
v2
x + v2

y and |v| =
√
v2
⊥ + v2

z . The

integral becomes:

∫∫∫
fb(v) d3v =

4π

(
m

2πeTeV

)3/2 ∫ +∞

vb

∫ +∞

0

v⊥ exp

{
−
m
[
v2
⊥ + (vz − vb)2]

2eTeV

}
dv⊥ dvz. (2.71)

The corresponding reaction rate coefficient is therefore given by:

〈σv〉 = 4π

(
m

2πeTeV

)3/2 ∫ +∞

vb

∫ +∞

0

|v|σ(|v|)v⊥ exp

{
−
m
[
v2
⊥ + (vz − vb)2]

2eTeV

}
dv⊥ dvz.

(2.72)

Given the large disparity between the beam velocity induced by the emitter sheath

and the thermal velocity characteristic of the emitter temperature, there seems to be

little reason to introduce such a distribution unless the beam energy is close to the

threshold energy for a process of interest. Typical sheath and plasma potentials for

hollow cathodes are in the 3–12 V range, while emitter temperatures are 0.1–0.2 eV.

Domonkos’s choice of 8 V for the plasma potential (a free parameter in the model)

is close to the first excitation energy of xenon, so the tail of the beam distribution
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may contribute to excitation. However, the arbitrary nature of this plasma potential

value makes it difficult to assess whether the finite beam temperature is important

for a real cathode. The relatively low energy required (3.4 eV [90]) for ionization

from xenon metastable states would make these events far more likely to contribute

to stepwise ionization if a sufficient density of metastables exists within the mean free

path of the beam electrons. Because the energy the electrons typically gain from the

sheath potential is less than the threshold for direct ionization (at least in the case of

xenon), Domonkos’s approach of comparing the ionization and excitation mean free

paths is likely unnecessary.

The density of primary electrons, nprimary
e , is the density of emitted electrons as

they enter the bulk plasma, with a velocity, vd, determined by the plasma potential.

Domonkos uses the thermionic current density to calculate the density of primary

electrons,

nprimary
e =

Jem
evd

, (2.73)

where the velocity of electrons is obtained through energy conservation of ballistic

electrons,

vd =

(
2eφp
m

)1/2

, (2.74)

and Jem is calculated in the same manner as for Siegfried and Wilbur’s model, but

the Richardson constant is set equal to 60 A/(cm2 K2). The effective work function

is evaluated using the expression for the electric field at the cathode surface from

Prewett and Allen [61]. The emission length, Lemit, was introduced in Domonkos’s

equation for the ionization rate, and is set equal to the insert radius, rc.

Multi-step ionization Domonkos modifies Equation 2.46 to account for multi-step

ionization, which is assumed to occur in the region outlined in Figure 2.6. The mean
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2λex

Figure 2.6: Region of multi-step ionization.

free path for excitation λex is, by definition:

λex =
1

nnσex
, (2.75)

where σex is the excitation cross section. In order to account for the effect of the finite-

temperature beam of primary electrons, Domonkos uses the following expression:

λex =
〈v〉beam

nn〈σexv〉beam
. (2.76)

This expression removes the effect of the normalization problems mentioned earlier.

Even without the normalization issues, however, Domonkos’s use of the distribution

given by Equation 2.69 introduces significant error (approximately 40% at φp = 8 V)

in the effective cross section for excitation over most of the energy range of interest,

as shown in Figure 2.7. The results shown were found by performing the integral in

Equation 2.72 over all excitation cross sections in the LXCAT Hayashi database [81].

An arbitrary, fixed percentage of the primary excitation events, pex, is assumed

to create ions through multi-step ionization. This percentage is a free parameter and

attempts to account for the ions generated by stepwise ionization of beam-excited

neutrals.
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Figure 2.7: Comparison of the distribution-averaged collision cross sections. (a)
Beam-distribution-averaged excitation cross section computed with Equation 2.69
(dashed line), and Equation 2.70 (solid line). The excitation cross section for a mo-
noenergetic beam is shown with a dotted line. (b) Ratio of the distribution-averaged
excitation cross sections for two electron beam temperatures.
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Ionization rate The total ionization rate in the insert volume is given by:

(
dNi

dt

)
iz

=πr2
cLemitnenn〈σizve〉plasma

+ pexπLemit

(
r2
c − (rc − 2λex)

2)nprimary
e nn〈σexve〉primary.

(2.77)

The subscripts “plasma” and “primary” in Equation 2.77 for the rate coefficients

indicate that those quantities are to be determined using the distribution-averaging

appropriate for either the Maxwellian plasma electrons or the beam electrons, respec-

tively.

Current conservation

The total discharge current is represented as the sum of the emitted electron current,

the ion and electron fluxes collected on the cathode and orifice surfaces — including

ions thermally diffusing upstream — and the ion flux towards the walls of the orifice.

Domonkos gives the following relationship for the current continuity:

Id = Iem + Icoll
i − Icoll

e − Iemit
i . (2.78)

This expression, as for the case of the expression in the orifice, does not conserve

charge. A correct approach considers either the insert control volume with an influx

of ions from the double sheath, and outflux of electrons to the double sheath (see

Figure 2.8), or the combination of both orifice and insert control volumes. Using the

former approach, the current balance yields:

Iem − Icoll
e + Icoll

i + I thi = I insert
e + Idsi

⇔ Iem − Icoll
e + Icoll

i + I thi = Id − Iwall
i

⇔ Id = Iem − Icoll
e + Icoll

i + I thi + Iwall
i .

(2.79)
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Figure 2.8: 0-D cell representation of the insert currents.

The ion current to the orifice wall, Iwall
i , is used to distinguish the ion current collected

on the internal orifice walls from that collected on the insert and orifice plate surfaces,

Icoll
i .

The thermionic current density is given by Equation 2.8. As mentioned earlier,

Domonkos considers the plasma potential to be a free parameter, restricted to the

range of 8 to 12 V, based on experimental data. The current density from the ions

collected by the cathode and orifice surfaces is obtained using Equation 2.6 modified

for the existence of a pre-sheath (assuming that the potential drop that is required

to accelerate the ions to the Bohm velocity is unmodified by the electron emission in

the insert):

Icoll
i = 0.61ene

√
eTeV
M

2πrcLemit︸ ︷︷ ︸
to inner cathode surface

+ 0.61ene

√
eTeV
M

π(r2
c − r2

o)︸ ︷︷ ︸
to orifice plate

. (2.80)

The current due to the backstreaming electrons is expressed in terms of the random

electron current density as:

Icoll
e = Jr

(
2πrcLemit + π(r2

c − r2
o)
)
. (2.81)
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The random electron current density, Jr, is given by:

Jr =
1

4

(
8eTeV
πm

)1/2

nee exp

(
− eφp
kBTe

)
, (2.82)

where the electron temperature, Te, is here in Kelvin. The thermal ion current dif-

fusing upstream, I thi , is accounted for using the expression for Iemit
i , with the orifice

radius replaced by the cathode inner radius.

Conservation of energy

The insert plasma gains energy through Ohmic heating (q̇Ω), ion flux from the ori-

fice (q̇ori), and sheath-accelerated thermionic electrons (q̇em). Losses are comprised

by ionization (q̇iz), excitation of neutral particles (q̇ex), ion and electron convection

(q̇conv), and electron backstreaming (q̇coll):

q̇Ω + q̇ori + q̇em = q̇iz + q̇ex + q̇conv + q̇coll. (2.83)

The boundaries of the control volume should be drawn carefully. We could include or

exclude the pre-sheath in this approach. Domonkos chooses to ignore the pre-sheath

potential, though includes its effect on the ion current due to the density decay.

Ohmic heating Domonkos considers that the electron current is the only driver

for Ohmic heating. Ohmic heating is due to the net current, Id, where we consider

only electron-heavy collisions for resistivity. The resistivity is calculated in a similar

fashion as in the previous section, though Domonkos here assumes that the current is

conducted radially. To account for radial conduction, Domonkos introduces an aver-

age cross-sectional area, but misses a factor of π (shown in the corrected expression):

Aeff =

∫ rc
0

(2πrLemit) rdr∫ rc
0
rdr

=
4

3
πrcLemit. (2.84)
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The corrected expression for the Ohmic heating is given by:

q̇Ω = I2
dηp

rc
(4/3) πrcLemit

. (2.85)

Orifice ions Orifice ions carry both the average energy of (assumed) Maxwellian

particles crossing a boundary surface and the potential energy obtained through the

double sheath that is assumed to exist at the entrance of the orifice,

q̇ori = Idsi (φds + 2TiV ), (2.86)

where the expression is in terms of the orifice quantities. The double sheath potential

is estimated with the same expression as Capacci et al. (Equation 2.39). Domonkos

uses the total discharge current in Equation 2.39. However, this is inconsistent with

the definition of the net current through the double sheath, which is equal to Idsi +

I inserte 6= Id (see Equation 2.53).

Thermionic electrons The thermionic electrons entering the volume carry the

cathode fall voltage and a finite thermal energy due to the wall temperature. The

characteristic energy of electrons leaving the wall is twice the wall temperature [91].

The cathode fall voltage is assumed to be equal to the plasma potential in Domonkos’s

approach. The thermal energy term should appear here with a factor of 2, as opposed

to 3/2. However, the emitter temperature is typically negligible compared to the

sheath potential and the term can simply be left out. The corrected expression for

the emitted electron power is:

q̇em = Iem

(
φp + 2

kBTc
e

)
. (2.87)
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Ionization and excitation losses Generated ions contribute to ionization losses.

This energy is lost from the plasma volume through the diffusion of ions upstream of

the insert, and through the collection of ions at the insert and orifice walls:

q̇iz =
(
I thi + Icolli

)
εiz. (2.88)

Both plasma and beam (also identified as “primary”) electrons participate in en-

ergy loss through excitation. Domonkos provides a relationship that is dimensionally

inconsistent; we have corrected the equation below:

q̇ex = eεex
(
nenn〈σexve〉plasma + nprimary

e nn〈σexve〉primary

)
πLemitr

2
c . (2.89)

Particle and convection losses Particles are collected at the insert and orifice

walls, and the power they carry is given by:

q̇coll =
(
I thi + Icoll

i

)
2TiV + Icoll

e (φp + 2TeV ). (2.90)

Though it is important to note that while the pre-sheath potential has been neglected,

the energy of the ions leaving the plasma volume at the pre-sheath edge (TeV /2, with-

out any modification for electron emission) is likely of the same order of magnitude

or greater than 2TiV . Finally, electrons leave the volume through the double sheath.

Domonkos implicitly assumes that these electrons are the only charge carriers flowing

through the sheath, and proposes that the convected current is equal to I insert
e yielding

the following expression for the convection power:

q̇conv =
5

2
I insert
e TeV . (2.91)
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2.5.3 Additional comments

The model requires the total discharge current, flow rate, cathode material, and cath-

ode geometry as inputs. The four free parameters considered are the fixed percentage

of the primary excitation events that create ions through multi-step ionization (pex),

the excitation energy in both the orifice and insert regions, and the plasma potential

in the insert region. Domonkos also mentions the work function as a free parame-

ter in his model, though the values for most cathode materials are known and the

parameter was constrained to a small range in his calculations.

Domonkos compares his results for the AR6, AR3, and SSPC cathodes, and per-

forms a sensitivity analysis of his model. Both εex and pex affect the number density

and power consumption significantly, with more than 30% variation of plasma density

over a 5%-range for pex. Domonkos chooses the values of εex = 5 eV and pex = 5% in

the insert region in order to account for the reduction in effective excitation energy

due to stepwise processes. Other authors choose a lumped value of 10 eV for the

excitation energy of xenon as Domonkos uses in the orifice region.

Domonkos’s model made an admirable attempt to be more comprehensive than

other models, but in most cases the inclusion of complicating effects incurred the costs

of increased sensitivity to free parameters and errors in implementation. Without a

more complete characterization of the stepwise processes in xenon-fed orificed hollow

cathodes, it is difficult to evaluate the efficacy of Domonkos’s attempts to simplify

their contribution. We were not able to re-implement or confirm the results of the

original model as described in [64] and [73]. Domonkos gives intermediate calculations

only for two different sets of operating conditions in the insert and orifice [64] and we

could not find any combination of the original equations or our own corrections that

would reproduce these values. It appears that the original implementation details

have been lost.
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2.6 Goebel and Katz [42,92]

Goebel and Katz describe a 0-D model in their 2008 textbook [42] based on power

balances for the insert plasma and the thermionic emitter, a current balance, and an

ambipolar diffusion model (effectively an ion balance) for the electron temperature.

A simplified power balance and the same ambipolar diffusion model are solved in

the orifice in order to find the plasma density and electron temperature, respectively.

Emission is assumed to be described by the Richardson-Dushman equation, with no

modification due to the sheath electric field.

A Poiseuille flow model is used for the neutral gas pressure in both the orifice and

insert, though the average pressure in each region is used for the 0-D model. The

Poiseuille flow model is identical to that of Domonkos (Equation 2.67), excluding

the correction due to the orifice constriction and the use of the sonic condition for

the orifice outlet pressure, which must be specified separately. The pressure found is

assumed to be that of the neutral species.

By assuming charge-exchange-limited ambipolar diffusion, constant temperature

for the heavy species, and neglecting effects of the plasma on the flow, the axially-

uniform electron temperature can be found solely as a function of the neutral gas

pressure. The neutral temperature is usually taken to be 2–4 times the absolute wall

temperature due to charge-exchange collisions between the ions and neutrals [42]

(p.465), [89].

2.6.1 Insert model

Goebel and Katz’s insert model does not rely on inputs from the orifice model. Once

the neutral pressure has been calculated from the Poiseuille flow model, the electron

temperature can be found as a function of only pressure and cathode radius.
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Ambipolar diffusion Unique to the approach of Goebel and Katz, modeling ion

conservation using an ambipolar diffusion approach yields both an estimate of the

spatial variation in plasma density within the insert region and the electron tem-

perature. Using the electron and ion momentum equations, neglecting the electron

current and neutral drift terms, and assuming that ion diffusion is limited by resonant

charge exchange (due to the relatively large cross section ∝ 10−18 m2 for the inert

gases [93, 94]) the ambipolar diffusion coefficient, Da, can be found:

D = Da =
e

M

TiV + TeV
nnσCEXvscat

, (2.92)

where σCEX is the charge-exchange cross section. The neutral scattering velocity,

vscat, in Equation 2.92 is assumed to be the (1-D) ion thermal velocity. Goebel

and Katz assume that the ionization rate coefficient, neutral density, and ambipolar

diffusion coefficient are constant within the region being examined. By equating the

diffusion losses with the ionization rate within the volume, the following equation for

the plasma density is obtained:

∇2ne +

(
nn〈σizve〉

Da

)
ne = 0. (2.93)

The solution to this equation is found using separation of variables. Assuming that

there is no variation in the axial direction, the resulting plasma density is:

ne(r) = ne(0)J0

√nn〈σizve〉
Da

r

 , (2.94)

where J0 is the zero-th order Bessel function of the first kind. In order to solve for the

electron temperature, Goebel and Katz assume that the electron density is zero at the

wall of the cathode. This yields the final relationship between the ambipolar diffusion
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coefficient and the ionization rate coefficient in terms of the cathode geometry,

(
rc
λ01

)2

nnσiz(TeV )

√
8eTeV
πm

= Da, (2.95)

where the ionization rate coefficient in Equation 2.95 has been replaced by the fit

used by Mandell and Katz (Equation 2.23), and λ01 is the first root of the zeroth-

order Bessel function of the first kind. This yields the radial variation in plasma

density as well as the electron temperature. The average density, n̄e, needed for later

calculations, is given by:

n̄e =

[
2J1 (λ01)

λ01

]
ne(0), (2.96)

where J1 is the first-order Bessel function of the first kind. In an earlier paper,

Katz et al. [92] state that the electron temperature calculated using this approach is

the maximum possible value, and that the correction in TeV for finite values of the

separation constant is, “less than one per cent.”

Current balance The current balance for the insert region equates the total dis-

charge current to the sum of the emitted thermionic current and the generated ion

current reduced by the random thermal electron current that returns to the emitter:

Id = Iem + Ii − Ir exp (−φs/TeV ) , (2.97)

Ir =
1

4

(
8eTeV
πm

)1/2

nseeAemit, and (2.98)

Ii = nnn̄ee〈σizve〉Vemit. (2.99)

Goebel and Katz also mention that the Bohm current is used to evaluate the ion

current for the purposes of calculating the ion power deposition. This implies that

the expression Ii = ensevBAemit should also be valid by virtue of ion conservation,

where nse is the electron density at the sheath edge and vB is the Bohm velocity.
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The introduction of nse is a unique feature of this model, as it is the only model

that attempts to calculate the sheath voltage independent of the plasma potential.

The random electron current density should also be evaluated with the sheath edge

density. The ion generation, by contrast, should be evaluated using the average

electron density, n̄e.

Power balances The power balance for the insert plasma equates the power depo-

sition from sheath-accelerated thermionic electrons and Ohmic heating to the losses

due to ionization, electron convection, and random electron flux to the emitter:

Iemφs +RpI
2
e = Iiεiz +

5

2
TeV Ie + (2TeV + φs) Ir exp (−φs/TeV ) . (2.100)

The energy characteristic of the random electrons, (2TeV +φs), is necessary because the

particles must have sufficient energy to overcome the sheath potential. The electrons

would otherwise not leave the volume into the electron-repelling emitter sheath. A

derivation of this term is also given in Appendix C in [42].

The power balance for the emitter sets the losses due to conduction, convection,

and radiation (H(T )) and thermionic cooling equal to the power input due to ion

and random electron bombardment. Ions must extract an electron at the cost of the

work function from the material in order to recombine at the emitter surface and

incident electrons are assumed to fall from the vacuum level to the Fermi level within

the material, depositing φw at the wall, as shown below:

H(T ) + Iemφw = Ii

(
εiz + φs +

TeV
2
− φw

)
+ (2TeV + φw) Ir exp (−φs/TeV ) . (2.101)

These equations cannot be readily solved as a system for the sheath voltage,

plasma density, and wall temperature. They are instead combined to create simpler

expressions that do not directly involve the wall temperature. This is achieved by as-
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suming that the ion energy due to the pre-sheath can be neglected as compared to the

ionization and sheath potentials. This assumption does not typically introduce signif-

icant error given the 1–2 eV electron temperature characteristic of the insert plasma.

Algebraic manipulation of the remaining equations yields a system of equations that

can be solved for the average neutral density and sheath voltage:

φs =
H(T )

Ie
+

5

2
TeV + φw −RpIe, (2.102)

n̄e =
RpI

2
e −

(
5
2
TeV − φs

)
Ie

fsTeV
(
eTeV
2πm

)1/2
eA exp (−φs/TeV ) + nne〈σizve〉V (εiz + φs)

, (2.103)

where fs is the “edge-to-average” ratio that describes the ratio of the average plasma

density to that at the sheath edge. The edge-to-average plasma density ratio is

approximated by Goebel and Katz under the assumption that the plasma density

in the region outside the sheath and pre-sheath can be described by a Boltzmann

distribution:

fs =
nse
n̄e
≈ exp (−(φaxis − φs)/TeV ) . (2.104)

Because this value represents the ratio of the plasma density at the sheath edge to the

average density over the volume, an additional factor should be used to convert the

average density to that at the centerline (following Equation 2.96) when calculating

fs. The plasma resistivity is calculated using Equation 2.27. The electron-ion collision

frequency is evaluated with Equation 2.29. The electron-neutral collision cross section

is evaluated for xenon with a fit to Hayashi’s [79] recommended total electron-neutral

cross section data (Equation 2.31). As mentioned earlier for Mandell and Katz’s

use of this model, the elastic momentum-transfer collision cross section should be

used instead. Goebel and Katz use Equation 2.62 as their definition of the Coulomb

logarithm. In following the derivation of this model, we also found that the first term

in the denominator of Equation 2.103 should be multiplied by a factor of 2.
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These two equations must be solved iteratively or simultaneously for the average

plasma density and the sheath potential, as the plasma resistance appears in the

sheath potential equation and depends on the average plasma density. These values

are both desirable, but because of the simplification, the model cannot predict the

wall temperature directly. The dependence on the “edge-to-average” ratio requires

the additional assumption that the plasma density follows a Boltzmann distribution

(i.e., the density decays exponentially with potential) as well as knowledge of the

plasma potential from either experimental data or 2-D codes in order to close the

system. In addition, the equations for the average density and sheath voltage depend

on the emitter heat loss, which must be found from either a separate thermal model

or experiment, and the plasma resistivity, which is itself a function of the average

plasma density and the emission length, Lemit.

The authors present a model for the emission or attachment length based on the

“e-folding distance” for the plasma density decay. Relaxing the assumption of zero

axial variation in density, the decay is assumed to obey the earlier ambipolar diffusion

model. To ensure uniform pressure and the validity of the ambipolar diffusion model,

the cathode orifice must be relatively small compared to the insert diameter. An

independent calculation of the ion current generated in the insert plasma is required.

Goebel and Katz obtain the ion current through the use of a 2-D code, which means

that this approach cannot be used in a self-contained fashion.

2.6.2 Orifice model

Goebel and Katz implement an additional power balance in a separate orifice model

using the same flow and ambipolar diffusion models, and assume that the discharge

current does not change within the orifice. It does not depend on experimental

parameters as the attachment length is replaced with the orifice length, and emission

from the orifice is ignored. This removes the need for the sheath potential in order
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to calculate the plasma density and electron temperature. The orifice power balance

equates the Ohmic heating in the orifice to the electron convection losses and to the

ionization power loss in the orifice volume:

RorI
2
d =

5

2

(
TeV − T inseV

)
Id + enn〈σizve〉εiz

(
πr2

oLo
)
. (2.105)

This equation can be solved easily for the orifice average plasma density after the

insert model has been run:

n̄e =
RorI

2
d − (5/2)Id (TeV − T inseV )

enn〈σizve〉εizπr2
oLo

. (2.106)

2.6.3 Evaluation

The model described above produces results that agree well with experiment when

certain values of the input parameters are used. The model requires experimen-

tal/computational input in the form of the plasma potential and the attachment

length (or the ion current, which can then be used to calculate Lemit). We note that

for some operating conditions the global power balance method used to calculate the

sheath voltage yields negative values of φs, or values of φs greater than the input φp.

Goebel’s model has two independent equations for the ion current. This can be

used to make a secondary calculation of the edge-to-axis density ratio and the in-

sert electron temperature. Equating the volumetric ion generation to the Bohm ion

current, we can solve for the electron temperature and fs as functions of only the

pressure-diameter product in the insert, as shown in Figure 2.9. Using this approach

(not used by the original authors), we can remove the need for the plasma potential,

as it is only used to calculate fs. It is important to note that the ambipolar diffusion

model as formulated breaks down at low pressure-diameter products or at high elec-

tron temperatures (typical for orifice plasma conditions), either because of the lack
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Figure 2.9: (a) Electron temperature and (b) edge-to-axis density ratio as a function
of pressure-diameter product.

of electron-ion collisions or due to the boundary conditions of the diffusion model.

For orifice conditions, fn approaches values of unity (or greater) and therefore the

assumption of zero plasma density at the sheath edge cannot be justified.
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2.7 Mizrahi et al. [95, 96]

The model of Mizrahi et al. focuses on the hollow cathode orifice. It is loosely based

on Katz’s model, and introduces the following modifications:

• There is a plasma flow in the orifice.

• The neutral gas temperature is equal to the ion temperature. Both heavy species

temperatures are assumed to be much less than the electron temperature.

• Viscous effects on the neutral gas flow are introduced through a Poiseuille flow

model.

• Ions may leave the cathode by being entrained by the neutral flow.

This approach relies on the continuity and momentum equations for charged particle

flow, a plasma energy balance in the volume, and a neutral gas flow model. The

superscripts i ± 1/2 in this section refer to the physical quantities evaluated at the

right- and left-hand sides of the volume, respectively.

Neutral flow A Poiseuille flow approach is used to evaluate the neutral gas density

in the orifice. The Poiseuille equation is manipulated so as to introduce the arithmetic

average density n̄g = 1/2
(
n
i+1/2
n + n

i−1/2
n

)
:

ūg =
∆Pr2

o

8µLo
⇔ ūg =

1− δ
1 + δ

kBTnn̄gr
2
o

4µLo
, (2.107)

where

∆P = kBTn
(
ni−1/2
n − ni+1/2

n

)
, and (2.108)

δ = ni+1/2
n /ni−1/2

n . (2.109)
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This form of the Poiseuille equation removes the necessary knowledge of the upstream

and downstream pressure, at the cost of the introduction of a free parameter, δ. The

free parameter δ may be estimated if the neutral gas pressure and temperature are

known downstream and upstream of the orifice:

δ = ni+1/2
n /ni−1/2

n = T
i+1/2
nV P i+1/2/T

i−1/2
nV P i−1/2. (2.110)

If the neutral temperature is further assumed to be constant along the orifice, then:

δ = P i+1/2/P i−1/2. (2.111)

The knowledge of the pressure downstream or upstream of the orifice, and the appli-

cation of a Poiseuille flow model, yields the missing pressure, and δ.

Charged particle flow The momentum equations are written for both ions and

electrons. The electron velocity is considered to be dominant over the ion and neutral

velocities, and the ion-neutral collision term dominates over the ion-electron term

in the ion momentum equation. Mizrahi et al. consider a steady-state system, and

neglect the convective derivative. The neutral velocity is implicitly assumed to be the

average neutral gas flow velocity in the channel from Equation 2.107. The combination

of both the electron and ion momentum equations yields:

neui = neug −Da∇ne −
m

M

νei + νen
νin

neue, (2.112)

where νin is the ion-neutral collision frequency. Mizrahi et al. argue that the third

term is negligible since
m

M

νei + νen
νin

� 1, in direct contradiction with Katz et al. [97].

This assumption does not take into account the electron velocity as compared to

the ion or neutral velocities. We can evaluate the first and third term on the right-
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hand side of Equation 2.112. The neutral flow velocity is given by Equation 2.107.

The electron flow velocity may be calculated by considering that all of the discharge

current is carried by the electrons Id = eneπr
2
oue. We used Equation 2.29 for the

electron-ion collision frequency, and the Maxwellian-averaged momentum-transfer

cross-section for electron-neutral collisions from [80] to calculate the electron-neutral

collision frequency νen = nn〈σv〉. The charge-exchange collision cross section is as-

sumed to be equal to 10−18 m2. Using the reported results of the model for xenon

gas (ng = 1.1× 1023 m−3, ne = 2.7× 1022 m−3, TeV = 1.6 eV, TiV = 0.4 eV), both the

third and first term on the right-hand side of Equation 2.112 may be evaluated:

m

M

νei + νen
νin

ue ≈ 170 m/s

ug ≈ 181 m/s

Clearly, the electron current term cannot be neglected based on the results of the

model.

Density evaluation The density in the 0-D cell is considered to be constant and

equal its average value. The cell-center density is also expected to be much greater

than the density at the cell boundaries, due to significant ionization within the con-

stricted orifice and expansion to vacuum at the outlet.

The density gradient in Equation 2.112 can be evaluated through a Taylor expan-

sion from the center density to the boundary,

∇ne =
∂ne
∂z

∣∣∣
i±1/2

≈ ∓n
i
e ± n

i±1/2
e

Lo/2
≈ ∓ nie

Lo/2
. (2.113)
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Mizrahi et al. consider that the center density nie is equal to the average density

within the cell, n̄e. This gives:

∂ne
∂z

∣∣∣
i±1/2

≈ ∓ n̄e
Lo/2

. (2.114)

A similar approach can be taken to evaluate the density gradient in the radial direc-

tion.

In the axial direction, by virtue of Bolzano’s theorem, the gradient of the density

must be zero at least once on the interval
[
zi−1/2, zi+1/2

]
. If this density maximum is

achieved at the center of the cell, the density over the whole cell should be equal to n̄e

to be consistent with the average density definition. This approach yields a disconti-

nuity in density at the boundaries of the cell. For example, n
i−1/2,L
e 6= n

i−1/2,R
e because

n
i−1/2,L
e � n

i−1/2,R
e , where L and R designate the limit value when the boundary is

approached from the left and right, respectively. Other cases require sharp density

gradients in the first half or second half of the cell for consistency.

Continuity equation The mass flow rate for neutrals is obtained from the volu-

metric mass flow rate Q = ūgπr
2
o using:

ṁg = Mnnπr
2
oūg. (2.115)

The ion mass flow rate is obtained in a similar fashion:

ṁi = Mneπr
2
oui. (2.116)

For both boundaries, we have

ṁ = ṁg + ṁi = Mπr2
o

(
ūgn

i±1/2
n + (uini)

i±1/2
)
. (2.117)
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Averaging the value at left and right boundaries, and combining it with Equation

2.112 yields:

ṁ = Mπr2
o

(
n̄g +

1

2

(
ni+1/2
e + ni−1/2

e

))
ūg. (2.118)

Mizrahi et al. are inconsistent with the density definition, and assume that

n̄e = 1
2

(
n
i+1/2
e + n

i−1/2
e

)
, though the boundary plasma densities have previously

been assumed to be negligible compared to the average density (n̄e � n
i±1/2
e ). The

resulting mass conservation equation is:

ṁ = Mπr2
o (n̄g + n̄e) ūg. (2.119)

Radial diffusion The radial diffusion of ions is assumed to be governed by charge-

exchange collisions. The corresponding radial flux is evaluated in the same fashion

as the axial boundary flux:

Ji = −eDa
∂n̄e
∂r

∣∣∣
r=ro
≈ eDa

ne
ro
. (2.120)

This approach does not consider sheath physics and uses a linearized density gradient,

in contrast with Goebel and Katz’s model.

Ion balance Ions are considered to be created in the volume through direct-impact

ionization with thermalized electrons, and are lost through diffusion to the boundaries.

The ion balance is similar to that of all of the previously described authors. Using

the axial and radial diffusion approach, the ion balance is given by:

πr2
o

(
J
i+1/2
i − J i−1/2

i

)
+ 2πroLoJ

r=ro
i = πr2

oLoen̄gn̄eσiz (TeV )

√
eTeV
m

⇔ n̄gσiz (TeV )

√
eTeV
m

=
2Da

r2
o

(
1 + 2 (ro/Lo)

2) . (2.121)
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Although Mizrahi et al. use the electron thermal velocity, Mandell and Katz’s fit uses

the Maxwellian velocity for the electrons.

Power balance The power balance is similar to that of previously described au-

thors. Mizrahi et al. do not consider a double sheath, but consider Ohmic heating

balanced by ionization, excitation, and convection. Plasma resistance is provided

through electron-ion and electron-neutral collisions. The cross sections for electron-

neutral collisions, ionization, and excitation are estimated with numerical fits (Equa-

tions 2.31, 2.23 and 2.26, respectively):

RpI
2
d = πr2

oLon̄gn̄ee

√
eTeV
m

(εizσiz + εexσex) +
5

2

(
TeV − T ins

eV

)
Id. (2.122)

Evaluation Despite several fundamental inconsistencies, the model performs rela-

tively well on the NSTAR neutralizer cathode as compared to other 0-D and higher-

dimensional models. The model of Mizrahi et al. unfortunately relies on a free

parameter, and on experimental data for the insert electron temperature. The study

does not feature a sensitivity analysis. No comparison to experimental data is pre-

sented in [96], or available in the literature. The results of the model are consistent

with that of Mandell and Katz from [75].

2.8 Albertoni et al. [49, 55]

Albertoni proposes a model for the insert and orifice plasma. The orifice is modeled

as a separate 0-D volume. A free-standing double sheath at the orifice entrance is

assumed to be present. The double sheath accelerates electrons towards the orifice

while keeping ions within the emitter region. Albertoni’s orifice model includes an ion

flux balance, plasma power balance, and a choked-flow calculation to compute plasma
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density, electron temperature, and neutral density. Processes such as excitation —

and therefore stepwise ionization — and radiation are neglected.

The emitter region model includes an ion flux balance, plasma and emitter power

balances, a current density balance, and a pressure equation. Albertoni’s model con-

siders thermal and emitted electrons as well as ions for the current balance. Volume

ionization is again considered to originate from thermalized Maxwellian electrons,

while stepwise ionization is neglected. The model must be coupled with a thermal

simulation to obtain the temperature of the emitter, and, therefore, the emitted

current. An early version of this model [55] that ignored the orifice showed good

agreement for the peak emitter wall temperature for a single-channel hollow cathode.

The current model predicts the variation of the plasma potential with mass flow rate

and discharge current, but the author notes that these cannot be compared with

readily-available experimental data.

Albertoni’s analysis neglects the emitted electrons, which participate in the step-

wise ionization and neutral excitation processes, and suffers from the necessity of a

coupled thermal model, which further complicates the solution process. The thermal

model also considers that the emitter temperature is uniform, while experimental

measurements have shown that emitter temperatures may vary by more than 10% of

the peak temperature [98,99].

In an early version of his model, Albertoni carries out a separate evaluation of

the plasma attachment length by invoking the “principle of minimum power,” which

seeks to minimize the power deposited in the sheath Ps = Idφs, and, therefore, the

sheath voltage φs for a given current. Albertoni solves the 0-D model by iterating

through multiple plasma attachment lengths, and finds the corresponding minimum

in the sheath voltage. For a given discharge current, minimizing the sheath voltage

amounts to minimizing the net current density, which may bias this method towards

the prediction of longer attachment lengths. Numerical results for the plasma at-
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tachment length scale inversely with mass flow rate, as observed experimentally, but

predict that Lemit increases with the discharge current, in contradiction with experi-

mental results [42, 100].

2.8.1 Orifice model

Albertoni’s approach is very similar to that of Domonkos: ion conservation and a

plasma power balance are considered, achieving closure through a modified choked-

flow pressure relation.

Ion conservation The ion conservation equation is identical to Equation 2.45. The

author uses the Bohm criterion for the ion current density,

Ji = 0.61ene

(
eTeV
M

)1/2

. (2.123)

Plasma volume power balance Albertoni uses the total discharge current in the

Ohmic heating term, and introduces a double-sheath power loss which is subsequently

neglected. Power losses due to excitation of neutrals and radiation are also neglected:

q̇Ω = q̇iz + q̇ex + q̇conv + q̇ds︸︷︷︸
neglected

. (2.124)

The ionization power, q̇iz, is expressed as in Equation 2.12 and the ionization rate is

found as in Domonkos’s model (Equation 2.46).

Albertoni does not consider the current to vary along the length of the orifice, so

the total discharge current is used in the Ohmic heating term:

q̇Ω = RpI
2
d . (2.125)
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The resistance of the plasma is obtained with both electron-ion and electron-neutral

collisions. The electron-neutral collision cross section is estimated from Equation 2.31

(from [78]), while the collision frequency is estimated using the thermal velocity of

the electrons, as opposed to the Maxwellian average velocity. The convection power

is estimated as in Equation 2.66, but using a factor of 2 (which, once again, should

be 5/2).

Pressure calculation Closure of the system is obtained through a choked-flow

model of the orifice region, modified to account for the contribution of electrons to

the flow:

P =
ṁ

πr2
o

√
Rg

γ
Tn

(
1 + α

Te
Tn

)
. (2.126)

All quantities are considered to be static rather than stagnation properties. The gas

temperature is assumed to be equal to that of the orifice plate. The total static

pressure is equated to that given by the perfect gas law (Equation 2.3).

The correction for the electron pressure contribution is equivalent to calculating

an effective gas constant for a mixture of heavy particles and electrons, assuming

that Te is constant and that all species expand isentropically through the orifice. For

monatomic species, the total enthalpy of the fluid mixture may be expressed as [101]:

htotal =
nem

nem+ nnM

(
5

2

kBTe
m

+
nnM

nem

5

2

kBTn
M

)
⇔ htotal ≈ α

5

2

kBTe
M

+
5

2

kBTn
M

⇔ htotal ≈
5

2

kB
M

(
1 + α

Te
Tn

)
︸ ︷︷ ︸
Effective gas constant

Tn

(2.127)

2.8.2 Insert model

The insert model features ion conservation, current conservation, plasma power bal-

ance, and pressure balance equations.
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Ion conservation Albertoni considers that ions are brought into the control volume

through direct ionization and from the orifice through the double sheath. Ions are

lost through the sheaths, and thermally upstream. The resulting ion balance is given

by:

e

(
dNi

dt

)
iz

+ Jdsi πr
2
o = Ji

(
2πrcLemit + π(r2

c − r2
o)
)

+
1

4
nee

√
8eTiV
πM

πr2
c . (2.128)

Orifice and insert quantities are used to calculate Jdsi and Ji, respectively. They are

both given by Equation 2.123. The use of the Bohm current for the double sheath ion

current leads to the previously discussed issues regarding the double sheath voltage

and power predictions.

Current conservation Albertoni includes neither ion nor electron losses to the

orifice plate, and neglects the thermal ions lost through the upstream boundary of

the volume for current conservation. However, the contribution of these terms to the

discharge current is likely small. The resulting current balance at the emitter surface

is given by:

Id
2πrcLemit

= Ji + Jem − Jr exp

(
− φp
TeV

)
. (2.129)

The thermionic current Jem is calculated with Equation 2.8. Jr is obtained with

Equation 2.82. Using the total discharge current in this expression neglects the con-

tribution of the orifice ions to the total current.

Plasma power balance The plasma power balance is similar to Equation 2.83,

though Albertoni does not consider losses due to neutral excitation:

q̇Ω + q̇ori + q̇em = q̇iz + q̇conv + q̇coll. (2.130)
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q̇Ω, q̇ori, q̇em, q̇iz are given by Equations 2.85, 2.86, 2.87, and 2.88, respectively. Al-

bertoni’s expression for q̇coll is similar to that of Equation 2.90, though the author

does not include the plasma potential in the total energy of the collected electrons

(electrons leaving the plasma in this case):

q̇coll =
(
I thi + Icoll

i

)
2TiV + Icoll

e 2TeV . (2.131)

This is a substantial omission for significant return electron currents. The power

convected by the electron current is:

q̇conv =
5

2
TeV Id. (2.132)

Neutral flow The system is closed with a pressure balance similar to that of

Domonkos. Albertoni’s formulation as reported in [49] is dimensionally inconsistent,

as the radius should appear to the fourth power. Albertoni calculates the dynamic

viscosity from kinetic theory, considering hard-sphere particles of diameter dm and a

mean-free-path approach:

µ =
1

πd2
m

√
MkBTo
π

. (2.133)

A comparison of the viscosity calculations for the hard-sphere approach, the

Chapman-Enskog method applied to the Lennard-Jones 12-6 potential with parame-

ters σ = 4.055 Å and ε/kB = 229 K, and a derivation of viscosity from dimensional

analysis from Stiel and Thodos [102] is shown for xenon in Figure 2.10. The van der

Waals radius for xenon is considered to be equal to 216 pm for the hard-sphere model.

The collision integrals for the Chapman-Enskog calculations are tabulated in [103]

and originally from [104]. The hard sphere model under-predicts the viscosity at

high-temperatures, which is especially important in the orifice. The Lennard-Jones

12-6 potential yields very close agreement to the experimental fit. We suggest using
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Figure 2.10: Comparison of different viscosity models for xenon gas. Experimental
fit from [102].

either the fit to experimental data or the Lennard-Jones potential approach for

accurate calculation of the viscosity.

Thermal model Albertoni includes a thermal model to predict the emitter tem-

perature. Convection from the insert, conduction through the cathode tube, radiation

from both the heat shield and orifice surfaces, and heat dissipation through evapora-

tion of the insert are considered. The plasma processes at the insert surface deposit

power through ion bombardment and electron backstreaming, and contribute to cool-

ing through thermionic emission. Ohmic power deposition in the orifice plasma is

assumed to be entirely transferred to the orifice plate. For radiation, a background

temperature of 0 K is assumed. The base of the cathode is kept at an arbitrary value

of 1000 K.

Albertoni represents the cathode as a radiative thermal network (see Figures 4

and 5 in [49]). The radiosities Jk are unknown, as are the node temperatures. The
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thermal network requires the power inputs and outputs to the insert node, which are

obtained from the insert power balance.

Insert power balance Albertoni’s insert power balance is similar to that of Goebel

and Katz. The author does not consider the pre-sheath contribution to the ion power

— though he uses the Bohm sheath criterion for the ion current — and adds the

emitter temperature to the total energy of the emitted electrons:

q̇th+Iem

(
φeff +

3kB
2e

Tc

)
= Ii (εiz + φp − φw)+(2TeV + φw) Ir exp

(
− φp
TeV

)
. (2.134)

The emitter temperature contribution is negligible compared to the effective work

function. The plasma model is coupled to the thermal model through the heat loss

term, q̇th.

Emission length As discussed in the Introduction (Chapter 1, Section 1.3), Alber-

toni proposes to compute the plasma attachment length with the empirically-derived

expression:

K ≈ PLemit, K = 5− 15Pa ·m. (2.135)

We compared the emission length obtained from Equation 2.135 to experimental data

from [65]. The cathode considered is Siegfried and Wilbur’s noble gas cathode op-

erating on xenon and argon at mass flow rates of 92 and 287 mA, respectively, and

an orifice diameter of 0.76 mm. For consistency, the pressure is calculated using

Equation 2.4. The experimental emission length in [65] is determined from the insert

temperature profile: it is the length that corresponds to the distance between the

position of the maximum insert temperature and the position where the insert tem-

perature is 90% of that maximum. While this definition is different from Albertoni’s

(and also ours), it provides an upper-bound for the actual emission length. Results

are shown in Figure 2.11. A value of K outside the specified range would clearly be
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Figure 2.11: Comparison of emission length empirical relationship (Equation 2.135)
for K = 5, 10, 15 Pa·m to experimental data from [65] for (a) xenon and (b) argon.
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required to achieve agreement with experimental results.

2.8.3 Evaluation

The model does require additional information — material properties, further geo-

metric data, and gas information. However, it is self-contained and does not require

any experimental data other than collisional cross sections (unless Lemit is fit to the

experimental data). It solves for the neutral and electron densities, plasma potential,

and orifice and insert temperatures. Due to the complexity and detailed requirements

for property input for Albertoni’s thermal model, we were not able to reimplement

this model.
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2.9 Model comparisons

We benchmarked the performance of the models on cathodes for which experimental

data and a heat loss estimate are readily available, as it is a necessity for the insert

models. This data is available for Siegfried and Wilbur’s original xenon cathode,

and the NSTAR discharge cathode. Siegfried and Wilbur’s cathode uses a tantalum

insert coated with R-500 (a barium-strontium-carbonate mixture [52]) as an emitter,

while the NSTAR discharge cathode uses a porous tungsten insert impregnated with

a mixture of barium, calcium, and aluminum oxides [42]. The dimensions for the

different benchmark cathodes are shown in Table 2.1. We included the NEXIS cathode

as it will be used in the next section for flow model comparisons.

Table 2.1: Dimensions of the benchmark cathodes. Dimensions are from [65, 72],
[42, 83,92,105–108], and [42,60,107,109,110] for Siegfried and Wilbur’s cathode, the
NSTAR discharge cathode, the NEXIS cathode, respectively.

Cathode
Dimension

Insert Orifice
L (cm) I.D. (cm) O.D. (cm) L (mm) D (mm)

Siegfried and Wilbur 1.5 – 2.0 0.39 0.40 1.8 0.51 – 0.96
NSTAR Discharge 2.54 0.38 0.55 0.74 1.02

NEXIS 2.54 1.2∗ 1.42† 0.74‡ 1.5 – 2.8

∗ The insert inner diameter is set to 1.20 cm, following Mikellides et al.’s work
[60,107,109]. Later work by Goebel and Katz [42] suggests an insert diameter
of 1.27 cm.
† The outer diameter for the NEXIS cathode is deduced from insert thickness

data retrieved from [60] and [107].
‡ Measured from plots in [107].

2.9.1 Siegfried and Wilbur’s noble gas cathode

We consider the cathode with an orifice diameter of do = 0.76 mm, running on xenon

at a mass flow rate of 92 mA (1.28 sccm of xenon, or 0.13 mg/s). We vary the input
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discharge current from 1 to 5 A, and compare the output of the two recreated insert

models to experimental data.

Required inputs The heat loss term necessary for both recreated insert models is

obtained from [65]:

q̇th = 2
(
526Tc − 3.99× 105

)
Lemitrc. (2.136)

Siegfried and Wilbur assume a value of 0.8 eV for the electron temperature in the

insert [65]. We use this value in all of the calculations that require an insert electron

temperature. We have also used the total inelastic cross-section data given in [65]

for the calculation of the energy-exchange mean free path to avoid calculating a new

value of the proportionality constant between λpr and Lemit.

Goebel and Katz’s insert model requires insert wall temperature, emission length,

and plasma potential. We use experimental data available in [65]. The neutral gas

temperature is set equal to twice the measured wall temperature.

Siegfried notes that the work function of the R500-coated tantalum insert is un-

known, and assumes a value of 2.25 eV. We use this value for our calculations. We

set the orifice neutral temperature to 0.4 eV for Mandell and Katz’s orifice model and

for that of Mizrahi et al.. The free parameter δ in Mizrahi et al.’s orifice model is set

to 0.2 for this cathode.

Comparison Results for the insert and orifice models are shown in Figures 2.12

and 2.13, respectively.

Our re-implementation of Siegfried and Wilbur’s model is able to recreate their

original results. The curvature changes observed on both implementations originate

from the total inelastic cross-section for xenon that appears in the emission length

calculation. Goebel and Katz’s insert model overestimates the plasma density in the

insert region by a factor of 5, though the model is very sensitive to the input plasma
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Figure 2.12: Comparison of cathode insert models for Siegfried and Wilbur’s xenon
cathode. Experimental data and original model results are from [65].

potential, emission length, and estimated heat loss. No error bounds are provided for

these values.

The orifice models yield consistent results for the plasma density. Both Goebel

and Katz’s and Mizrahi et al.’s results for the electron temperature are insensitive

to the discharge current, with Goebel and Katz’s estimate being the largest value

consistent with the assumptions of their model. Mandell and Katz’s model returns

a substantially larger ionization fraction as compared to the other models. However,

without experimental data for the orifice, it is difficult to determine which model is

the most accurate.

2.9.2 NSTAR discharge cathode

We computed averaged quantities for the NSTAR discharge cathode operating at the

mass flow rates specified by the “TH8” and “TH15” operational conditions. TH8

and TH15 differ both in terms of mass flow rate and discharge current as shown in

Table 2.2.
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Figure 2.13: Comparison of cathode orifice models for Siegfried and Wilbur’s xenon
cathode.
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Required inputs We computed the average electron temperature and plasma po-

tential in the insert region from experimental data obtained from [111]. The heat loss

term necessary for the insert models is taken to be a constant value of 13 W. This

figure is taken from the results of the application of the thermal model IROrCa2D

on the NSTAR cathode [106]. Though the application point for [106] (Id = 12 A,

ṁ = 4.25 sccm) differs from the two considered operational points, we follow [42] and

use this value for all operating conditions. The operating conditions and required

inputs are delineated in Table 2.2.

Table 2.2: Operating conditions and average experimental data required for model
input. The definition of the TH8 and TH15 operating points is taken from [108]. The
average plasma potentials and electron temperatures are computed from [111] — the
reported measurement error is ±1 V for the potential, and ±0.5 eV for the electron
temperature.

Parameter TH8 TH15

Operating condition
Id (A) 8.24 13.3

ṁ (sccm) 2.47 3.7

Experimental data
φ̄p (V) 9.2 5.5
T̄eV (eV) 1.4 1.4

We used a work function equal to 2.06 eV for the insert material. The experimental

data for the total pressure reported in [111] is used in Siegfried and Wilbur’s insert

model. The orifice models use an assumed insert electron temperature, which is set

equal to the average value of 1.4 eV. The neutral gas temperature is assumed to

be equal to 0.4 eV. Goebel and Katz indicate that the downstream pressure at the

exit plane of the orifice on the NSTAR discharge cathode is approximately 2 Torr

[42] (p.466). Using a Poiseuille flow model, we calculated the upstream pressure for

the two specified mass flow rates. The resulting values for δ are 0.31 and 0.26 for

ṁ = 2.47 sccm and ṁ = 3.7 sccm, respectively.

Comparison Insert and orifice results are shown in Tables 2.3 and 2.4, respectively.

For low-current conditions, both Siegfried and Wilbur’s and Goebel and Katz’s in-
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sert models agree with experimental data. The ionization fraction for Siegfried and

Wilbur’s model is three times lower than the experimental value, but it is not clear if

this result lies outside of the error bounds. For the high-current condition, Siegfried

and Wilbur’s insert model over predicts the plasma potential, a consequence of their

neglecting Ohmic heating, return electron current, and assuming φs = φp. This

model does predict a lower attachment length at higher current and mass flow rate,

consistent with experimental observations, and shows great accuracy for the emitter

temperature. It is not clear whether the predictive accuracy for the emitter temper-

ature would persist for other operating conditions given the sparsity of experimental

data.

We do not have an experimental standard for comparison with the orifice results,

though we may be able to identify unreasonable predictions. For example, Mandell

and Katz’s orifice model seems to over predict both plasma density and ionization

fraction, a possible consequence of the omission of the 5/2 factor in the plasma power

balance. We show in Table 2.4 the impact of this correction to the convective term.
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Table 2.3: Results from the insert models applied to the NSTAR discharge cathode.
The experimental data is spatially averaged from data reported in [111]. Plasma
potential accuracy is ±1 V, and electron temperature ±0.5 eV. No information about
accuracy of density measurements is reported.

Siegfried Goebel Experiment
and Wilbur and Katz (average)

TH8

ne (×10−20 m−3) 3.3 4.0 3.6
TeV (eV) 1.4∗ 1.6 1.4
φp (V) 10.0 9.2∗ 9.2
φs (V) – 5.7 –
Tc (K) 1,420 – 1,470†

Lemit (mm) 1.9 6.0∗ 6.0
α (%) 1.2 3.3 3.7

TH15

ne (×10−20 m−3) 11.9 2.8 4.7
TeV (eV) 1.4∗ 1.5 1.4
φp (V) 14.7 5.5∗ 5.5
φs (V) – 2.8 –
Tc (K) 1,530 – 1,540†

Lemit (mm) 0.49 6.0* 6.0
α (%) 1.7 1.8 2.7

* Model input.
† Calculated from fits to measured temperature profiles — Tc =

1191.6I0.0988
d

Table 2.4: Results from the orifice models applied to the NSTAR discharge cathode.

Mandell Mandell and Katz Mizrahi Goebel
and Katz (with correction) et al. and Katz

TH8
ne (×10−20 m−3) 5.0 2.3 1.6 2.6

TeV (eV) 2.8 2.7 2.8 3.1
α (%) 9.1 3.9 1.7 6.8

TH15
ne (×10−20 m−3) 13.5 7.6 4.4 6.8

TeV (eV) 2.7 2.5 2.7 2.9
α (%) 18.6 9.3 4.2 6.0
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2.10 Critical issues

2.10.1 Ionized gas flow

The 0-D models outlined in the preceding sections rely on specific assumptions for

the gas flow to compute the total pressure inside the cathode. The calculation of

the total pressure has been performed using an empirical relationship [52, 63, 65, 71,

72, 82, 112, 113], an isentropic [69] or isothermal [47, 114] flow approach, Poiseuille

flow theory [42, 95, 96], a modification of Poiseuille flow theory [64, 73] to take into

account compressibility and molecular flow effects, and an “equivalent temperature”

or modified specific gas constant taking into account the ionization fraction [47, 49,

55,114].

Table 2.5 and Figure 2.14 show the pressure calculated using various flow models,

for both the NSTAR discharge cathode and the NEXIS cathode, respectively. The

NSTAR and NEXIS dimensions are shown in Table 2.1. A neutral gas temperature

of 4,000 K and 3,000 K is assumed for the NSTAR and NEXIS Poiseuille flow cal-

culations, respectively. While the empirical approach from [65] (pp. 127–129) is the

only one that predicts any variation in the cathode pressure with discharge current, it

clearly does not generalize to other cathodes, and overestimates the pressure in both

the NSTAR and NEXIS. Figure 2.14 shows that Domonkos’s model has slightly bet-

ter performance than the Poiseuille approach on the NEXIS cathode, but still cannot

capture the effect of the discharge current. The results for the same model applied

to the NSTAR cathode differ by an average value of over 20% from the experimental

results. The modified Poiseuille flow model used by Domonkos and Albertoni et al.

produces acceptable results for the NEXIS, though its accuracy decreases as the mass

flow rate increases. We now address the relevant issues for each model of ionized gas

flow.
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Figure 2.14: Total pressure for two pressure models applied to the NEXIS cathode as
functions of (a) discharge current with constant mass flow rate (ṁ = 5.5 sccm) and
(b) mass flow rate with constant discharge current (Id = 22 A). Experimental data
from [115,116].

Empirical correlations The empirical approach suggested by Siegfried and Wilbur

[52,63,65,71,72] for their hollow cathode that operate on mercury, argon, and xenon

(later extended by Friedly to a different cathode in [112]) uses a relationship that

is based on a single cathode. Similar work by Patterson et al. [113] only uses the

T6 cathode. The resulting relationships from these approaches cannot be generalized

to other cathodes or operating conditions. Friedly [112] suggests that the ion flow

rate ingested by the cathode should be added to the total mass flow rate that is

used in the empirical relationship. The ions are assumed to go through a double

sheath in front of the orifice and recombine in the insert region as neutrals that

then exit the orifice. Because Friedly considers that the total flow rate without ion

ingestion inside the orifice is that of the supply, the backstreaming ions have to be

created through another mechanism outside of the cathode. This approach possibly

contradicts conservation of mass.
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Table 2.5: Comparison of pressure predictions (in Torr) of multiple flow models ap-
plied to the NSTAR cathode. Empirical correlation from [65] (pp.127–129). Ex-
perimental data is taken from [117] for TH4, TH8, and TH15, and from [118] for
TH12.

Operating condition
Pressure model

ExperimentEmpirical Poiseuille Modified
correlation Poiseuille

TH4
Id = 5.95 A

5.6 5.7 5.6 4.0
ṁ = 2.47 sccm

TH8
Id = 8.24 A

7.1 5.7 5.6 4.6
ṁ = 2.47 sccm

TH12
Id = 9.9 A

9.4 6.0 6.1 5.9
ṁ = 2.81 sccm

TH15
Id = 13.3 A

15.9 6.8 7.1 8.1
ṁ = 3.7 sccm

A more general correlation is necessary for an empirical approach to produce

accurate results. We also note that these formulations assume scaling that conforms

to isentropic flow conditions.

Isentropic flow The isentropic flow model of [69] relies on the assumptions that

the flow is choked at the outlet plane, the flow rate is sufficient to ensure continuum

flow in the orifice region, and that both viscous losses and heat addition due to

Joule heating are negligible. Similar assumptions are made in [114] and in [47] for

an isothermal flow. The choked-flow assumption is justified as long as the ratio of

backing (stagnation) pressure P0 to vacuum background pressure Pb satisfies:

P0

Pb
> G =

(
γ + 1

2

)γ/(γ−1)

, (2.137)

where γ is the ratio of heat capacities. This condition is met for all cathodes operating

in vacuum. For monatomic propellants, γ = 5/3 and G = 2.05. Because most

cathodes operate in a vacuum chamber with Pb ∼ 10−5 Torr or lower or in the

vacuum of space, P0/Pb � G.
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For most cathodes, however, the continuum assumption in the orifice is not guar-

anteed to hold. The validity of this assumption can be estimated by computing the

Knudsen number, Kn, in the orifice. The Knudsen number is given by:

Kn =
Ma

Re

√
γπ

2
, (2.138)

where Re and Ma are the Reynolds and Mach numbers, respectively. To compute

Kn, we assume that the flow is sonic in the orifice (Ma = 1). The dynamic viscosity

for the Reynolds number is calculated using results from Stiel and Thodos [102] for

xenon and argon. For mercury vapor, we use the Chapman-Enskog method applied

to the Lennard-Jones 12-6 potential with σ = 2.898 Å and ε/kB = 851.0 K [119]. This

method produces good agreement with experimental data for temperatures less than

1000 K as shown in Figure 2.15. The values are computed using a set of experimental
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Figure 2.15: Viscosity of mercury vapor computed with the Chapman-Enskog method
applied to a Lennard-Jones 12-6 potential. Experimental data from [119].

data from Siegfried and Wilbur’s cathode operating on mercury [120] and argon and

xenon [65], Friedly’s cathode [112], Salhi’s xenon and argon cathode [47], Domonkos’s
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SC012, EK6, and AR3 cathodes [64], the T6 cathode from the Royal Aerospace Es-

tablishment [113, 121], the NSTAR and NEXIS cathodes from the Jet Propulsion

Laboratory (JPL) [105, 111, 115, 116, 122], and the JPL 1.5 cm cathode [29, 30]. The

neutral gas temperature is estimated to be either three times the maximum insert

wall temperature [42] (p.465), or 3000 K if wall temperature data is unavailable. Fig-

ure 2.16(a) shows the Knudsen number for these cathodes. In all cases, the Knudsen

number is in the range 0.01 < Kn < 10.0, which indicate that the flow is either in the

transition regime from continuum to molecular fluid flow, or molecular.

Poiseuille flow Viscosity has been underlined as an important process for the flow

dynamics inside the cathode in 2-D simulations [122]. Computed Reynolds numbers

in Figure 2.16(b) indicate that the flow through the cathode is laminar (Re� 1000)

and that viscous effects are indeed important (0.1 < Re < 10).

The assumptions of a Poiseuille flow seem to be valid in the upstream section of a

cathode tube: the flow is incompressible, fully-developed, laminar, and with a no-slip

condition at the wall. Poiseuille flow theory, however, is not applicable in the orifice

region. In this region, the flow may be laminar and feature a no-slip condition at the

wall. However, it becomes compressible and is not fully-developed. Poiseuille flow

additionally assumes adiabatic flow, which is not valid in most regions of the cathode.

Neglecting Joule heating in the flow is problematic because it prevents the model from

capturing any effect of the discharge current. The flow transitions from a low Mach

number in the insert region to a sonic condition at the orifice outlet and therefore

shows strong compressibility effects. The length over which the flow travels before

becoming fully-developed, or “entrance length”, Lfd, can be estimated with [123]:

Lfd ≈ 0.06Redo. (2.139)
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The range of ratio of Lfd to the orifice length Lo is shown in Figure 2.16(c) for various

cathodes. For most cathodes the effect of the orifice constriction invalidates the fully-

developed-flow assumption over the whole length of the orifice. The Poiseuille flow

model also does not take into account plasma effects and therefore fails to capture the

true dependency of the total pressure with species and discharge current. The dis-

charge current can change the total pressure significantly, as shown in Figure 2.14(a)

for the NEXIS cathode.

Other approaches More complicated theoretical models such as the one proposed

by Domonkos in [64,73] or Albertoni et al. in [49,55] attempt to address some of the

aforementioned issues. Domonkos suggests combining Poiseuille flow, a choked flow

condition at the orifice outlet, and a correction that takes into account the insert-to-

orifice constriction and transition to molecular flow. Albertoni et al. [49] introduce

the effect of the plasma through the ionization fraction and electron temperature,

which are computed as part of the 0-D model. The proposed relationship is used to

compute the total static pressure and is valid at the orifice outlet where the author

assumes choked flow. This model still relies on Domonkos’s modified Poiseuille flow

model to predict the pressure drop across the orifice, and, therefore, suffers from the

problems that are associated with the assumptions of a Poiseuille flow in the orifice

section. Use of the Poiseuille flow model with choked flow as a downstream boundary

condition may also be fundamentally inconsistent, as the average velocity calculated

from the linearized pressure gradient is not necessarily equivalent to the (constant)

sonic velocity. Without heat addition or viscous contributions, the velocity within

the orifice should be assumed constant, as it is a function of only the channel size.
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Figure 2.16: Orifice Knudsen number, range of Reynolds number for both insert and orifice, and orifice entrance length (as a
fraction of total orifice length).
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2.10.2 Flux calculations

The coefficients preceding flux terms in several of the model power balances are used

inconsistently, the correct term scalings are given below.

Convection The 5/2TeV Id term that appears in the 0-D plasma volume power

balances is a result of the integral form of the energy equation. As shown in Ta-

ble 2.4, inappropriately rescaling this factor has a significant effect on model results.

In steady-state, neglecting viscosity, kinetic-energy terms, and collisions, the energy

equation simplifies to:

∇ ·
(

5

2
TeV neeue + qe

)
= −eneEue, (2.140)

where E is the electric field, ue is electron fluid velocity, and qe is the heat flux.

The first term on the left-hand side corresponds to the convection of energy at the

fluid velocity. A direct integration of this term over a 0-D volume along with the

application of Gauss’s law yields the correct expression for the convected energy.

Random flux A derivation of the average energy of an electron leaving the volume

to a surface may be found in [91], Appendix C in [42], or in [60]. The 2TeV term

stems from the assumed Maxwellian distribution crossing a surface. The average

energy is higher than the average energy per particle in the volume because higher-

energy particles escape the volume at a greater rate. The average energy is obtained

by computing the ratio of the energy flux to the wall to the total particle flux. For a

Maxwellian distribution, the total particle flux is given by:

Γ =
nc̄

4
, (2.141)
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where c̄ is the distribution-averaged velocity. The energy flux is given by:

Γe =
nc̄

4
2TeV . (2.142)

2.10.3 Sheath considerations

One of the primary reasons that the described models begin to lose accuracy outside

of the domain of operating conditions for which they were developed is their handling

of the sheath and plasma potential structure. The models generally choose from one

of the following idealizations:

• a purely 0-D sheath (no variation in the electron density anywhere),

• a mostly 0-D model with a flat potential structure in the plasma bulk but where

an attempt has been made to include some or all of the effects of the pre-sheath,

or

• an ambipolar diffusion model.

Flat potential profile In all variants of Siegfried and Wilburs’s model and in that

of Capacci et al., no attempt was made to account for the variation of plasma density

induced by the sheath/pre-sheath. In accordance with a strict 0-D assumption, the

plasma density and potential are assumed constant within the entire control volume.

The only advantage of this approach is its simplicity. Because of the collisional nature

of the plasma and the current densities present within the cathode, it is unlikely that

all of the potential drop from the cathode centerline to the emitter surface would be

translated into ion bombardment energy or emitted electron energy. This approach

artificially decreases the backstreaming electron flux reaching the emitter surfaces, as

shown in Figure 2.1, and this term is wrongfully neglected by the authors that use

this type of sheath model. This model also causes the over-prediction of the plasma
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potential, as the ion bombardment power must increase in order to provide sufficient

heating to the insert for self-sustaining operation.

Flat potential profile with pre-sheath In the models of Domonkos and Alber-

toni et al., the plasma potential is assumed to differ from the sheath potential by

Te/2, which is the potential drop due the Bohm condition at the sheath edge. The

associated energy term is often neglected (therefore φs is essentially φp), with the

primary contribution to the model being the modification of the plasma density used

to calculate fluxes to the insert surface. This idealization does little to alleviate the

issues of the purely 0-D sheath model described above.

Ambipolar diffusion model The model used by Goebel and Katz [42] includes

density variation in the radial direction. It is the only implementation of a sheath

voltage that is independent of the plasma potential. The diffusion equation solved,

however, assumes no variation in the axial direction (consistent with the 0-D ap-

proach) and zero plasma density at the “wall” of the insert or orifice plasma region.

This wall boundary condition is problematic. In this approach, the sheath is assumed

to have zero thickness, and, therefore, the sheath edge coincides with the “wall” for

the purposes of the ambipolar diffusion model. Depending on the channel geometry

and pressure, it may be reasonable to assume that the plasma density is negligible

at the sheath edge compared to the bulk plasma density, but for other conditions

(especially small diameters and low pressures) this would introduce significant error.

We discuss this in greater detail in Section 2.6. This model also leads to the over

prediction of the electron temperature, which in turn affects the power balance used

to calculate the sheath voltage. As mentioned in [92], this ambipolar diffusion model

is also not appropriate for the orifice region plasma.
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2.11 Summary

We have reviewed zero-dimensional orificed hollow cathode models developed in the

past 40 years that are relevant for electric propulsion applications. Our intent is to

provide critical information with regards to the validity and to the consequences of

the assumptions made, and the range of applicability of each model. We performed

term-by-term comparisons of the physical equations proposed when necessary, re-

implemented the models when possible, and compared our implementation to the

original authors’ calculations. We applied the models to two different cathodes with

available experimental data, and found that the models are generally unable to pro-

duce good agreement with experiment.

Common points of contention include the modeling of the ionized gas flow through

the cathode and the orifice, the calculation of the convection losses, and the represen-

tation of the 0-D volume. We argue that the gas flow should be treated with either

a general empirical relationship or a three-fluid model. We present calculations for

the convection losses, and discuss the different approaches that were used to treat the

radial variation of the plasma and sheath potentials inside the cathode. No rigorous

treatment of the radial plasma variation has been proposed thus far, though this can

be addressed with a combined ambipolar diffusion approach in the bulk plasma along

with a sheath model for an emitting boundary.

Including a coupled thermal modelization of the cathode raises the total num-

ber of parameters that are required for a complete model. The combination of the

plasma model with a thermal one therefore adds another layer of complexity that

may hide the effect of underlying plasma processes. We argue that because the tem-

perature gradient of the emitter is typically small [99] the assumption of constant

emitter temperature is acceptable. Accurate sheath modeling should then capture

the thermally-limited or space-charge-limited operation of the cathode and the cor-

responding fluxes of particles to the wall.
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In the next chapters, we will address some of the shortcomings of the 0-D models

that we have uncovered. We will present both an empirical approach and a rigorous

fluid approach to the gas flow problem. Sheath modeling, however, is beyond the

scope of this work.
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Chapter 3

Experimental configuration and

data analysis

In this chapter, we introduce the experimental configuration to measure the total

pressure in a high-discharge-current cathode. We also present the literature data we

use in later chapters and the methodology utilized to analyze it.

3.1 Cathode configuration

The Princeton large hollow cathode (PLHC) is a 20 cm long (8-in.) cathode with an

inner bore of 3.26 cm (1.284-in.). The cathode material is AXM-5Q POCO graphite.

The PLHC features two 2.715 cm inner diameter, 4.02 cm long LaB6 inserts for a

total of 8.04 cm length. The insert is heated via an external graphite heater described

in [32]. A heat shield made of multiple layers of 200 µm (0.008-in.) thick grafoil and

of 50 µm (0.002-in.) thick molybdenum is used to reduce radiative heat loss. The

cathode has a tungsten orifice plate that is 1.5 mm thick and that has a 5.6 mm

(7/32-in.) diameter orifice. The cathode is mounted on a block of 253MA stainless

steel and is held in place by a clamp ring of the same material. The clamp ring is

fastened to the cathode base with 1/4-20 screws. Interfaces between materials are
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sealed with grafoil gaskets. In front of the cathode is a 6.35 mm (1/4-in.) thick

graphite keeper plate with a 9.52 mm (3/8-in.) diameter orifice and a water-cooled,

aluminum anode. The keeper plate is held in front of the cathode with a combination

of stainless steel and ceramic posts. The keeper is attached to the stainless steel

posts with 6/32 screws. The ceramic posts are fastened to the cathode base with

6/32 screws and to the stainless steel post with 6/32 threaded rods.

Gas is inserted in the cathode through a stainless steel Swagelok-to-NPT fitting

mounted on the side of the cathode base. A pressure tap is drilled opposite to the

gas inlet, in the cathode base. Both NPT connectors are sealed with an anti-seizing

compound. The back of cathode base is sealed with a “diagnostics pod” (not used

in this work) which is described in [124]. Figure 3.1 shows an exploded view of the

cathode assembly (without fasteners) as rendered by a computer-aided design (CAD)

software, along with a table showing the materials used for each component. A CAD

drawing of the cathode without heater, heat shields, and fasteners can be found in

Figure 3.2. A cutaway view is shown in Figure 3.3 A schematic of the experimental

setup is shown in Figure 3.4. Figure 3.5(a) shows the physical implementation of the

cathode, anode, and heater. The cathode with keeper and heat shielding installed is

shown in Figure 3.5(b). Operation of the cathode on argon is shown in Figure 3.6.
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Figure 3.1: Exploded view of the cathode assembly without heater, fasteners, and
heat shields.
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100



Gas inlet

Cathode tubeInserts

Keeper

Figure 3.3: Cutaway view of the cathode assembly showing the location of the in-
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Figure 3.4: Schematic of the cathode apparatus (top view) showing the location of
temperature measurements.
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Figure 3.5: Princeton large hollow cathode.

KeeperAnode

Cathode

Thermocouple

Figure 3.6: Cathode operating on argon at 300 A of discharge current.
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3.2 Facilities

3.2.1 Vacuum and feed system

Vacuum system The cathode is installed in a 2 m diameter by 5 m long vac-

uum vessel (Figure 3.7) evacuated to less than 7 × 10−5 Torr without gas flow, or

2× 10−4 Torr at the maximum tested flow rate (290 sccm of argon). The background

pressure is monitored with an Alcatel ACC1009 pressure gauge. The vacuum cham-

Figure 3.7: Vacuum vessel.

ber is evacuated to high vacuum with a pair of 48-in. CVC diffusion pumps operating

with DC-704 diffusion oil. The diffusion pumps are backed by a Leybold-Heraeus air-

cooled roots blower and two Stokes 212-H roughing pump. A diagram of the system

is shown in Figure 3.8.

Feed system Gas is inserted into the cathode through an Omega FMA-A2304 mass

flow controller calibrated for nitrogen with a mass flow ranging from 0 to 200 sccm of

nitrogen gas (0–290 sccm of argon gas). The mass flow we report is taken from the

controller digital display and corrected for the gas used.
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Figure 3.8: Diagram of the vacuum system, inspired by [125]. The pumping system is not to scale.
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3.2.2 Electrical system

The graphite heater is powered by a 13.3 kW American Reliance power supply with

a maximum output of 32 V or 400 A. In all of our experiments the cathode operates

in triode mode (cathode, keeper, anode). The cathode discharge is sustained by a

30 kW Miller SRS-1000-C1 welding power supply configured for a maximum output

of 150 V or 500 A. We can also configure the power supply for a maximum output of

80 V or 1,000 A. The total current from the power supply is controlled with a manual

dial. An electrical diagram of the setup is shown in Figure 3.9.

The anode and keeper current are provided by the same power supply. Our heater

is able to provide enough power to ensure that the ignition voltage falls below the

maximum voltage of the 30 kW power supply. A 50 Ω ballast resistor is used upstream

of the keeper to limit the total keeper current to 3 A.

The experimental circuit features current shunts Rc, Ra, Rk, and Rh that are

used to measure the current flowing through the cathode, anode, keeper, and heater,

respectively. The characteristics of the resistor shunts are shown in Table 3.1.

Table 3.1: Characteristics of the resistor shunts (without temperature derating).

Element Rated current (A) Voltage (mV) Resistance (mΩ)

Cathode∗ 400/1000 60/75 0.15/0.1875
Anode† 400 100 0.25
Heater 400 60 0.15
Keeper 10 100 10.0

∗ The 400 A cathode shunt is swapped for a 1 kA shunt for op-
eration above 400 A.
† The anode shunt is removed for operation above 400 A.
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Figure 3.9: Electrical diagram of the experiment.

3.3 Measurement system

3.3.1 Pressure

We measure the total pressure upstream of the cathode with either a Posifa PVC1000

Pirani gauge or with an MKS 622C baratron gauge connected to the stainless steel

support block through a 3/8-in. NPT fitting. The pressure tap is located approx-

imately 22 cm (8.75 in.) from the upstream surface of the cathode orifice. The

Baratron gauge is situated outside the vacuum tank, another 1.2 m away from the

pressure tap.

The housing of the Pirani gauge is water-cooled to keep the gauge below its max-

imum operating temperature. The temperature of the housing of the Pirani gauge is

measured with a K-type thermocouple. The Pirani gauge is powered by a custom-

built ultra-precision constant-current power supply (6.7 mA). We show in Appendix E

the electrical diagram of this power supply.
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The Pirani gauge was calibrated to within ±0.1 Torr for argon gas with a separate

MKS baratron gauge. We calculate the pressure using the measured resistance of the

MEMS gauge resistor, corrected for the change in temperature as compared to its

calibration temperature (Tc = 20◦C). The calibration curve obtained is shown in

Figure 3.10.
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Figure 3.10: Calibration curve for the Pirani gauge.

3.3.2 Temperature

We measure during operation the temperature of the cathode tip and of one of the

tabs of the heater with C-type thermocouples that are in direct contact with either

surface. K-type thermocouples are used to evaluate the temperature of the stainless

steel base and of the housing of the pressure gauge. The location of the tempera-

ture measurements is shown in Figure 3.4. The thermocouples are connected to a

UWTC Omega wireless transmitter. Each wireless transmitter is powered by one of

the galvanically-isolated output of a Voodoo Labs Pedal Power 2 Plus power sup-

107



ply modified to output 3.6 V. The transmitter data is received at a 1 Hz rate by a

UWTC-REC1 Omega receiver connected via USB to a computer.

3.3.3 Data acquisition system

A National Instruments (NI) NI-9206 data acquisition system (DAQ) is used to per-

form differential voltage measurement across the pressure gauges and current shunts.

The NI-9206 is attached to a NI-cDAQ 9274 chassis that is used to communicate via

USB to a computer. The voltage difference across each current shunt is amplified by

an AD623 instrumentation amplifier before being measured by the DAQ. Special care

is taken for the high-side current shunts (keeper and anode); because the operating

voltages of both the anode and keeper are higher than that tolerated by our DAQ,

we isolate these measurements with an ACPL-790B isolation amplifier. We show in

Appendix E the electronics implementation of the isolation and amplification system.

3.4 Additional dataset

We use the electron temperature and plasma density profiles measured for Siegfried’s

cathode operating with xenon [65], Salhi’s cathode [47] operating on xenon at a mass

flow rate of 0.5 equivalent-amperes, the NSTAR discharge cathode [111], the NEXIS

discharge cathode [60,105], and the JPL 1.5 cm LaB6 cathode [30]. The total pressure

data we use for our empirical analysis and later comparisons are taken from Siegfried

and Wilbur’s mercury and noble gas cathodes [65,72,120,126], Friedly’s cathode [112],

Salhi’s cathode [47] operating on both argon and xenon, the T6 cathode [113, 121],

Domonkos’s cathodes (AR3, EK6, SC012) [64], the NSTAR discharge cathode [111,

116, 122], the NEXIS cathode [60, 105, 115], the JPL 1.5 cm LaB6 cathode [29, 30],

and our own cathode.
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3.5 Data analysis

3.5.1 Attachment length

The experimental attachment length is derived from the measurement of the electron

density profile. Because we define the attachment length as the length-scale of the

exponential decay of the electron density upstream of the cathode orifice, we fit only

the relevant portion of the experimental data with a decaying exponential. We show

an example of this approach in Figure 3.11.
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Figure 3.11: Example of the derivation of the attachment length from an electron
density profile. Experimental data from [111] for the NSTAR discharge cathode
operating at 15 A.

Error analysis The NSTAR, NEXIS, and JPL LaB6 cathodes share the same ex-

perimental setup and diagnostics for which the error in the density measurement was

reported [107] to be ±40% (σ2
n = 0.04). For the density measurements taken by Salhi,

no experimental uncertainty was reported so we assume the same value of ±40%. The

error inherent in performing the various steps of the linear regression on the logarithm
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of the density must also be estimated to obtain a confidence interval for the derived

attachment length. If the density at a given point has a variance of n̄2
eσ

2
n (where n̄e is

the average density at that point) then its logarithm Y = lnne has a variance of σ2
n.

We derive this property in Appendix F. For the linear fit of lnne with parameters β̂0

and β̂1, we have:

Ŷ = β̂0 + β̂1z̄. (3.1)

The inverse of β̂1 is the normalized emission length. The standard error of the slope

is [127]:

σ2
β =

σ2
n

N∑
i=1

(z̄i − ẑ)2

, (3.2)

where ẑ is the average distance from the orifice inlet. If we now assume that β̂1 is

also normally distributed about the value calculated using the regression procedure,

then the emission length has a variance (to first order) of:

σ2
L =

σ2
β

β̂2
1

. (3.3)

We also give the derivation for the variance of the inverse of a normally distributed

random variable in Appendix F.

3.5.2 Electron temperature

The electron temperature is typically measured as a function of position in the insert

region. Because the electron temperature typically varies gradually upstream of the

cathode orifice, we use the axial line-average of the experimental data over the entire

cathode insert region to obtain a single experimental value. We take the uncertainty

of the electron temperature measurements to be ±0.5 eV, as reported in [107], unless

otherwise specified.
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3.5.3 Pressure

Pirani gauge resistance Because the resistance of the Pirani gauge varies with

operating temperature, it is necessary to adjust the measured voltage Vm for the

temperature-induced change in resistance. The measured voltage is given by:

Vm = Rgauge (P ) Idc, (3.4)

where Idc = 6.667 mA is the applied current to the gauge. The resistance of the

gauge, Rgauge, depends on temperature:

Rgauge = Rnom (P ) (1 + TCR∆T ) , (3.5)

where Rnom is the nominal resistance at the calibration temperature and given pres-

sure P . ∆T is the temperature change from the calibrated temperature. TCR is

the temperature coefficient for the Pirani gauge resistor. We obtain this value from

the datasheet for the PVC1000 [128]: TCR = 0.0025 1/K. Using Equation 3.5 in

Equation 3.4 gives:

Vc (P ) =
Vm

(1 + TCR∆T )
, (3.6)

where Vc is the calibration voltage: Vc = RnomIdc.

Error analysis We compute ∆T as the average over the time period considered.

The standard error of the mean of ∆T , ε∆T , is used to estimate the error on the

pressure:

ε∆T =
1.96σ∆T√
N∆T

, (3.7)

where σ∆T is the standard deviation of the temperature change and N∆T the total

number of samples. To estimate the error, we first compute the upper and lower
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bounds of the temperature change,

∆T+ = ∆T + ε∆T , and (3.8)

∆T− = ∆T − ε∆T , (3.9)

and use the calibration table to find the upper and lower bounds of the total pressure.

If the error is above ±15% we reject the measurement. We note that Equation 3.7

is limited to normally-distributed data. While ∆T may not be normally-distributed,

this approach gives us an estimate of the error in pressure.

3.6 Total pressure measurements

Figure 3.12 shows pressure measurements we performed with and without the cathode

discharge. Without a plasma, the pressure increases linearly with mass flow rate as

is expected from a choked orifice. During operation the pressure increases both with

mass flow rate and discharge current, a behavior similar to other cathodes [112, 113,

115]. Measurements performed with the baratron gauge are much more precise than

those of the Pirani gauge. This is likely due to the error in the measurement of the

temperature of the Pirani gauge.
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Figure 3.12: Total pressure measurements: (a) with cold gas only (300 K); (b) during
cathode operation with argon. Filled and empty markers indicate measurements made
with the Pirani and Baratron gauge, respectively.
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Chapter 4

Empirical analysis of the total

pressure
1

The neutral gas pressure Pn in the cathode affects predicted physical quantities such

as the electron temperature and the ratio of sheath-edge plasma density to the average

plasma density. The neutral gas pressure can be estimated in both the cathode insert

and in the orifice regions from the total pressure and ionization fraction. In this

chapter, we only investigate the former.

An analytical description of the flow physics inside the hollow cathode is challeng-

ing. The flow features heat addition from Joule heating in the orifice, frozen flow and

wall losses due to ionization and plasma sheath fluxes, a transition from incompress-

ible to sonic flow over the length of a short orifice, viscous effects, and a transition

to molecular flow. In this chapter, we propose an empirical approach to calculate the

total static pressure inside orificed hollow cathodes and to guide the analytical work

of the following chapter. We gather experimental data, analyze it using dimensional

analysis, and propose a power law for the cathode internal pressure as a function of

1This chapter is based on work presented in [54]: Taunay, P.-Y. C. R., Wordingham, C. J., and
Choueiri, E. Y., “An Empirical Scaling Relationship for the Total Pressure in Hollow Cathodes,”
AIAA Propulsion and Energy Forum, 2018, AIAA-2018-4428.
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the resulting non-dimensional parameters. We compare the empirical relationship to

experimental data and perform a statistical analysis to extract the most pertinent

non-dimensional variables. We finally discuss their relevance.

4.1 Π-products

Based on observation of the experimental data, we expect the cathode pressure to

exhibit dependence on geometry, mass flow rate, discharge current, gas species, gas

temperature, and viscosity. We therefore consider a general expression for the pressure

in the insert region,

P = f (do, dc, Lo, ṁ, Id,M, a, εiz, µ, µ0) , (4.1)

where do and dc are the orifice and insert diameters, respectively, Lo the orifice length,

Id the discharge current, ṁ the mass flow rate in kg/s, M the atomic mass of the

propellant considered, a the speed of sound of the gas of interest, εiz the ionization

energy of the species considered in eV, µ the dynamic viscosity in Pa·s, and µ0 the

permeability of vacuum.

There are four physical dimensions (mass, length, time, charge) and 11 parameters.

The Buckingham Π theorem [129] indicates that there should be 7 non-dimensional

Π-products. We use Ipsen’s method [130] to find the Π-products by successively elim-

inating physical dimensions from Equation 4.1. As opposed to the previous empirical

studies [72, 112], the total pressure is not normalized by the gasdynamic pressure

(∼ ṁa/d2
o) but by the magnetic pressure (∼ µ0I

2
d/d

2
o). Better agreement to a power

law fit is obtained using this approach, especially for cathodes operating at higher
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discharge currents or lower mass flow rates. We consider the following Π-products:

Π1 =
P

Pmag
, (4.2)

Π2 =
do
dc
, (4.3)

Π3 =
do
Lo
, (4.4)

Π4 =

(
ṁe

MId

)2(
Mdo
µ0e2

)
, (4.5)

Π5 =
Pgd
Pmag

, (4.6)

Π6 =

(
Pionization

Pmag

)(
Lo
do

)
, and (4.7)

Π7 = Re, (4.8)

where we defined the magnetic pressure, gasdynamic pressure, and ionization pressure

as:

Pmag =
µ0I

2
d

π2d2
o

, (4.9)

Pgd =
4ṁa

πd2
o

, and (4.10)

Pionization =
4eεiz
πd2

oLo
, (4.11)

respectively. The derivation of Π-products is shown in Appendix A. We recognize

the ratio of total pressure to magnetic pressure in the orifice as the first Π-product.

The second and third are geometric aspect ratios. The term (ṁe/MId) in the fourth

Π-product is the total mass flux divided by the flux of ionized particles. It is related

to the ionization fraction. The second half of Π4 is a function of both mass and

orifice diameter, and involves both geometry and gas species. The fifth Π-product is

the ratio of gasdynamic to magnetic pressures. The numerator of Π6 is the ionization
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energy density inside the orifice. It is multiplied by the inverse of Π3. The seventh

Π-product is the Reynolds number and accounts for viscosity effects.

Neutral gas temperature

The neutral gas temperature is necessary to calculate the fluid speed of sound that

appears in Pgd. It is estimated to be 3 times that of the insert wall temperature,

Tc, as suggested in [42] (p.465). For each cathode, we first seek an estimate of the

wall temperature based on the available data. For the NSTAR and NEXIS cathodes

experimental and numerical fits for the wall temperature in Kelvin are given in [131]

and [42] (p.301) as:

TNSTAR [K] = 1191.6I0.0988
d , and (4.12)

TNEXIS [K] = 1370 + 3.971× 10−7I6
d , (4.13)

respectively. Orifice plate temperature is reported in [30] as a function of both mass

flow rate and discharge current for the JPL 1.5 cm cathode. A linear fit captures the

variation of the data:

TJPL 1.5 cm [◦C] = 1144 + 5.56Id. (4.14)

We use this fit for the cases reported in [29] as the cathode is identical. Because

the geometry of the AR3, EK6, and SC012 cathodes from [64] are similar, we simply

use the average value of the available temperature data when no data is available.

A similar procedure is performed for Salhi’s cathode [47] and Siegfried’s cathode

operating with noble gases [65], where care is taken to separate the cases with different
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orifice sizes and different operating gas:

TAR3, EK6, SC012 = 979.7◦C, (4.15)

TSalhi (Ar),do=0.76mm = 891.2◦C, (4.16)

TSalhi (Ar),do=1.21mm = 998.8◦C, (4.17)

TSalhi (Xe) = 991.0◦C, and (4.18)

TSiegfried (Xe) = 1097.2◦C. (4.19)

If no data are available (as is the case of the T6 and our cathode), the temperature

is estimated to be that which yields the total discharge current through thermionic

emission:

Id = DRDT
2
c exp

(
−eφw
kBTc

)
2πrcLemit, (4.20)

where rc is the insert radius, and Lemit is the attachment length. The emission length

may be estimated as the insert radius: Lemit ≈ rc. The work function and Richardson-

Dushman constant are given in Table 1.1.

4.2 Qualitative evidence of a simple scaling rela-

tionship

4.2.1 Correlation heatmap

Figure 4.1 shows a heatmap of the correlation matrix of all Π-products. Π5, Π6, and

Π7 seem to be strongly correlated to Π1. Because Π4, Π6, and Π7 are only strongly

correlated to Π5, there may be a combination of those Π-products that reduces to

a single relevant independent variable. Because Π2 and Π3 only seem correlated to

one another, they may also be combined into a single independent variable. This
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Figure 4.1: Correlation matrix of the Π-products.

analysis indicates that there may be only three relevant independent variables (Π1,

the combination of Π4 through Π7, and the combination of Π2 and Π3).

4.2.2 Principal component analysis

The goal of the Principal Component Analysis (PCA) is to determine the number of

relevant variables. PCA calculations are performed with the scikit-learn API [132].

Figure 4.2 shows the explained variance as a function of the total number of variables

considered. With a single variable the dataset has an explained variance of 0.825,

which indicates that it is enough to explain most of the variation. The variance

ceases to increase for three or more dimensions which indicates that the total pressure

Π-product is not a strong function of three of the other Π-products.

4.2.3 Manifold learning approach

While some of the Π-products clearly show strong correlations (e.g., Π1 and Π5) the

visualization of the entire dataset is challenging. “Manifold learning” can be used to

reduce the dimensionality of a dataset and help with visualization. Qualitatively, this
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Figure 4.2: Explained variance for the dataset.

technique unfolds the N-dimensional surface on which the dataset exists and projects

it onto either a 3-D volume or 2-D plane through a non-linear transform.

We use the Local Linear Embedding (LLE) [133] implemented in the Python

library scikit-learn [132] to find a simple projection of the 7-D dataset onto a 2-D

plane. The LLE seeks to conserve the distance between points that are neighbors

in the original dataset. Figure 4.3 shows the results of the embedding as applied

to the dataset, with the color map corresponding the logarithm of Π4. The LLE is

calculated with k = 14 neighbors with a reported reconstruction error of 7.3× 10−7.

Although the embedding cannot be used to retrieve the original relationship between

the Π-products, the collapse of the dataset on a 2-D curve with regular coloring by

Π4 indicates that the inherent dimensionality of the dataset is 2.
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Figure 4.3: Local Linear Embedding applied to the Π-products.

4.3 Power law approach

The Π-products are assumed to have a power law dependency:

Π1 = C
7∏

k=2

Π
βk−1

k = Γ (Π) , (4.21)

where C is a scaling constant, and the βk−1 are exponents to be determined. After

applying the logarithm base 10 to both sides of Equation 4.21, we obtain a linear

relationship:

Y = β0 +
7∑

k=2

βk−1Xk, (4.22)

where Y = log10 Π1, Xk = log10 Πk, and β0 = log10C. Equation 4.22 is a linear

regression which we fit using a least-squares approach. The least-squares fit yields β =

(7.06, 0.79, 0.23,−0.27, 0.82, 0.25, 0.41). The corresponding constant for the power law

is C = 1.16× 107.

Qualitative analysis The power law fit applied to the experimental data is shown

in Figures 4.4(a–c) for the full data set. The data collapse onto a single line, indicating
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good agreement with the proposed empirical relationship over a range of five orders of

magnitude. Based on the grouping of data by cathode in Figure 4.4(b) and by value

of Π5 in Figure 4.4(c) we can see that as the ratio of the gasdynamic to the magnetic

pressure is decreased the data points cluster at the origin of the plot. At the opposite

end of the curve, data points corresponding to cathodes with high values of Π5 are

clustered. The cathodes that operate at high current (PLHC, Friedly’s cathode,

NEXIS) feature a larger magnetic pressure contribution to the total pressure than

those that operate at low current (AR3, EK6, SC012). Because the NSTAR, T6, and

Salhi’s and Siegfried’s cathodes have similar dimensions, there is an accumulation of

data points at the center of plot.
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Figure 4.4: Proposed power law (Equation 4.21) applied to the entire data set:
Γ (Π) = 1.2 × 107 Π0.79

2 Π0.23
3 Π−0.27

4 Π0.82
5 Π0.25

6 Π0.41
7 . Data from [111, 116, 122] for the

NSTAR cathode, [60, 105, 111, 115] for the NEXIS cathode, [47] for Salhi’s cath-
ode, [64] for the AR3, EK6, and SC012, [112] for Friedly’s cathode, [113, 121] for
the T6 cathode, [65, 72, 120, 126] for Siegfried’s cathode, and [29, 30] for the JPL
1.5 cm cathode.
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Comparison to theoretical models The obtained R-squared and average error

for the least-squares fit are equal to 0.98 and 22.7%, respectively. Figure 4.5 shows

the error distribution. It indicates that the proposed data fit is mostly within a factor

of 1.3 of the experimental data. The aforementioned error analysis can be repeated

0 20 40 60 80 100

0

0.02

0.038

Pressure error (%)

Figure 4.5: Error histogram for the proposed fit (Equation 4.21).

for the isentropic and Poiseuille flow models, as both can be expressed directly in

terms of the derived Π-products. The pressure as calculated from an isentropic flow

and Poiseuille flow approach depends only on Π5, and Π3, Π5, and Π7, respectively:

Π1 = CisoΠ5, (4.23)

Π1 = CPoiseuilleΠ
−1/2
3 Π5Π

−1/2
7 . (4.24)

The constants Ciso and CPoiseuille are the respective scaling constants:

Ciso =
1

γ

(
γ + 1

2

)(γ+1)/(γ−1)

, (4.25)

CPoiseuille = 4γ−1/2. (4.26)
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Neither approach include a dependency on the plasma quantities and therefore dis-

charge current. The corresponding R-squared value and average errors are shown in

Table 4.1. The high values for the R-squared and average error for both the isen-

tropic and Poiseuille flow models indicate that they are not adequate in capturing

the variation of the total pressure inside hollow cathodes.

Table 4.1: R-squared value and average error for the studied flow models and empirical
relationship.

Flow model or empirical relationship R2 Average error (%)

Isentropic 0.82 47.1
Poiseuille 0.82 57.4
Power law 0.98 22.7

4.4 Randomized selection

The randomized selection test consists in rearranging the samples of one Π-product

at a time at random, performing a linear regression (Equation 4.22), and calculating

both the R-squared value and average error. The randomization of a superfluous

Π-product has little to no effect on these metric. The process is repeated 1,000

times to generate statistically significant numbers. The corresponding R-squared and

average error resulting from this operation is shown in Table 4.2. We observe that the

randomization of Π3 and Π6 has the smallest effect on the overall fit. The process can

be repeated once these products are discarded. We find that both Π2 and Π7 have

the next lowest effect on the fit during the second iteration and can also be removed

from the fit without introducing large errors. The products that remain are Π4 and

Π5, which were shown to be qualitatively important on the correlation map, the LLE,

and Figure 4.4(c).
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Table 4.2: R-squared value and average error for the linear fit with a randomized
Π-product. The data for the unperturbed fit is shown on the “Reference” line.

Perturbed Iteration 1 Iteration 2
Π-product R-squared Average error (%) R-squared Average error (%)

2 0.965 30.0 0.965 29.8
3 0.978 23.6 – –
4 0.978 24.0 0.936 45.3
5 0.978 24.5 0.482 709.
6 0.979 22.4 – –
7 0.971 29.9 0.971 30.4

Reference 0.98 22.7 0.978 23.5

Interpretation The four dimensions removed from the original Π-product rela-

tionship are Π2, Π3, Π6, and Π7. Because most cathodes studied operate with xenon

(identical ionization energy) and feature an orifice length which is always close to

1 mm, both Lo and εiz do not show much variation in the dataset. The products that

feature both quantities (Π3 and Π6) have therefore little to no effect on the overall

fit. Both the Reynolds number and cathode aspect ratio are limited to a single order

of magnitude: 86% of the computed Reynolds numbers are in the 1–10 range, and

all cathode aspect ratios are within the 0.07–0.7 range. More variation in the data is

needed for these Π-products to be relevant. The variance is explained by the influence

of the plasma (Π4) and gasdynamic effects (Π5). Both the gasdynamic and plasma ef-

fects are relevant in this context and can describe two mechanisms of pressure change

due to a change in mass flow rate, current, or both.

The proposed scaling relationship and analysis is limited by the data on which it

relies. The analysis does not extend to cathodes which operate with a much longer

orifice or propellant with a lower ionization energy (e.g., lithium). We also note that

the relationship spans five orders of magnitude in variation of the non-dimensional

variables, and is not able to capture the dominant effects of a given flow regime.

Finally, it is likely that the true dependency of the pressure does not follow a power
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law. The latter is a simplification that allows for a rapid analysis and development

of a pressure estimate.

4.5 Predictive capabilities

For a monatomic gas with γ = 5/3, the empirical relationship can be re-written in

terms of physical quantities to compute the total pressure in Pascals or Torr:

P (Pa) = 1.28× 10−8 I0.39
d T 0.41

n ṁ0.69ε0.25
iz

L0.23
o M0.14µ0.41d0.79

c d1.91
o

, and (4.27)

P (Torr) = 2.13× 10−7 I
0.39
d T 0.41

n M0.55
a ṁ0.69

sccmε
0.25
iz

L0.23
o,cmµ

0.41d0.79
c,cmd

1.91
o,cm

, (4.28)

where M is the atomic mass of the propellant species in kg and Ma is the atomic

mass in atomic mass units. Exponent values with more significant digits are shown

in Appendix C for fast pressure calculations.

Figure 4.6 shows the empirical relationship applied to the NEXIS cathode for

an assumed gas temperature of 3,000 K. The empirical relationship is capable of

capturing the dependence of the cathode internal pressure on discharge current and

yields a good approximation of the total pressure. A sensitivity analysis to the gas

temperature is shown in Figure 4.7 and reveals that a±30% change in gas temperature

results in a ±12% change in total pressure.
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Figure 4.6: Applied power law to the NEXIS cathode for the case of (a) constant
mass flow rate of 5.5 sccm, and (b) constant discharge current of 22 A.
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Figure 4.7: Sensitivity of the proposed empirical law to the gas temperature, applied
to the NEXIS cathode.
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4.6 Summary

We have developed a non-dimensional scaling relationship to calculate the total pres-

sure inside orificed hollow cathodes and compared it to both experimental data for

self-consistency and previous modeling attempts. The relationship features good

agreement with experimental data and is able to capture the dependency of the pres-

sure with both mass flow rate and discharge current, while theoretical models cannot.

It is able to capture the pressure over three orders of magnitude or five orders of

magnitude in the non-dimensional space.

Both the uncertainty in the neutral gas temperature and the effect of the feed

system (which we do not consider here) may account for some of the discrepancies

observed. We do not account for the pressure drop that occurs between the pres-

sure measuring point and the cathode active zone. The pressure measuring point is

typically far upstream of the insert plasma and can be sometimes multiple cathode

lengths away (see, e.g., [64]). The relationship is therefore representative of ideal

experimental conditions in which the pressure is measured right next to the insert

plasma.

We have used statistical tools to analyze the relationship and found that the

gasdynamic and plasma effects are the most physically relevant. Evaluation of the

empirical fit based on the derived Π-products allows for the calculation of the cathode

internal pressure over an extremely wide range of operating conditions that could not

be captured by a flow model incorporating only a single flow regime.
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Chapter 5

Zero-dimensional cathode model
1

As we have shown in Chapter 2, the neutral gas pressure in an orificed hollow cathode

affects physical quantities such as the ratio of sheath-edge plasma density to average

plasma density and electron temperature, and, therefore, the total lifetime of the in-

sert. If ambipolar diffusion is assumed to be charge-exchange-dominated, the electron

temperature depends only on the geometry of the cathode and the neutral gas density

(or pressure for a constant temperature) [136]. This assumption is typically valid for

orificed hollow cathodes. It is critical to obtain an accurate value of the neutral gas

pressure to ensure that the lifetime of the thermionic insert is maximized.

To estimate the neutral gas pressure, both the total pressure and ionization frac-

tion can be used. As discussed in Chapter 2, multiple models exist to estimate

the total pressure: empirical relationships, designed for a mercury hollow cath-

ode [52, 63, 65, 71, 72, 112] or based on the available data from the literature (Chap-

ter 4), isentropic [69] or isothermal [47, 114] flow approaches, Poiseuille flow the-

1This chapter is based on work presented in References

• [134]: Taunay, P.-Y. C. R., Wordingham, C. J., and Choueiri, E. Y., “A 0-D model for
orificed hollow cathodes with application to the scaling of total pressure” AIAA Propulsion
and Energy Forum, 2019, AIAA-2019-4246, and

• [135]: Taunay, P.-Y. C. R., Wordingham, C. J., and Choueiri, E. Y., “The influence of
ambipolar diffusion on the attachment length and electron temperature in orificed hollow
cathodes” 36th International Electric Propulsion, 2019, IEPC-2019-426.
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ory [42, 95, 96], a modification of Poiseuille flow theory [64, 73], and an “equivalent

temperature” or modified specific gas constant taking into account the ionization

fraction [47, 49, 55, 114]. The ionization fraction may be estimated through a zero-

dimensional model. We have shown in Chapter 2 that the empirical relationships

developed in [52, 63, 65, 71, 72, 112] do not generalize to other cathodes and that the

assumptions of isentropic, isothermal, or viscous Poiseuille flow are invalid in the

flow regime in which cathodes operate. The empirical relationship we proposed in

Chapter 4 covers available data from the literature but may not generalize to new

designs unless they are similar to cathodes included in the analysis used to derive the

relationship. It is also limited by its data-driven approach which does not explain the

physical phenomena governing the total pressure in orificed hollow cathodes.

As shown in Chapter 2, existing 0-D cathode models [42, 49, 52, 55, 63–65, 69, 71–

73, 75–78, 82, 92, 95, 96, 137, 138] inconsistently treat the sheath and do not address

the neutral fluid flow correctly. We have also shown that existing models cannot be

applied to cathodes that are different from the design for which they were originally

developed. It is therefore not possible to use those models for a wide variety of

cathodes and operating conditions. 2-D models also cannot be used for predictive

purposes or to formulate scaling laws because they require experimental data and, in

the case of fluid models, inconsistently treat the sheath.

To address the critical issues in 0-D and 2-D models, we propose here to use the

combination of a two-dimensional charge-exchange-limited ambipolar diffusion model

for the electrons, which is solved analytically, and zero-dimensional, volume-averaged,

conservation equations for all species (ions, electrons, neutrals) present in the cathode.

The two-dimensional charge-exchange-limited ambipolar diffusion model is presented

in [136].

In this chapter, we present a theoretical framework to explain the variation of total

pressure with mass flow rate, discharge current, cathode geometry, and gas species.
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The main assumptions for our analysis are given in the following section. We then

delineate the fluid and plasma models. We finally demonstrate that the results of the

model agree with experimental data on a variety of cathodes, and use the model to

formulate and verify scaling laws in the next chapter.

5.1 Assumptions

We make the following assumptions:

1. In the insert and orifice regions, the plasma is treated as a continuum fluid.

2. The heavy-particle stagnation temperature in both regions is constant and is a

free parameter.

3. The flow in the orifice is frozen.

4. The total static pressure is constant in the insert region.

5. The flux of ions to the walls is equal to the Bohm flux and is not modified by

the presence of an emitting sheath.

6. The fluid is inviscid.

7. The electron temperature is constant in each region.

8. The electron inertia is negligible compared to that of the heavy species.

9. Inelastic collisions other than direct ionization and ground-state excitation are

ignored.

10. Steady-state conditions are reached.

Our first assumption is justified for cathodes with a small orifice-to-insert diameter

ratio (i.e., most orificed hollow cathodes). The Knudsen number is generally less than
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1 for those cathodes. This assumption is invalid when the flow becomes transitional,

such as in the downstream portion of the orifice (see, e.g., Figure 2.16(a)), in cathodes

that have an orifice-to-insert diameter ratio close to 1 (i.e., tube cathodes) [139], and

in cathodes with a low enough mass flow rate. We will use empirical corrections to

compensate for transitional flow effects at the orifice outlet. The second assumption

implies that the ion and neutral static temperatures are equal, which is justified for

heavy species that have a large cross section for resonant charge exchange (e.g., noble

gases). We specify the static temperature in the orifice region and calculate the

stagnation temperature under the assumption of an adiabatic flow. It is challenging

to experimentally obtain the temperature of the neutral particles or ions in either

the insert or orifice regions, and it is therefore difficult to evaluate the validity of the

second assumption. However, the model we describe here is not sensitive to the value

of the neutral gas temperature in the range of 2,000–4,000 K. This assumption is also

used in most cathode models [42,69,75–78,92,95–97].

Because the mean free path for inelastic electron-neutral collisions is much larger

than the orifice size, and because the residency time is smaller than the time between

inelastic collisions for neutral particles in the orifice, the assumption of frozen flow

(assumption 3) is justified, for typical operating conditions. The ratio of mean free

path to orifice length Lo and the ratio of inter-collision time to residency time for the

neutrals are given by:

λ̄ =
1

neσ (TeV )Lo
, (5.1)

and

τ̄ =
vg
Lo

(ne〈σ (TeV ) v〉)−1 =
vg
ve
λ̄, (5.2)

respectively. ne is the electron density, σ is the inelastic reaction cross section, TeV

is the electron temperature in eV, vg is the local sound speed, and ve is the electron

thermal velocity. Figure 5.1 shows the two ratios for xenon and two orifice aspect
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ratios Λor (orifice length over orifice diameter), where we assume a gas temperature

of 2,000 K to calculate the speed of sound. The electron temperature is calculated

from the neutral gas density using the ambipolar diffusion model from [136]. The

excitation cross section is computed from the sum of all excited states. The mean
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Figure 5.1: Ratio of (a) mean free path to orifice length for total inelastic electron-
neutral collisions, (b) inter-collision time to neutral gas residency time.

free path for inelastic collisions is much longer than the orifice length for all neutral

densities of interest. As indicated by the variation of the ratio of inter-collision time to
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neutral gas residency time, the frozen flow approximation may be challenged for large

orifice aspect ratios. The likelihood that a neutral atom undergoes many inelastic

collisions before exiting the orifice channel is then very high. In general, however,

this approximation allows us to provide a bound on the flow variables.

Assuming a constant total static pressure (assumption 4) in the insert region is

justified because pressure gradients are small in the insert region for cathodes with

small orifice-to-insert-diameter ratio. We note, however, that pressure gradients occur

near the orifice inlet, where the flow is constricted. The flow gains dynamic pressure

at the expense of static pressure in this region. The pressure difference between the

upstream section and the orifice plate results in an additional force which increases

the momentum flux through the orifice [140]. Ignoring this effect should result in an

under-prediction of the total pressure.

It is necessary to estimate the flux of ions to the walls to include particle effects

in the fluid model. Assuming that ions achieve the Bohm velocity at the edge of

an emitting sheath (assumption 5) is not necessarily justified but it is a common

assumption to all cathode models. Using the model from [61] it is possible to estimate

the modification of the Bohm velocity by an emitting sheath:

vion =

(
eTeV
M

)1/2(
1 + 2ηcJb

1− Jb

)1/2

, (5.3)

where ηc = φs/TeV is the normalized sheath voltage, Jb = jb/je, where jb is the

emitted beam current and je is the electron saturation current:

je = nee

(
eTeV
m

)
(2ηc)

3/2 . (5.4)

For cathodes that have a small orifice-to-insert-diameter ratio, the ion current through

the sheath is negligible as compared to the emitted electron (beam) and electron sat-

uration currents because of low sheath voltages (ηc ∝ 1) and high plasma densities
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(1020–1021 m−3) [42]. In this case, the ratio of the beam current to the electron satu-

ration current is typically negligible (Jb � 1), and, therefore, so is the modification to

the Bohm velocity. We note, however, that under certain circumstances, the presence

of an emitting sheath may modify the Bohm velocity by up to 20%. We consider in

this case that the sheath boundary is situated farther away from the wall at a location

where the Bohm velocity is reached. Because the size of the sheath (∝ µm) is much

smaller than the scale of the system (∝ cm) this increase of the effective sheath size

does not affect the diffusion characteristics of the solution.

Neglecting the viscosity (assumption 6) is motivated by the statistical analysis

presented in Chapter 4. This study showed that viscous effects on the total pres-

sure are likely negligible as compared to gasdynamic and plasma effects. Viscosity

can nonetheless be implemented by considering that most of the viscous losses come

from the feed system. Experimental measurements of the pressure data we used are

gathered upstream of the insert region (sometimes multiple cathode lengths away,

see, e.g., [64]). This means that the viscous pressure drop within the feed system

contributes to the measured total pressure. A Poiseuille flow assumption is justified

in this section of the feed system: the flow is neutral, isothermal, viscous, laminar, in-

compressible, fully-developed, and not near a constriction. We use the heavy-particle

temperature as the effective gas temperature when estimating the viscous losses in

the feed system.

Experimental data [30, 47, 72, 110, 111] suggest that the gradients of the electron

temperature in the insert and orifice regions are negligible, which indicates that as-

sumption 7 is appropriate. In effect, this assumption means that the fluid is isothermal

in each individual region.
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Figure 5.2: Fluid control volume considered in the analysis.

5.2 Fluid model

We use the two-dimensional axisymmetric momentum equations for each species,

applied to the geometry shown in Figure 5.2. Boundaries II, III, and IV are chosen

to be at the sheath edge. The emission length, Lemit, is the length over which the

plasma is able to support temperature-limited thermionic emission. We approximate

this length with the plasma density decay length scale in the axial direction, as

calculated in [136]. The emission length is smaller than the insert length and we

consider that the fluid is neutral upstream of the emission zone.

The momentum equations for each species are summed to provide a simpler single-

fluid framework. Under the assumptions delineated in the previous section, we obtain:

∇ · (ρvv) +∇P = ∇ · β, (5.5)

where v is the mean mass velocity of the combined fluid, ρ its density, and β the

magnetic stress tensor. P is the total static pressure. Equation 5.5 may also be

written as:

∇ · (Mnnvnvn +Mnevivi) +∇P = ∇ · β, (5.6)
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where the subscripts n, e, and i denote neutral, electron, and ion quantities, respec-

tively. nx and vx are the number density and velocity of the species x, respectively.

M is the mass of the heavy particles.

To satisfy conservation of mass, ions return to the control volume as neutrals after

having recombined on any of the sheath-facing surfaces (II, III, and IV). The flux of

each species is therefore equal in magnitude and opposite in direction:

nnvn = −nsevB, (5.7)

where nse is the electron density at the sheath edge.

An upper-bound on the magnetic pressure on surfaces III and V can be obtained

by considering that the magnetic field B on these surfaces is due only to the current

flowing through the orifice, which is assumed to be purely axial. The magnetic field

is then purely azimuthal:

B = (0, Bθ, 0)(r̂,θ̂,ẑ) . (5.8)

The magnetic stress tensor can then be expressed as [141]:

β =


−B2

θ/2µ0 0 0

0 B2
θ/2µ0r

2 0

0 0 −B2
θ/2µ0

 , (5.9)

where µ0 is the permeability of vacuum. The azimuthal component of the magnetic

field can be estimated by further assuming constant current density in the orifice:

Bθ =


−µ0Id

2πr
if r > ro

−µ0Id
2πr2

o

r if r < ro

(5.10)

where ro is the orifice radius and Id is the discharge current.
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We integrate Equation 5.6 over the volume shown in Figure 5.2, and apply Gauss’s

theorem. In the z-direction, we obtain:

−
[
πr2

cP
]

I
+ π

(
r2
c − r2

o

) [
P +Mnsev

2
B

(
nse
nn

+ 1

)]
III

+ πr2
o

[
ρv2

z + P
]

V

=− µ0I
2
d

4π

(
ln
rc
ro

+
1

4

)
,

(5.11)

where rc is the insert radius and vz is the fluid velocity on the surface V. To obtain

Equation 5.11 we further assumed that

• the upstream momentum is negligible as compared to the static pressure con-

tribution,

• surface quantities other than the magnetic field are constant over their respec-

tive surfaces,

• the heavy particles have equal tangential velocity on each surface, and

• the radial velocity of the heavy particles on surface V is much smaller than the

axial one.

The third assumption, combined with the flux condition given in Equation 5.7, causes

the cross-term in the dyad product to vanish. For example, on surface II, the cross-

term resulting from the momentum balance in the axial direction is:

S = Mnsevi,rvi,z +Mnnvn,rvn,z.

Because the particle fluxes normal to the wall are equal in magnitude and in opposite

direction (Equation 5.7), we have:

S = MnsevB (vi,z − vn,z) .
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The assumption of equal tangential velocity, motivated by frequent collisions between

ions and neutrals, implies that vi,z = vn,z on this surface. The dyad terms then

simplify to zero. �

5.2.1 Outlet (surface V)

The frozen-flow approximation allows us to define the Mach number and specific heat

ratio γ. Under this assumption, the flow is choked and becomes sonic at the exit of

the orifice because it expands into a vacuum. The flow velocity is therefore given by

the local speed of sound a for the combined fluid:

vz,V = a =
√
γRg (Tn + αTe), (5.12)

where Rg is the specific gas constant of neutral species, α is the ionization fraction,

and Tn and Te are the neutral and electron temperatures in Kelvin, respectively. This

expression can be readily derived for an ideal gas where a =
√
γP/ρ. The ionization

fraction is defined as:

α =
ne

ne + nn
. (5.13)

Using the conservation of mass, we also have πr2
o (ρvz)V = ṁ.

Because the Knudsen number in the orifice, Kn, is within the range of 0.1 –

10 the flow is considered transitional. We therefore estimate the static pressure at

the orifice outlet, PV, with a molecular flow correction. We use a similar framework

to [16,142,143]. Under the justifiable assumption that the pressure downstream of the

cathode orifice (vacuum vessel pressure) is much smaller than the exit plane pressure,

the stagnation pressure P ∗V is given by:

P ∗V =
Q̇

(θCm + (1− θ)Cv)
, (5.14)
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where Q̇ is the total throughput and Cm and Cv are the molecular flow and viscous

flow aperture conductances, respectively. The linear weight θ is a function of the

Knudsen number. The expression proposed in [142] can be written as suggested

by [143] and [16]:

θ =
kθKn

kθKn + 1
, (5.15)

where kθ = 28. This value of kθ corresponds to equal weighing of molecular and

viscous flows (θ ≈ 0.5) when the average pressure in the orifice is equal to the mid-

point pressure of the transition range [142]. This corresponds to Kn ≈ 0.04. The

throughput and the conductance of the orifice aperture for the flow are given by:

Q̇ =
kB
M
Tn

(
γ + 1

2

)
ṁ, and (5.16)

Ca = πr2
o

√(
γ + 1

2

)
kBTn
2πM

, (5.17)

respectively. The (γ + 1) /2 term comes from the conversion from static to stagnation

quantities in the insert region. Because the throughput is referenced to upstream

stagnation quantities, the plasma contribution to the sound speed does not appear in

Q̇. The molecular and viscous flow conductances are [142,143]:

Cm = Ca

(
2

γ + 1

)1/2

, and (5.18)

Cv =
√

2π

(
γ

(
2

γ + 1

)(γ+1)/(γ−1)
)1/2

Ca, (5.19)

respectively. The static pressure on surface V is retrieved from the definition of the

stagnation pressure at a Mach number of 1:

Pexit = PV = P ∗V

(
2

γ + 1

)γ/(γ−1)

. (5.20)
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5.2.2 Orifice plate (surface III)

Because we have assumed a constant total pressure in the insert volume, the total

static pressure on the orifice plate is equal to that at the inlet: PIII = PI.

5.2.3 Total pressure

We reorganize Equation 5.11 to obtain an expression for the total (static) pressure:

P = Pmag + Pgd + Pmf + Pexit (5.21)

where Pmag, Pgd, Pmf , Pexit are the magnetic pressure on surfaces III and V, gas-

dynamic pressure contribution, orifice plate momentum flux, and orifice outlet exit

pressure, respectively. These quantities are defined as:

Pmag =
µ0I

2
d

4π2r2
o

(
ln
rc
ro

+
1

4

)
,

Pgd =
ṁ

πr2
o

√
γRg (Tn + αoTe),

Pmf =

(
r2
c

r2
o

− 1

)
enseTeV

(
1 +

nse
nn

)
, and

Pexit = P ∗V

(
2

γ + 1

)γ/(γ−1)

,

(5.22)

respectively. Pmf , n
s
e, and TeV are calculated using insert-region quantities. The speed

of sound of the fluid appearing in the gasdynamic pressure is computed with orifice-

region quantities. αo denotes the ionization fraction in the orifice. Equation 5.21

states that the total static pressure upstream of the cathode emission zone is the

balance between the particle momentum leaving the volume, the magnetic pressure,

and the downstream static pressure.
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The total pressure in the absence of plasma effects (Pmf = Pmag = 0) for a

continuum flow (θ = 0) is:

P =
ṁ

πr2
o

√
γRgTn

(
1 +

1

γ

)
. (5.23)

This expression is different from the one that would be obtained with an isentropic

flow relationship:

Pisentropic =
ṁ

πr2
o

√
γRgTn

1

γ

(
γ + 1

2

)γ/(γ−1)

. (5.24)

For a monatomic gas, the constants (1 + 1/γ) and 1/γ ((γ + 1) /2)γ/(γ−1) that appear

in Equations 5.23 and 5.24 are equal to 1.6 and 1.23, respectively. The discrepancy

comes from the assumption that the static pressure on the orifice plate (surface III) is

equal to the upstream total pressure. This assumption of a pressure force on the orifice

plate is fundamentally inconsistent with the derivation of isentropic flow relationships,

as the use of the momentum balance combined with this assumption over-determines

the system of flow equations. In practice, isentropic flow relationships are derived

from the energy and continuum equations, with the momentum balance being used

to find the total pressure force on the control volume (or the thrust, for nozzle flows).

In the absence of a plasma, simple isentropic flow relationships should be directly

used to estimate the total pressure inside the cathode.

5.3 Plasma model

To close the system of equations, estimates of the degree of ionization, neutral density,

and electron temperature are required for both the insert and orifice regions. In the

insert region an estimate of the attachment length, or length over which the plasma

is dense enough to support temperature-limited thermionic emission, is also required.
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Because the ionization fraction may not be negligible (especially in the orifice region)

we do not employ the typical approximation α� 1; we retain all terms in the resulting

equations in both regions. For all of our calculations, the collision frequencies are

computed using Maxwellian-averaged collision cross sections.

5.3.1 Electron temperature and attachment length

We employ the method delineated in [136] to calculate the electron temperature in

both insert and orifice regions, as well as the attachment length. The method is based

on a charge-exchange-limited ambipolar diffusion model of the plasma. Application

of this method gives an analytical approximation of the attachment length and the

electron temperature in both regions as functions of the neutral-pressure-diameter

product only. We define the “attachment length,” more specifically, as the plasma

density decay length-scale for the first-order eigenmode of the full 2-D solution in

the insert. The insert electron temperature is not sensitive to the neutral gas tem-

perature in that region; we therefore ran the 2-D solution with an assumed neutral

gas temperature of 3,000 K in the insert region. The orifice electron temperature

as calculated from the method from [136], however, can vary by up to 20% with a

change in neutral gas temperature. The solution is therefore calculated with multiple

neutral gas temperatures.

We use the following approximations for the insert and orifice electron tempera-

ture,

T insert
eV =

ti,0

(nnkBTn (2rc))
ti,1

+ ti,2, (5.25)

T orifice
eV =

to,0

(nnkBTn (2rc))
to,1 + to,2

+ to,3, (5.26)
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and for the attachment length,

Lemit = rc

(
l0 +

l1

ln6 (nnkBTn (2rc) + l2)

)
, (5.27)

respectively. The above expressions were found by inspection of the numerical results.

The coefficients ti,k, to,k, and lk for xenon and argon gases are tabulated in Appendix

C (Tables C.2 and C.3). In all cases, the pressure-diameter product that appears in

the denominator is in Torr-cm.

5.3.2 Insert region

The conservation of charge in the insert region gives the total discharge current Id as:

Id = Ii + Iem − Ir, (5.28)

where Ii, Iem, and Ir are the ion, thermionic, and random electron currents, respec-

tively. Assuming that all ions created in the volume go to the insert wall, the ion

current is either given by its volumetric definition, or by its value at the sheath edge,

Ii = ennne〈σizv〉πLemitr
2
c = ensevB2πrcLemit, (5.29)

where σiz is the ionization cross section. Using Equation 5.29, we obtain the sheath-

edge density:

nse =
nnne〈σizv〉rc

2vB
=

α

1− α
n2
n〈σizv〉rc

2vB
. (5.30)

We use this result to define fs, the ratio between the sheath-edge and the volume-

averaged electron density, as a function of volume-averaged quantities:

fs =
nse
ne

=
nn〈σizv〉rc

2vB
. (5.31)
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The random electron current can also be expressed in terms of volumetric quantities

by using the definition of the sheath-edge density (Equation 5.30):

Ir = e
1

4

(
8M

πm

)1/2

nnne〈σizv〉πLemitr
2
c × exp (−φs/TeV ) , (5.32)

where m is the mass of the electron and φs is the sheath potential.

We integrate the electron energy equation over a cylindrical volume of length Lemit

and radius rc with the face fluxes estimated using a zeroth-order upwind scheme as

suggested in [42] (p.259). We obtain:

Iemφs +RpI
2
d = qex + Iiεiz +

5

2
TeV Id + (2TeV + φs) Ir, (5.33)

where qex is the total power loss due to radiative transitions from ground-level, εiz

is the ionization energy of the species of interest, and Rp is the plasma resistance.

The power loss due to radiative transitions from ground level is given by the total

excitation rate in the volume multiplied by the average energy of each transition:

qex = enenn〈σexv〉πLemitr
2
cεex. (5.34)

The excitation cross section in Equation 5.34 is the total cross section for all ground-

state excitation reactions. The excitation energy is computed as the average of all

excitation energies weighted by their respective Maxwellian-averaged reaction rates.

The plasma resistance is given by:

Rp =
m

nee2

Lemit

πr2
c

(νei + νen) , (5.35)

where νei and νen are the electron-ion and electron-neutral collision frequencies, re-

spectively.
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We use the conservation of charge (Equation 5.28) to eliminate the thermionic

current terms from the electron energy equation. This removes the dependency of

the model on the chosen insert material and assumed wall temperature. The resulting

equation is expressed in terms of the ionization fraction and the neutral gas density

by replacing the electron density with the definition of the ionization fraction (Equa-

tion 5.13). This yields a quadratic expression for the unknown ionization fraction:

i2α
2 + i1α + i0 = 0. (5.36)

The coefficients ik are functions of the cathode geometry, neutral gas density, sheath

potential, and neutral gas temperature. They are given by:

i2 = en2
n〈σizv〉πLemitr

2
c ×

(
εiz + φs + 2TeV

1

4

(
8M

πm

)1/2

exp (−φs/TeV )

)

+ en2
n〈σexv〉πLemitr

2
cεex +

mLemit

πr2
ce

2
Cei ln ΛT

−3/2
eV I2

d − Id
(

5

2
TeV − φs

)
− mLemit

πr2
ce

2
I2
d〈σenv〉,

(5.37)

i1 = Id

(
5

2
TeV − φs

)
− mLemit

πr2
ce

2
Cei ln ΛT

−3/2
eV I2

d + 2
mLemit

πr2
ce

2
I2
d〈σenv〉, and (5.38)

i0 = −mLemit

πr2
ce

2
I2
d〈σenv〉, (5.39)

where Cei = 2.9×10−12, and ln Λ ≈ 10 is the Coulomb logarithm. σen and σex are the

electron-neutral cross sections for elastic and excitation collisions, respectively. εex is

the average electron excitation energy. We use data from the Hayashi database [80]

as retrieved from the LXCat website [81] for the electron-neutral, ionization, and

excitation cross sections.
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5.3.3 Orifice region

In the orifice, the energy equation can be considerably simplified by neglecting

thermionic emission and electron backstreaming because of the higher sheath volt-

ages due to the lower neutral densities than in the insert region. We again obtain a

quadratic equation from the orifice energy balance:

o2α
2 + o1α + o0 = 0, (5.40)

where the coefficients ok are:

o2 = en2
n〈σizv〉πLor2

oεiz + en2
n〈σexv〉πLor2

oεex +
mLo
πr2

oe
2
Cei ln ΛT

−3/2
eV I2

d

− mLo
πr2

oe
2
I2
d〈σenv〉 −

5

2
Id
(
TeV − T ins

eV

)
,

(5.41)

o1 =
5

2
Id
(
TeV − T ins

eV

)
− mLo
πr2

oe
2
Cei ln ΛT

−3/2
eV I2

d + 2
mLo
πr2

oe
2
I2
d〈σenv〉, and (5.42)

o0 = − mLo
πr2

oe
2
I2
d〈σenv〉. (5.43)

Lo is the orifice length and T ins
eV is the insert electron temperature.

To obtain a relationship between the ionization fraction and neutral density, we

use the conservation of mass applied to the sonic condition at the orifice outlet. This

results in a quadratic equation for the ionization fraction,

ṁ = πr2
o

1

1− α
nnM

√
γRg (Tn + αTe). (5.44)

Solving this equation and selecting the root for which αo < 1 gives an expression for

the ionization fraction,

α = 1 +
1

2v̄

(
1−

√
4v̄
(
1 + T̄

)
+ 1

)
, (5.45)
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where T̄ = Tn/Te and v̄ is given by:

v̄ =
1

γRgTe

(
ṁ

πr2
onnM

)2

. (5.46)

The orifice energy equation (Equation 5.40) and the solution for the ionization fraction

from conservation of mass (Equation 5.45) are combined to obtain a single equation

for the unknown neutral density in the orifice.

5.4 Implementation

5.4.1 Algorithm

Both the gas temperature and sheath voltage are free parameters. The expression

for the sheath-edge density ratio (Equation 5.31) is used in the pressure balance

(Equation 5.21) to form an expression that depends only on α and nn:

P = Pmag + Pgd +

(
r2
c

r2
o

− 1

)
fs

αi
1− αi

nneTeV

(
1 +

(
αi

1− αi

)
fs

)
+ Pexit. (5.47)

To solve this equation, we use the perfect gas law to compute the total static pressure:

P = kBnnTn +
αi

1− αi
nneTeV +

αi
1− αi

nnkBTn. (5.48)

Because we have used surface-integrated quantities when deriving the pressure bal-

ance, but re-expressed these terms using volume-averaged quantities, there are (at

least) two possible choices for the definition of the total static pressure. Assuming

constant total pressure in the insert region, we can either use the sheath-edge density

or the volumetric value to compute this pressure. We choose the latter option be-

cause the sheath-edge terms balance the corresponding ones on the upstream portion,

leaving only the pressure contribution on the orifice inlet.
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Solving the system of equations resulting from the combination of the pressure

balance (Equation 5.47), the perfect gas law (Equation 5.48), and the insert power

balance (Equation 5.36) yields the solution for both nn and αi. We combine the ex-

pressions into a single equation for the unknown neutral density which we then solve

using the bisection method to avoid solving the original multivariate nonlinear system.

For each proposed insert neutral density and sheath potential, we solve for the ioniza-

tion fraction in the insert using the insert power balance (Equation 5.36). The insert

electron temperature is then obtained using the correlation in Equation 5.25. The

orifice neutral density is calculated using the orifice power balance (Equation 5.40),

mass continuity (Equation 5.45), and the insert electron temperature. The electron

temperature for the orifice is then obtained using Equation 5.26, and the ionization

fraction for the orifice is computed with Equation 5.45. Finally, the total pressure

results calculated using the momentum balance (Equation 5.47) and the perfect gas

law (Equation 5.48) are compared. If both results agree, the algorithm has converged

and the solution is reported.

For a given geometry and gas, the orifice quantities depend on the mass flow

rate, the discharge current, and the insert neutral density through the insert electron

temperature. The orifice quantities can therefore be pre-computed and stored as a

lookup table for faster computation. The upper bound for the orifice neutral density

can be obtained by imposing the conditions that αo > 0 and that the neutral density

in the insert is greater than that in the orifice. We check that both conditions are

satisfied for each orifice neutral density found.

5.4.2 Wall temperature

We note that while the emission current has been eliminated from the model equa-

tions, the wall temperature may be retrieved from the total emitted current and the

conservation of charge (Equation 5.28). The elimination of the emitted current from
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the model equations also removes the dependence of the pressure on the choice of

emitter material, excluding any indirect dependence due to the temperature of the

heavy species. Without the Schottky effect, the total emitted current is given by

Richardson-Dushman’s law,

Iem = 2πLemitrcDRDT
2
c exp

(
− eφw
kBTc

)
, (5.49)

where DRD is the Richardson-Dushman constant, Tc is the emitter temperature, and

φw is the work function. Because we have assumed that the emission length is defined

such that the thermionic emission is thermally-limited inside the active zone, the

current extracted is not modified by space-charge limitation.

5.4.3 Sheath potential

The algorithm may also be used as an indirect method to compute the sheath poten-

tial. The total pressure calculated using the pressure balance (Equation 5.47) can be

evaluated for multiple sheath potentials, and the intersections of the resulting family

of pressure curves with the experimental pressure data can be used to estimate the

variation of the sheath voltage over the experimental parameter range.

5.5 Results

We validate in this section the results of our algorithm for multiple cathodes. The

dimensions and operating conditions of each cathode are shown in Appendix B (Ta-

ble B.1). They span a variety of geometries, gases, and operating conditions.
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Figure 5.3: (a) Peak insert temperature of the NSTAR cathode. (b) Cathode ex-
ternal wall temperature of Salhi’s cathode. Experimental data from [116] and [47],
respectively. Gray area on the model indicate the minimum and maximum values
obtained for the indicated mass flow rates, with sheath voltage and gas temperature
with values between 1–10 V and 2000–4000 K, respectively.
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5.5.1 Wall temperature

We show in Figure 5.3 a comparison of our model to experimental data of the insert

temperature. We applied the algorithm to both Salhi’s cathode operating with ar-

gon and to the NSTAR cathode. The cathode wall temperature is reported in [47]

and [116], respectively. We took the work function from Table 1.1 (originally from [42],

p.252) for the barium-oxide insert installed in the NSTAR cathode. Salhi’s cathode

uses a material with an estimated work function of 1.8–2.0 eV [47]. The results from

our algorithm are averaged over all of the values tested for the two free parameters.

We have computed all quantities with sheath voltages and gas temperatures in the

range of 1–10 V and 2000–4000 K, respectively. The algorithm returns values within

10% of the experimental values for both cathodes. We find that the trend of the

predicted wall temperature agrees with the experimental data, both with increasing

discharge current and mass flow rate.

We also applied the algorithm to Friedly’s cathode [112] with an estimated work

function of 2 eV for the insert material (as reported in [72], p.91). We found the calcu-

lated results to be within 20% of experimental data, but did not have the same agree-

ment as that of the NSTAR. We note that the temperatures reported by Friedly [112]

are that of the exterior of the cathode and are higher than the typical application

range of barium-based emitters. We hypothesize that the emitter depleted its coat-

ing, especially at higher discharge currents, which would explain the reported high

temperatures. The uncertainty in the work function of the material would explain

the discrepancy observed between the results of the model and the experimental mea-

surements. We found that the observed trend of the results of the algorithm agrees

with experimental results if we assume that the work function is equal to 4.1 eV.

This value is within the range of the work function of tantalum (4.0–4.8 eV) [43].

Additionally, the assumptions made in [136] to estimate the emission length become

invalid at high discharge currents for this particular cathode. The calculated ion-
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ization fraction is indeed large in both the orifice (up to 60%) and in the insert

(up to 30%) at high discharge currents and therefore challenges the assumption of

charge-exchange-dominated ambipolar diffusion. A possible remedy is to include all

interactions between particles when considering ambipolar diffusion.

5.5.2 Electron temperature and attachment length

The predicted and experimental attachment length and insert electron temperature

are shown in Figure 5.4(a) and Figure 5.4(b), respectively. Results are presented for

the JPL’s 1.5 cm LaB6 hollow cathode [30] and for Salhi’s cathode [47] operating on

argon and with an orifice size of 1.21 mm. The insert electron temperature for the

JPL’s cathode is reported at the location of peak insert electron density. We use the

highest reported values for Salhi’s cathode, close to the peak insert electron density.

We observe in all cases that the trend of decreasing electron temperature with

increasing discharge current and mass flow rate is correctly captured. We note, how-

ever, that the electron temperature is over-predicted, which is a consequence of an

under-prediction of the neutral density and is consistent with an under-predicted

neutral gas pressure.

5.5.3 Pressure

We now compare the prediction of the total pressure inside hollow cathodes from

existing models to that from ours for the NSTAR, NEXIS, and our own cathode. For

the NSTAR cathode we also perform a comparison with results of a 2-D axisymmetric

solver from [122]. The results are computed with a gas temperature of 3,000 K and

sheath voltages between 1 and 10 V. Results are shown in Figure 5.5. Pressures pre-

dicted with both our theoretical model and the empirical correlation from Chapter 4

vary with discharge current and mass flow rate, while other existing models do not.

These two approaches yield results that are close to the experimentally measured
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Figure 5.4: (a) Attachment length normalized by the cathode insert diameter and
(b) electron temperature as functions of discharge current. Experimental data for the
JPL LaB6 cathode and Salhi’s cathode from [30] and [47], respectively.
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pressure. Results for the NSTAR are similar to that of the 2-D axisymmetric solver,

although the latter uses a discharge current 10% higher than the nominal current

of 12 A. For cathodes that reasonably satisfy the model assumptions, the numerical

algorithm allows us to bound the pressure for a cathode for which no pressure data

are available. The algorithm however overestimates the pressure for our cathode. We

hypothesize that:

• the magnetic pressure is overestimated because we did not take into account

the net current of charged particles from the insert volume directed towards the

orifice plate,

• gas leaks occur through the grafoil seals at graphite/stainless steel interfaces at

high temperatures, thus decreasing the experimentally measured pressure, or

• gas leaks occur through the NPT fittings on the feed lines and pressure tap

because they are sealed only with anti-seize compound as typical thread sealant

compounds would not tolerate the operating temperature of the PLHC.

We note that in all cases, knowledge of the sheath potential is required. The family

of curves generated by the model intersect experimental data at different sheath

voltages. As mentioned in the previous section, this may be used to compute the

sheath voltage from the experimental data.

5.6 Summary

Based on the lessons learned in our review of prior cathode modeling efforts (Chap-

ter 2), we have developed a hybrid model for orificed hollow cathodes and computed

volume-averaged plasma quantities for a large variety of cathodes and operating con-

ditions. Good agreement is obtained with both literature data and with experimental
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pressure data we gathered on our own large hollow cathode running on argon at up

to 300 A of discharge current.

We were able to bound both the sheath potential and neutral gas temperature and

found that the calculated quantities are not sensitive to these parameters. These two

parameters can be self-consistently incorporated into the model through a potential

solver and the energy equation for the heavy particles, respectively. The values for

the neutral gas temperature remain to be experimentally validated.

This work can be used in conjunction with the charge-exchange-dominated am-

bipolar diffusion model for the insert region we presented in [136] to find the electron

density distribution within a hollow cathode. The model is also a building block

for insert performance prediction if coupled to an erosion model for the thermionic

material and for cathode performance prediction if coupled to a cathode thermal and

plume model. Finally, the proposed model may be used to study scaling laws for

hollow cathodes; we perform this analysis in the following chapter.
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Chapter 6

Scaling laws
1

We developed and verified a theoretical model for hollow cathodes in the previous

chapter. The model is based on a 0-D approach to the conservation of energy and

momentum for the combined plasma-neutral fluid and on a 2-D charge-exchange-

limited ambipolar diffusion model. We now apply this framework to develop scaling

laws for hollow cathodes. We seek to obtain insights into the phenomenological depen-

dence of plasma quantities (total pressure, attachment length, electron temperature)

on controlling parameters (cathode geometry, gas species, discharge current, mass

flow rate).

6.1 Pressure-diameter product

The experimental measurements we presented in Chapter 3 feature a (total, static)

pressure-diameter product in the range of 6.6–14.7 Torr-cm. In general, literature

1This chapter is based on work presented in References

• [134]: Taunay, P.-Y. C. R., Wordingham, C. J., and Choueiri, E. Y., “A 0-D model for
orificed hollow cathodes with application to the scaling of total pressure” AIAA Propulsion
and Energy Forum, 2019, AIAA-2019-4246, and

• [135]: Taunay, P.-Y. C. R., Wordingham, C. J., and Choueiri, E. Y., “The influence of
ambipolar diffusion on the attachment length and electron temperature in orificed hollow
cathodes” 36th International Electric Propulsion, 2019, IEPC-2019-426.
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data demonstrate that cathodes operate at a pressure-diameter product near 1 Torr-

cm, regardless of gas species used, cathode geometry, mass flow rate, and discharge

current. This value has been observed to be a sufficient condition for the efficient

operation of tube cathodes on a variety of gases [139, 144]. Similar observations

have been made for orificed hollow cathodes that operate with mercury [71], noble

gases [145], and hydrogen [146].

We show in Figure 6.1 the statistical distribution of the total pressure-diameter

product for a variety of cathodes: Siegfried and Wilbur’s mercury and noble gas

cathodes [65, 72, 120, 126], Friedly’s cathode [112], Salhi’s cathode [47] operating on

both argon and xenon, the T6 cathode [113, 121], Domonkos’s cathodes (AR3, EK6,

SC012) [64], the NSTAR discharge cathode [111, 116, 122], the NEXIS cathode [60,

105, 115], the JPL 1.5 cm LaB6 cathode [29, 30], and our own cathode. The dataset

has 422 points, includes data for argon, xenon, and mercury, and spans operation

from low to high current (1–307 A) and mass flow rate (0.5–19.8 sccm of Xe, 3.9–

218 sccm of Ar, 0.35–1.4 sccm of Hg). The distribution is shown both as a histogram

with 40 bins and as a density function obtained with the Kernel Density Estimation

(KDE) technique. We use a Gaussian kernel for the KDE with an optimum bandwidth

that is found using a grid search with cross-validation. The KDE method, grid search,

and cross-validation are implemented in the Python library scikit-learn [132]. Due

to the decaying nature of the solutions to the ambipolar diffusion equation, for the

very high total pressures (164–609 Torr) measured in cathodes from [64] we expect

that the peak plasma density occurs in the orifice as opposed to the insert region. To

reflect this, we show in Figure 6.1(b) the pressure-diameter product where we have

used the orifice diameter for the cathodes presented in [64] and the insert diameter for

all other cathodes. We see that the operation of cathodes is distributed mostly in a

region where the pressure-diameter product is 10 Torr-cm or less. The most probable

pressure-diameter is 3.7 Torr-cm.
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only those cathodes presented in [64].
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6.2 Total pressure

Figure 6.2 shows the variation of the ratio of the measured pressure (P ) to the mag-

netic pressure (Pmag) for a variety of cathodes. Both experimental and numerical

results are shown. Results are presented as a function of the dimensionless ratio of

the discharge current to the mass flow rate (Id/ṁ) where the mass flow rate is ex-

pressed in equivalent-amperes. Experimental data suggest that P/Pmag ∝ (Id/ṁ)−r

where 1 < r < 2. The shaded area bounds the results of the range of the free param-

eters of the numerical algorithm, the neutral gas temperature (Tn) and the sheath

voltage (φs). Both parameters have a range of 2000–4000 K and 1–10 V, respectively.

The numerical results capture the decreasing trend within the range of the two free

parameters.

6.2.1 Scaling law

We seek to explain the observed trend in the ratio of total pressure to magnetic

pressure. We start with the original momentum balance derived in the previous

chapter,

P = Pmag + Pgd + Pmf + Pexit, (6.1)

where Pmag, Pgd, Pmf , Pexit are the magnetic pressure on orifice plate and orifice outlet

surfaces, gasdynamic pressure contribution, orifice plate momentum flux, and orifice
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outlet exit pressure, respectively. These quantities are defined as:

Pmag =
µ0I

2
d

4π2r2
o

(
ln
rc
ro

+
1

4

)
, (6.2)

Pgd =
ṁ

πr2
o

√
γRg (Tn + αoTe), (6.3)

Pmf =

(
r2
c

r2
o

− 1

)
enseTeV

(
1 +

nse
nn

)
, and (6.4)

Pexit = P ∗V

(
2

γ + 1

)γ/(γ−1)

. (6.5)

In the above expressions, µ0, γ, and Rg denote the permeability of vacuum and the

ratio of specific heat and the specific gas constant for the species considered, respec-

tively. The electron temperature is expressed in either Kelvin (Te) or electron-volt

(TeV ). Plasma quantities include the sheath-edge electron density (nse), insert neutral

gas density (nn), and orifice ionization fraction (αo). P ∗V is the total (stagnation)

pressure at the orifice outlet.

Pmf , n
s
e and TeV are calculated using insert-region quantities. The fluid speed of

sound appearing in the gasdynamic pressure is computed with orifice-region quanti-

ties. Equation 6.1 can be rewritten as:

P = Pmag,Π ×
[(

1

4
+ ln

rc
ro

)
+ 4π

(
ṁA

Id

)2(
Mro
µ0e2

)(
1

πr3
on

o
n

)[
1 +

F (γ)√
1 + αoTe/Tn

]

+
Pmf

µ0I2
d/ (4π2r2

o)

]
, (6.6)

where Pmag,Π is the magnetic pressure as defined in Chapter 4:

Pmag,Π =
µ0I

2
d

4π2r2
o

. (6.7)
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The mass flow rate ṁA is in equivalent-amperes, non is the orifice neutral density, and

F (γ) is a function of γ only:

F (γ) =


1

γ
if θ = 0 (continuum flow)

√
2πγ−1/2

(
2

γ + 1

)1/(γ−1)

if θ = 1 (molecular flow)

(6.8)

We show in Figure 6.3 the variation with discharge current of (a) the ionization

fraction, (b) the quantity 〈σizv〉T 1/2
eV which appears in the ratio of sheath-edge-to-

insert volume electron densities (“sheath-edge ratio”), (c) the orifice neutral density,

and (d) the term
√

1 + αoTe/Tn that appears in the above equation. The results

are shown for a single illustrative cathode (NSTAR cathode with mass flow rate of

3.7 sccm of Xe) for the given quantity averaged over the entire parameter space

(neutral temperature varying from 2,000 K to 4,000 K and sheath voltages between

1 and 10 V). Similar results are obtained with other cathodes.

For a given mass flow rate, we can approximate the variation of those quantities

with a semi-empirical functional form:

√
1 + αoTe/Tn = Cs,0 + Cs,1Id + Cs,2I

2
d , (6.9)

αi = CαI
η
d , and (6.10)

non = Cn,0 + Cn,1Id. (6.11)

In the region of typical operation of hollow cathodes (pressure-diameter product

greater than 1 Torr-cm), the term that appears in the sheath-edge ratio can be given

as 〈σizv〉T 1/2
eV = Cσ (Pd)2.

From Equation 6.6 we can now write the ratio of total to magnetic pressure as:

P

Pmag
= 1+k1

(
ṁA

Id

)2
1

1 + Cn,1/Cn,0Id

(
1 +

F (γ)

Cs,2I2
d + Cs,1Id + Cs,0

)
+k2I

η−2
d , (6.12)
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where the two constants k1 and k2 depend on gas, geometry, and chosen value of

heavy particle temperature:

k1 =

(
Mro
µ0e2

)(
1

πr3
oCn,0

)
1

1

4π

(
1

4
+ ln

rc
ro

) , and (6.13)

k2 =
πr2

oe

8µ0rc

√
M

e
CαCσ

(
r2
c

r2
o

− 1

)
1

(kBTn)2

1

1

4π

(
1

4
+ ln

rc
ro

) . (6.14)

To obtain k2 in this form we assumed that both the insert ionization fraction αi and

the sheath-edge ratio fs are negligible: αi � 1 and fs � 1. The rational function

in the discharge current that arises from the orifice neutral density can always be

approximated by a power law in a region where the two functions 1/(1 +Cn,1/Cn,0Id)

and bIδd are reasonably close, where Cn,1 < 0, |Cn,1/Cn,0| � 1, and 0 < δ < 1. This

region can be defined as the values of x, b, and δ such that the Taylor expansion

of either function around any point x0 are equal to the first order or differ only by

numerical constant ε � 1. This in turn means that the gasdynamic term can be

rewritten as: (
ṁA

Id

)2
1

1 + Cn,1/Cn,0Id
∝
(
ṁA

Id

)2−δ

ṁδ
A. (6.15)

We recognize in the exponent 2− δ the value r suggested by the experimental data.

We note that the dimensional total pressure can be written as:

P = aI2
d + bṁ2

AG (Id) + dIηd , (6.16)
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where a, b, c, d, and G are found from the above expressions:

a =
µ0

4π2r2
o

(
1

4
+ ln

rc
ro

)
, (6.17)

b =
M

e2

1

(πr2
o)

2Cn,0
, (6.18)

c =
Cn,1
Cn,0

, (6.19)

d =
e

8rc

√
M

e
CαCσ

(
r2
c

r2
o

− 1

)
1

(kBTn)2 , and (6.20)

G (Id) =
1

1 + cId

(
1 +

F (γ)

Cs,0 + Cs,1Id + Cs,2I2
d

)
. (6.21)

We recognize in the total pressure scaling (Equation 6.16) the magnetic pressure

(∝ I2
d), the gasdynamic pressure (∝ ṁ2) modified to take into account the plasma

effects (∝ G (Id)) and an additional momentum flux term from the ions that are

accelerated towards the orifice plate (∝ Iηd ). At low current (Id → 0) the polynomials

with the discharge current terms become constant, the momentum flux term vanishes,

and we recover the conservation of momentum for a gas flowing through an orifice

plate (under the assumptions delineated in the previous chapter). At high current

(Id → +∞) the expression becomes:

P = aI2
d + b∗

ṁ2
A

Id
+ dIηd , (6.22)

where b∗ = b/c. This indicates that the magnetic pressure and momentum flux terms

become dominant. In the intermediate range, however, all terms must be kept.

6.2.2 Link to Π-products

The Π-products defined in Chapter 4 can also be used in Equation 6.1:

Π1 = Γ (Π) =
1

4
− ln Π2 + Π5

(√
1 + αoTe/Tn + F (γ)

)
+
Pmf
Pmag

. (6.23)
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We confirm here that the Π-products we identified as the most relevant for the calcu-

lation of the pressure are Π4 and Π5. Π4, which is related to the ionization fraction,

appears in the orifice plate momentum flux, Pmf , because the sheath-edge density is

directly proportional to the ionization fraction in the insert. We also verify that the

cathode aspect ratio (Π2) does not have a significant effect on the ratio of total-to-

magnetic pressure because (i) it spans only a single order of magnitude (0.07–0.7)

and (ii) it appears in a logarithm. The term under the square root can be estimated

by considering that

• 0.001 < αo < 0.1,

• 1 < Te < 3 eV, and

• 2000 < Tn < 4000 K.

We obtain 1 <
√

1 + αoTe/Tn < 2. If we further neglect the momentum flux (Pmf )

the expression simplifies to:

Π1 =
1

4
− ln Π2 + CΠ5, (6.24)

where C ≈ 3.43 (taking the average value for the square-root term and F (γ)). We

show in Figure 6.4 the correlation applied to the entire dataset. Most of the varia-

tion is captured by the above relationship. Deviations from the correlation may be

explained by the plasma effects that we neglected (Π4).

6.3 Electron temperature and attachment length

As discussed in Chapter 5, both attachment length and electron temperature are

sensitive only to the neutral gas density-insert diameter product for the range of

values considered. For a constant heavy particle temperature this corresponds to
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the neutral pressure-diameter product. The following semi-analytical expressions for

both electron temperature,

T insert
eV =

ti,0

(Pndc)
ti,1

+ ti,2, (6.25)

and attachment length,

Lemit =
dc
2

(
l0 +

l1

ln6 (Pndc + l2)

)
, (6.26)

can be obtained by fitting the results of the ambipolar diffusion model as functions

of the pressure-diameter product and the ratio of orifice to insert diameter to the

functional forms given above. dc and Pn = nnkBTn are the insert diameter and the

neutral gas pressure, respectively. The coefficients ti,k and lk for xenon and argon gases
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are given in Appendix C. In all cases, the pressure-diameter product that appears in

the denominator is in Torr-cm.

We show the attachment length and electron temperature as calculated using the

ambipolar diffusion model (Equations 6.25 and 6.26) in Figure 6.5. We compare the

model results to experimental data extracted from the dataset that we described in

Chapter 3. The experimental data is here limited to orificed hollow cathodes operating

on xenon gas. Results are shown as a function of the neutral gas pressure-diameter

product. The neutral gas pressure for the experimental data is obtained from the 0-D

theoretical model. We obtain good agreement between the model and experimental

data, which suggests that the model is capable of capturing the appropriate physics.

Figure 6.5(a) shows that the attachment length varies between 0.8 and 1.2 times

the cathode insert radius and scales weakly with the pressure-diameter product. As

defined, it is insensitive to the orifice diameter, as suggested experimentally [42]

(p.267). We also show in Figure 6.5(a) the previous, empirically derived scaling rela-

tionship suggested in [49] (Lemit = K/P , where K is a constant between 5–15 Pa-m).

We plot the results using the neutral gas pressure (as opposed to the total pressure).

A similar expression can be derived using the results from the electron transport

approach of [52] if one considers sheath voltages less than 8 V for xenon. The cor-

responding constant is between 0.01–15 Pa-m for ionization fractions between 0.1%

and 10% and sheath potentials between 1 and 8 V.

The observed scaling of attachment length cannot be captured by the electron

transport phenomena suggested in [52], nor by the purely empirical relationship given

in [49] (which does not offer a mechanistic explanation). The results of the ambipo-

lar diffusion model suggest that the observed behavior is governed not by the total

static pressure but by the neutral gas pressure. When supplied with the neutral

gas pressure estimation of the 0-D model, the plasma density decay predicted by
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the ambipolar diffusion model appears to account for the variation of the observed

attachment length.

6.4 Summary

We have derived and verified scaling laws for the total pressure, attachment length,

and electron temperature using the 0-D model presented and verified in the previous

chapter. The scaling laws are summarized in Appendix D. Despite neglecting the

variation of several properties in the insert region we find good agreement between

experimental results gathered from the literature and the scaling laws. This suggests

that the ambipolar diffusion model, in combination with the pressure predictions of

the zero-dimensional model, captures the relevant physics that govern the scaling of

the above quantities. We explore practical applications of these scaling laws in the

following chapter.
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Figure 6.5: (a) Attachment length and (b) electron temperature as functions of the
neutral pressure-diameter product (Pndc). Symbols for (b) are the same as (a). The
horizontal error bars bounds the results of the range of the free parameters of the
numerical algorithm. Experimental data from [30,47,60,65,110,111]. Scaling law for
the attachment length for Albertoni et al. from [49] with the corresponding value of
K in the range of 5–15 Pa-m.
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Chapter 7

Practical applications

7.1 Implications on cathode design

The scaling laws we have derived can be applied to the design of new cathodes. We

note that the following suggestions remain to be experimentally confirmed with a new

cathode design and are only applicable to orificed, thermionic hollow cathodes that

feature a cylindrical and hollow emitter. Other emitter geometries are beyond the

scope of this work.

Emitter length Diffusion theory shows that the plasma attachment length is be-

tween 0.8–1.2 times the insert radius. This suggests that the emitter length should

be equal to the insert radius for efficient use.

Operating envelope The algorithm we described in Chapter 5 can be used to

compute the total pressure for a large number of operating conditions. In order to

obtain a relationship between the “allowed” mass flow rate and a given geometry,

the total pressure may be evaluated by considering only the neutral species for the

calculation of the total pressure. The neutral gas temperature is taken to be 2000–

4000 K and the orifice ionization fraction is simply zero. As discussed in Chapter 5, the
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total pressure may be computed directly from the stagnation pressure (Equations 5.14

through 5.19) when only neutral gas is present. Both molecular and viscous flows

can be considered. We can then use the statistically most-likely pressure-diameter

product, Pdc ∼ 3.7 Torr-cm, to generate an operating envelope for a given cathode.

We caution that this estimate does not include any effects that would account for the

discharge mode or stability.

We show in Figure 7.1 this approach applied to the NSTAR, NEXIS, and our

cathode operating with argon, along with the demonstrated range of mass flow rates.

The estimated range of mass flow rates overlaps with the demonstrated range for

10 0

10 1

10 2

PLHC(Ar)

NEXIS

NSTAR
Demonstrated
Estimated

Mass flow rate (sccm)

Figure 7.1: Estimated and demonstrated range of mass flow rate for select cathodes.

both the NSTAR and our cathode. The agreement is worse for both the NEXIS and

our cathode because they operate at a lower and higher pressure-diameter product

than the statistically most-likely one, respectively. Our approach also neglects the

discharge current contribution to the total pressure which becomes significant at

higher currents. Finally, our cathode typically operates at a much lower temperature

than other lanthanum hexaboride cathodes: during operation the cathode tip can be

as low as 800◦C (the lower operating temperature of our cathode can be explained

by its larger emission area).
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7.2 Lifetime calculation

The lifetime of a cathode can be quantified using both the scaling relationship for

the emission length and an estimate of the neutral pressure. We describe here an

iterative procedure to calculate this lifetime.

7.2.1 Evaporation-limited lifetime

For simplicity, we consider material evaporation only from the active zone. The

lifetime of the emitter is given by the total time required for the insert diameter

to reach its outer diameter by evaporation. The total mass removed during a time

period ∆t = tn+1 − tn is:

mloss = Wn∆tAem,n = Wn∆tπdc,nLemit,n, (7.1)

where Wn, Aem,n, dc,n, and Lemit,n are the evaporation rate, total emission area, insert

diameter, and emission length, at time tn, respectively. The corresponding volume

of material is obtained by dividing the total mass loss by the mass density of the

emitter, ρemitter:

Vloss =
mloss

ρemitter

. (7.2)

The volume lost is also given by:

Vloss =
π

4

(
d2
c,n+1 − d2

c,n

)
. (7.3)

Combining Equations 7.2 and 7.3 gives the new insert cathode diameter:

dc,n+1 =

(
d2
c,n +

4Wndc,n∆t

ρemitter

)1/2

. (7.4)

We must now estimate the emission length and evaporation rate.
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Emission length The emission length is computed from the insert diameter and

pressure at time tn with Equation 5.27. The neutral pressure may be computed

with the full 0-D model. Alternatively, the neutral pressure may be estimated with

the empirical fit for the total pressure (Equation 4.27). Because the estimated neu-

tral pressure is then higher, the emission length (∝ 1/(Pgdc)) is then lower. The

corresponding current density, emitter wall temperature, and evaporation rate are

consequently higher. This yields a conservative estimate of the evaporation-limited

lifetime of the emitter.

Evaporation rate For the target current Id and current density, the Richardson-

Dushman equation may be inverted in order to find the emitter temperature Tc:

Id
πdncLemit

= DRDT
2
c exp

(
−eφw
kBTc

)
. (7.5)

The evaporation rate is then calculated with the fit to experimental data from [147]:

W =
10C−B/Tc√

Tc
, (7.6)

where C = 13 and B = 36850 K.

Algorithm The initial insert diameter is given by the specified geometry. Once the

pressure is estimated (either with the 0-D model or the empirical fit), we compute the

emission length, current density, wall temperature, and evaporation rate, and then

update the insert diameter with Equation 7.4. The procedure is repeated as long as

the insert diameter is smaller than the insert outer diameter (dc,n < dc,outer).
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7.2.2 Results

The emission length as defined (density decay length-scale) provides a lower-bound

on the actual emission length [136]. As a consequence, the effective emission area is

smaller than the physical one, and, therefore, the computed current density is larger

than the physical one. This increases the computed temperature and evaporation rate

and provides a conservative value of the lifetime. For example, the algorithm applied

to the JPL 1.5 cm cathode equipped with a 3 mm orifice diameter predicts a total

lifetime of 4.5 kh. This is one order of magnitude lower than the results presented

in [29] without material re-deposition.

Despite its limitations, the procedure can be applied to a “generic” cathode in

order to obtain qualitative insights. We consider here a LaB6 cathode operating on

xenon, with an orifice length of 1 mm, an insert diameter of 1 cm, and an orifice

diameter given by do = r̄dc, where 0.01 < r̄ < 0.3. The outer diameter of the insert

is 5% larger than its inner diameter. The nominal discharge current and mass flow

rate are 25 A and 10 sccm, respectively. Figure 7.2 shows the effect of the ratio of

mass flow rate to discharge current and of r̄ on the computed lifetime. The mass flow

rate (in equivalent-amperes) is normalized by the nominal discharge current, and the

computed lifetime is normalized by its maximum value. Increasing both the mass

flow rate and the discharge current results in the lowering of the total lifetime, as

suggested by Albertoni et al. [49]. For a fixed insert diameter, an increase in the

orifice diameter yields an increase in the total lifetime.

Both behaviors can be explained through the scaling of the attachment length

and pressure. Because of the low ionization fraction in the insert plasma, the neutral

gas pressure can be approximated as the total gas pressure. The total pressure in-

creases both as a function of mass flow rate and discharge current, and decreases with

increasing orifice diameter (all other quantities fixed). We have from the empirical
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Figure 7.2: Effect of (a) orifice-to-insert diameter ratio, (b) mass flow rate, (c) dis-
charge current on the computed lifetime.

analysis of the total pressure:

P ∝ ṁ0.68I0.4
d d−1.9

o . (7.7)

Because the emission length scales inversely with the neutral gas pressure (here con-

sidered to be the total gas pressure), an increase in either the mass flow rate or the

discharge current yields a lower value of the emission length, and, therefore, a higher

current density, wall temperature, and evaporation rate. The increase in evaporation

rate results in a decrease in the lifetime of the emitter. An increase in the orifice-to-

insert diameter ratio has the opposite effect as it increases the emission length.
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Chapter 8

Conclusion

Our goal was to develop tools that inform cathode design. To do so, we sought

to quantify, through basic scaling laws derived from a rigorous theoretical model,

the variation of insert plasma quantities with controllable parameters and cathode

geometry.

The new cathode model we developed to uncover scaling laws addresses some of

the critical issues of existing 0-D models. It relies on assumptions that were informed

by a dimensional analysis of the experimentally measured total pressure within the

cathode. Experimental pressure measurements were taken from the literature and

our own, high-current hollow cathode. The model is based on a rigorous approach

to the ionized gas flow and considers the three-fluid flow as a single, partially-ionized

gas. We applied the model to a large number of cathodes and verified the numerical

results by comparing them to experimental measurements. We finally formulated and

verified scaling laws based on the results of the theoretical model.

The results of this dissertation are separated into three categories:

• the scaling of total pressure, emission length, and electron temperature inside

hollow cathodes,

• the implications of scaling laws on cathode design, and
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• the development of tools for cathode design.

8.1 Summary of main findings

8.1.1 Scaling laws

Total pressure The total pressure scales both with the square of the mass flow rate

multiplied by a weak function of the discharge current, and with the square of the

discharge current. This scaling can be physically interpreted as due to the relative

importance of the magnetic pressure and the gasdynamic pressure. Our empirical

analysis reveals that the contribution of the gas viscosity to the total pressure is

small compared to that of the plasma and gasdynamic effects.

Emission length, electron temperature Both the emission length and electron

temperature show an inverse dependency on the neutral pressure-diameter product.

The diffusion-dominated nature of the insert plasma can account for the scaling of

both quantities.

8.1.2 General design considerations

The scaling laws we uncovered lead to the following “rules of thumb” for cathode

design:

• reliable cathode operation is likely if the total pressure-insert diameter product

is in the range of 3–4 Torr-cm,

• for effective insert utilization, the length of the insert should be equal to its

radius,

• cathode lifetime can be extended by operating at lower mass flow rate and

discharge current for a given geometry.
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8.1.3 Tools for cathode design

We developed computational tools for the design of new cathodes:

• The theoretical 0-D model may be used as the first-step in the design of a new

cathode.

• For fast computations, the combination of the condition that Pdc ≈ 3–4 Torr-

cm and the empirical relationship we calculated from experimental data can

be used to determine a range of operating conditions for a given geometry and

operating gas.

• An estimate of the “allowed” mass flow rate may be calculated with the com-

bination of the total pressure-diameter product and the theoretical expression

for the total pressure.

8.2 Future work

8.2.1 Model improvements

The 0-D model we developed relies on two free parameters (sheath potential and

neutral gas temperature) that can be bounded. Incorporating those parameters self-

consistently most likely requires a full 2-D model of the cathode. This approach is an

improvement over a 0-D model and can reveal the true emission length, and, therefore,

provide reliable estimates of cathode lifetime for given operating conditions.

Neutral gas temperature To remove the dependency on the neutral gas tem-

perature, the fluid flow must include the neutral energy equation. Removing the

semi-empirical correlations for transitional flows is an additional improvement on the

flow modelization. It requires an approach that can treat both continuum (Kn� 1)

and molecular (Kn� 1) flows.
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Sheath potential A sheath model requires a 2-D approach because the equation

to solve for the plasma potential within the cathode is elliptic, and, therefore, re-

quires information on all boundaries simultaneously. A self-consistent sheath model

is challenging: the thermionic sheath is not only emitting electrons that modify the

boundary potential and electric field, but also current-carrying.

8.2.2 Further verification of scaling laws

Can the scaling laws we have developed be applied to new cathode designs and differ-

ent gases? A new cathode that is based on the scaling laws and the simple rules we

have developed should be developed and tested in order to verify their applicability.

We have partially answered this question for the total pressure within high-current

cathodes. However, the scaling of emission length and electron temperature within

high-current (> 100 A) cathodes remains to be verified with on-axis plasma measure-

ments.

The charge-exchange-dominated nature of the insert plasma for noble gas cathodes

is also the case for mercury-fed cathodes because mercury also has a large charge-

exchange cross section (∝ 10−18 m2) [148–151]. Although hydrogen-fed cathodes also

satisfy the pressure-diameter condition, it is unclear if the same physical phenomena

govern their operation, as hydrogen features additional excited states (e.g., vibrational

modes) and multiple neutral and ion species (H2, H, H+
2 , H+) that our approach does

not take into account. Because iodine gas is now considered for new cathode de-

signs for electric propulsion applications [152–154] it is critical to perform a thorough

investigation of the applicability of those scaling laws to molecular propellants.
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Appendix A

Π-product derivation

The order in which Ipsen’s method is carried yields different Π products. We show

here the sequence we used in Chapter 4. We start with Equation 4.1:

P︸︷︷︸
kg·m−1·s−2

= f

 do︸︷︷︸
m

, dc︸︷︷︸
m

, Lo︸︷︷︸
m

, ṁ︸︷︷︸
kg·s−1

, Id︸︷︷︸
C·s−1

, M︸︷︷︸
kg

, a︸︷︷︸
m·s−1

, eεiz︸︷︷︸
kg·m2·s−2

, µ︸︷︷︸
kg·m−1·s−1

, µ0︸︷︷︸
kg·m·C−2

 .

(A.1)

We first remove units of length (m) with the orifice diameter, do, and obtain both

Π2 = do/dc and Π3 = do/Lo. The leftover units are:

Pdo︸︷︷︸
kg·s−2

= f

 ṁ︸︷︷︸
kg·s−1

, Id︸︷︷︸
C·s−1

, M︸︷︷︸
kg

,
a

do︸︷︷︸
s−1

,
eεiz
d2
o︸︷︷︸

kg·s−2

, µdo︸︷︷︸
kg·s−1

,
µ0

do︸︷︷︸
kg·C−2

 . (A.2)

We now remove units of charge (C) and mass (kg) with the ratio
µ0

do
and the mass

flow rate, ṁ, respectively:

Pdo
ṁ︸︷︷︸
s−2

= f

 ṁ

M︸︷︷︸
s−1

,
µ0I

2
d

ṁdo︸ ︷︷ ︸
s−1

,
a

do︸︷︷︸
s−1

,
eεiz
ṁd2

o︸︷︷︸
s−2

,
µdo
ṁ︸︷︷︸
1

 . (A.3)
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The orifice Reynolds number is written as

Re =
ρado
µ

. (A.4)

By virtue of the continuity equation (ṁ = ρaπr2
o), it can be shown that:

Re =
4

π

ṁ

µdo
. (A.5)

The inverse of the dimensionless ratio
µdo
ṁ

is therefore proportional to the Reynolds

number. This yields the 7th Π-product: Π7 = Re.

We finally remove units of time (s) using the ratio
µ0I

2
d

ṁdo
, and re-introduce the

dimensionless ratios already formed:

Pd2
o

µ0I2
d

= f

(
do
dc
,
do
Lo
,
ṁ

M

ṁdo
µ0I2

d

,
a

do

ṁdo
µ0I2

d

,
eεiz
d2
o

do
µ0I2

d

,Re

)
. (A.6)

The Π-products as shown in Chapter 4 are directly obtained from algebraic manipu-

lation of the above equation.
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Appendix B

Cathodes reviewed

Table B.1 lists the cathodes and range of operating conditions that we used for this

work. For some of the cathodes, we note that operating conditions that are different

from the ones reported in Table B.1 exist (e.g., Salhi’s cathode also has a 1.27 mm

diameter orifice). However, we could not gather relevant experimental data (total

pressure, attachment length, electron temperature) for those cases. Because of the

difficulty of gathering reliable cathode dimension data, we report all of the possible

dimensions in Table B.2. In both tables, the following abbreviations are used:

• L.: Length

• I.D.: Inner Diameter

• O.D.: Outer Diameter
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Table B.1: Dimensions and operating conditions of the benchmark cathodes.

Cathode

Dimension (mm)

Species

Refs.

Insert Orifice Tube Mass flow Current Pressure for

L I.D. O.D. L D D (sccm) (A) (Torr) data

Siegfried and
25.4

3.9
4.0 1.8

0.76
0.63

Hg 0.35 – 1.42 1.27 – 4.3 1.3 – 6.2 [72,120,126]∗

Wilbur 3.8 0.76 Ar, Xe 0.8 – 8.0 1.24 – 4.3 1.8 – 16.6 [65]

Friedly 13.0 4.7 N/A 1.0† 0.74 6.4 Xe 2.51 – 6.41 5.0 – 60.0 5.9 – 52.7 [112]

Salhi 25.4 3.81 5.53 1.24
0.76, 1.21

6.35
Ar 0.5 – 1.24

1.0 – 20.0
4.8 – 25.3

[47]
1.21 Xe 0.5 – 0.93 6.5 – 14.7

AR3

25.4

1.22
2.29

0.38

0.13
3.18

Xe

1.40 – 2.40 1.0 250.4 – 345.6

[64]EK6 1.17 0.71 0.8 – 3.25
0.5 – 1.5

270.2 – 609.4

SC012 1.8 3.8 0.5 4.8 0.57 – 2.44 163.7 – 506.1

T6 20.0 2 5 2 1 7 Xe 0.51 – 11.5 5 – 15 6.4 – 41.1 [113,121]

NSTAR 25.4 3.8 4.3 0.74 1.02 6.35 Xe 2.47 – 10 5.95 – 15 4.0 – 27.5 [111,116,122]

NEXIS 25.4 12.7‡ 14.2§ 0.74¶ 2.5, 2.75, 3.0 15 Xe 4 – 10 4 – 32 0.66 – 2.76 [60,105,115]
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JPL-1.5cm 25.4 7 13 1.0†
3.8

15 Xe
8 – 12 20 – 100 1.9 – 2.6 [30]

3, 5 10.5 – 19.8 8.9 – 35.1 2.4 – 3.4 [29]

PLHC 80.4 27.15 31.2 1.5 5.6 36.2 Ar 109 – 218 100 – 307 2.44 – 5.4 This work

∗ See [72] pp.17–18 and p.139 for the dimensions and orifice length.

† The orifice length is not specified for those cathodes and is set to 1.0 mm.

‡ We follow later work by Goebel and Katz [42] where the insert diameter is set to 1.27 cm. We note, however, that the

insert inner diameter has also been suggested to be equal to 1.20 cm in [60,107,109].

§ The outer diameter for the NEXIS cathode is deduced from insert thickness data retrieved from [60] and [107].

¶ Measured from plots in [107].
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Table B.2: Comprehensive list of dimensions (in mm) of the benchmark cathodes.

Cathode
Insert Orifice Tube

Species Refs.
L I.D. O.D. L D D

Siegfried 25.4 1.9, 3.8, 3.9 4.0 1.8 0.51, 0.76, 0.79, 0.96 0.63 Ar, Hg, Xe [52,65,69,71,72,120,126]

Friedly 13.0 4.7, 6.4 N/A N/A 0.74 – 1.70 6.4, 12.8 Xe [112]

Salhi 25.4 3.81 5.53 1.24 0.76, 1.21, 1.27 6.35 Ar, Xe [47]

AR3

25.4

1.22
2.29

0.38

0.13
3.18

Xe [64]EK6 1.17 0.71

SC012 1.8 3.8 0.5 4.8

T6 20.0 2 5 2 0.75, 1.0, 1.3, 1.6 7 Xe [113,121,155]

NSTAR 25.4 3.8 4.3 0.74 1.02 6.35 Xe [42,83,92,106–108,131]

NEXIS 25.0, 25.4 12.0, 12.7 N/A N/A 1.5, 2.0, 2.5, 2.75, 3.0 15 Xe [42,60,105,107,109,110,131]

JPL-1.5cm 25.4 7 13 N/A 3, 3.8, 5 15 Xe [30,156,157]

PLHC 80.4 27.15 31.2 1.5 5.6 36.2 Ar This work
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Appendix C

Coefficients for the total pressure,

electron temperature, and

attachment length

C.1 Total pressure

We give the Π-product exponents with additional digits to ensure accurate computa-

tions. Equations for the total pressure (4.27 and D.1) are given below with additional

C 1.1585377838117006×107

β1 0.78967753163551446
β2 0.22577194077376095
β3 -0.26766913155894489
β4 0.81622790719254079
β5 0.25441804916181782
β6 0.40591950688859579

Table C.1: Π-product exponents and constant.
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accuracy:

P (Pa) = 1.27554360581865× 10−8I0.394046350409172
d T 0.40811395359627

n

×ṁ0.686809150963247ε0.254418049161818
iz

× 1

L0.225771940773761
o M0.140444822037326µ0.405919506888596d0.789677531635514

c d1.91255721520008
o

(C.1)

P (Torr) = 2.12926144880254× 10−7I0.394046350409172
d T 0.40811395359627

n M0.546364328925921
a

×ṁ0.686809150963247
sccm ε0.254418049161818

iz

× 1

L0.225771940773761
o,cm µ0.405919506888596d0.789677531635514

c,cm d1.91255721520008
o,cm

(C.2)

C.2 Electron temperature and attachment length

Table C.2: The coefficients used for the insert electron temperature and attachment
length correlations (Equations 5.25 and 5.27).

Species Quantity
Index

0 1 2

Xe
TeV 1.3 0.34 0.48
Lemit 0.75 1.0 3.0

Ar
TeV 1.91 0.341 0.945
Lemit 0.86 0.613 1.89
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Table C.3: The coefficients used for the orifice electron temperature (Equation 5.26).

Species Temperature
Index

0 1 2 3

Xe 2000 K 1.230 -0.0052 0.313 0.429
3000 K 1.290 -0.0062 0.337 0.503
4000 K 1.300 -0.0068 0.365 0.591

Ar 2000 K 1.889 -0.0197 0.287 0.793
3000 K 1.941 -0.0250 0.320 0.935
4000 K 1.723 -0.0257 0.401 1.250
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Appendix D

Summary of scaling laws

Table D.1 summarizes the scaling laws derived in this work.

Table D.1: List of derived scaling laws.

Scaling law Derivation

Pdc ∝ 3.7 Torr-cm Empirical

P (Pa) = 1.28× 10−8 I0.39
d T 0.41

n ṁ0.69ε0.25
iz

L0.23
o M0.14µ0.41d0.79

c d1.91
o

Empirical

P (Torr) = 2.13× 10−7 I
0.39
d T 0.41

n M0.55
a ṁ0.69

sccmε
0.25
iz

L0.23
o,cmµ

0.41d0.79
c,cmd

1.91
o,cm

, Empirical

P = aI2
d + bṁ2

AG (Id) + dIηd Semi-analytical

T insert
eV =

ti,0

(Pndc)
ti,1

+ ti,2 Semi-analytical

Lemit =
dc
2

(
l0 +

l1

ln6 (Pndc + l2)

)
Semi-analytical
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The coefficients appearing in the semi-analytical form of the total pressure are

obtained with Equations 6.17 through 6.21. We repeat them here:

a =
µ0

4π2r2
o

(
1

4
+ ln

rc
ro

)
, (D.1)

b =
M

e2

1

(πr2
o)

2Cn,0
, (D.2)

c =
Cn,1
Cn,0

, (D.3)

d =
e

8rc

√
M

e
CαCσ

(
r2
c

r2
o

− 1

)
1

(kBTn)2 , and (D.4)

G (Id) =
1

1 + cId

(
1 +

F (γ)

Cs,0 + Cs,1Id + Cs,2I2
d

)
. (D.5)

The fitting coefficients Cs,i, Cn,i, Cα, Cσ are obtained from the results of the 0-D

model presented in Chapter 5. The fitting procedure must be repeated for a given

cathode and mass flow rate.

The scaling laws for the electron temperature and attachment length are obtained

with the results of the ambipolar diffusion model presented in [136]. The values of

the parameters ti and li are found in Table C.2.
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Appendix E

Associated electronics

E.1 High-voltage, high-current sense board

The differential voltage on each shunt is measured by the NI-DAQ 7206. However,

during startup, the anode and keeper voltage is higher than what is tolerated by the

DAQ. To ensure the differential voltage on the current shunts can be read by the

DAQ we isolate the high-voltage circuit through an HCPL-790 isolation amplifier.

Any voltage gain on the low-voltage side is amplified with AD823 instrumentation

amplifiers. The -5 V supply necessary for the AD823 is provided by an ICL7660 chip.

Figures E.1 and E.2 show the schematic and corresponding board implementation,

respectively.
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Figure E.1: Schematic of the electronics used to sense current on all shunts.
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layer.
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E.2 Pirani gauge power

The PVC1000 Pirani gauge requires a constant current power supply of 7 mA maxi-

mum. Push-pull configurations for constant current are too sensitive to temperature

and tend to drift overtime. We use the configuration described in [158]. We use

a MAX6250 as a 5 V high-precision reference voltage and an OPA277 operational

amplifier. Figures E.3 and E.4 show the schematic and corresponding board imple-

mentation, respectively.

We tested the constant current power supply with an input voltage of 8.5 V. The

current is measured with a Keithley model 2000 multimeter with 6.5 digits resolution,

and verified to be 6.6670 mA.
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Figure E.3: Schematic of the electronics used to power the PVC1000 Pirani gauge.
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Appendix F

Mean and variance of functions of

normally-distributed random

variable

We compute here the mean and variance of functions of normally-distributed variables

and apply those results to the functions Y = ln (X) and Y = 1/X, where X is a

normally-distributed random variable.

Theorem 1. If X is a random variable that follows a normal distribution of mean

µX and variance σ2
X (X ∼ N (µX , σ

2
X)) and f : X 7→ f (X) is an arbitrary function

then the mean of f (X) is given by

E [f (X)] =
N−1∑
n=0

σ2n
X (2n− 1)!!

(2n)!
f (2n) (µX)

+ O
(
σ2N
X (2N − 1)!!

(2N)!
f (2N) (µX)

)
. (F.1)
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Proof. The Taylor expansion of f (X) around µX is given by

f (X) =
N−1∑
k=0

1

k!
f (k) (µX) (X − µX)k

+ O
(

1

N !
f (N) (µX) (X − µX)N

)
.

The expected value of the sum is the sum of expected values:

E [f (X)] =
N−1∑
k=0

1

k!
f (k) (µX)E

[
(X − µX)k

]
+ O

(
1

N !
f (N) (µX)E

[
(X − µX)N

])

Because X ∼ N (µX , σ
2
X) its odd moments are zero:

∀k = 2n+ 1, n ∈ N,E
[
(X − µX)k

]
= 0,

and its even moments are given by

∀k = 2n, n ∈ N,E
[
(X − µX)k

]
= σkX (k − 1)!!

Replacing the k-th order moment with the two previous formulas in the Taylor ex-

pansion for the expected value yields the theorem for the expected value of f (X).

Theorem 2. If X is a random variable that follows a normal distribution of mean

µX and variance σ2
X (X ∼ N (µX , σ

2
X)) and f : X 7→ f (X) is an arbitrary function

then the variance of f (X) is approximated by

Var [f (X)] ≈ σ2
X (f 1 (µX))

2
+ 1

2
(f 2 (µX))

2
σ4
X (F.2)

Proof. See [159].

201



Lemma 1. If X is a random variable that follows a normal distribution of non-zero

mean µX and variance σ2
X and σX/µX � 1, then Y = lnX can be approximated as

a normal distribution of mean µY = lnµX − σ2
X/2 and variance σ2

Y = σ2
X/µ

2
X . The

truncation error for the mean is equal to 3/4 (σX/µX)4.

Lemma 2. If X is a random variable that follows a normal distribution of non-zero

mean µX and variance σ2
X and σX/µX � 1, then Y = 1/X can be approximated

as a normal distribution of mean µY = 1/µX (1 + σ2
Xµ

2
X + 3σ4

X/µ
4
X + 15σ6

X/µ
6
X) and

variance σ2
Y = σ2

X/µ
4
X . The truncation error for the mean is equal to 105σ8

X/µ
9
X .

Proof. This is a direct application of Theorems 1 and 2 where f (X) = lnX and

f (X) = 1/X

Validity of approximations

Because of the increasing value of the moments of a normal distribution the truncation

error of the expected value for both lnX and 1/X grows without bounds. We retain

only the first few terms for the above approximations. The approximations are valid

as long as σX/µX � 1 and µX is non-zero.
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