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The attachment length for a hollow cathode with a narrow, restrictive orifice is com-
puted theoretically without reliance on external models or plasma property data. This
critical length controls both the temperature profile and the evaporation-limited life of
the cathode emitter; however, no self-consistent model currently exists to calculate the at-
tachment length without experimental data. Charge-exchange-limited ambipolar diffusion
is assumed to govern the plasma density evolution in the insert and orifice regions, and
the diffusion equation with an electron-impact-ionization source term is solved in one- and
two-dimensional forms within the orifice and insert regions respectively. Continuity of the
plasma density between the two solutions at the orifice inlet is assumed in order to find
an analytical solution using standard partial differential equations techniques. An approxi-
mate boundary condition that imposes zero net flux across the plane parallel to the orifice
inlet surface is used to calculate the electron temperature in the insert region and the
minimum dense-plasma attachment length. This condition allows for the calculation of the
two-dimensional variation of the plasma density within the insert region and the electron
temperature from first principles in a self-consistent fashion with only neutral density or
pressure and heavy particle temperature as model inputs. The plasma density solution and
the attachment length obtained by this method for the NSTAR discharge cathode agree
well with that observed experimentally and results derived by previous authors.

List of Symbols

Constants

e Elementary charge 1.602× 10−19 C

kB Boltzmann’s constant 1.38× 10−23 J/K

m Electron mass 9.1× 10−31 kg

Circuit parameters

Id Discharge current A

Rp Plasma resistance Ω

Geometry

r̄o Orifice radius normalized to insert radius

Li Insert length m

Lo Orifice length m

R Cathode (insert) radius m

ro Orifice radius m

Plasma parameters

n̄e Average electron density m−3

ηp Plasma resistivity Ω·m

Da Ambipolar diffusion coefficient m2/s

Je Electron current density A/m2

ne Electron density m−3

ng Neutral gas density m−3

ni Ion density m−3

TeV Electron temperature V

TiV Ion temperature V
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vB Bohm velocity m/s

Collisions

λpr Energy exchange mean free path m

νei Electron-ion collision frequency s

νen Electron-neutral collision frequency s

σCEX Charge-exchange cross section m2

σen Electron-neutral collision cross section m2

σiz Ionization cross section m2

Gas properties

εi Ionization energy eV

M Ion or neutral particle mass kg

I. Introduction

Hollow cathodes for the next generation of Hall and ion thrusters will require increasingly high discharge
currents and operational lifetimes. “Near-term” projections for the required discharge powers are in the

range of 100 to 200 kW,1 with some proposed missions demanding operational lifetimes of up to 100 kh.2,3

For a specific impulse in the 2000 to 6000 s range, this translates to discharge currents of up to 700 A.4,5

Cathodes operating at lower current have undergone life tests of up to 50 kh,6 and a cathode capable
of providing up to 300 A of discharge current — with an estimated lifetime of 10 to 20 kh — has been
developed by Goebel et al..5 Since life tests are both time-consuming and costly, there is a clear need for the
development of models that can accurately estimate the operational life of hollow cathodes. Unfortunately,
in order to estimate the evaporation rate of the emitter material we must have an estimate for the area over
which the majority of the discharge current is extracted, which depends on both the plasma density profile
and the emitter temperature profile.

The length within a hollow cathode over which the internal plasma is sufficiently dense to support
temperature-limited (TL) thermionic emission, or where plasma is “attached,” not only influences the emitter
temperature profile, but also its operational life, and the maximum current that can be extracted from the
hollow cathode before the emitter evaporation rate becomes too great. Emission current density is usually
axially nonuniform, and may peak sharply near the orifice (especially for high-pressure dispenser cathodes),
making prediction of the emitter life substantially more difficult than for vacuum cathodes. The axial plasma
density profile also has a pronounced maximum near the orifice for certain cathode operating conditions,7,8

creating the possibility for space-charge-limited (SCL) emission in the upstream portion of the emitter.
The attachment length has been identified by several terms, including the emission length,9 active zone,10

plasma penetration depth,9 conduction length,8 or ion production region.11 These terms are often used
interchangeably, but it is not necessarily guaranteed that ion production allows for TL as opposed to SCL
emission, or that plasma extends over the entire region of maximum emitter temperature (which typically
characterizes the active zone). In addition, early work from the single-channel hollow cathode literature
has implied that the dense plasma may extend beyond the active emission area.10 The typical attachment
length or “active zone” for a single-channel cathode is on the order of the tube diameter, and this region can
occur upstream from the exit by approximately the tube diameter.12 No such simple relationship between
the cathode geometry and attachment length exists for orificed hollow cathodes. Unfortunately, increasing
the pressure or discharge current also tends to decrease the attachment length within an orificed hollow
cathode.8,9 If the pressure is reduced, the attachment length tends to increase, but usually at the cost of
higher sheath voltages — and increased exposure to the collisionless plume plasma in the case of very large
orifice diameters8,9 — increasing ion bombardment energies at the emitter surface.

Several approaches to calculate the attachment length have been proposed. 0-D models either include a
direct dependency on the energy-exchange mean free path for emitted electrons,13,14 an ambipolar-diffusion-
dominated density decay,8 empirical correlations of the attachment length as function of the cathode internal
pressure,9 iterative calculations to minimize the power deposited in the sheath,15 or simply use the attach-
ment length as a free parameter to fit experimental data.9 One-16 and two-dimensional models17 generally
require experimental data as input and are more computationally intensive than 0-D or analytical models.
Both the pressure-correlation and electron-energy-exchange mean free path methods have drawbacks when
applied to new or different cathodes than those for which they were originally developed. The latter model,
for instance, vastly underpredicts the length scale over which the plasma density decays when applied to the
NSTAR discharge cathode, and the former tends to require parameters outside the range of proposed values
to fit experimental data.18
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We have therefore chosen to revisit the ambipolar-diffusion-dominated density decay from Ref. 8, altering
it to provide a self-consistent theoretical framework to estimate the attachment length while minimizing the
dependence on experimental data. Our approach combines a 0-D plasma power balance to calculate the
average orifice density, a 1-D radial diffusion model to calculate the electron temperature and density profile
in the orifice region, and a 2-D diffusion model to calculate the electron temperature and plasma density
profile within the insert region. Our approach differs from that presented in Ref. 8 in that it considers
appropriate boundary conditions for lower pressure cathodes , features a continuous density profile between
the orifice and insert region, and uses a complete orthonormal basis to represent the solution of the ambipolar
diffusion equation.

In Section II we discuss the overarching assumptions of our model, and in Sections III and IV, we present
the calculations of the electron temperature and density profiles for the orifice and insert regions, respectively.
We show a direct comparison of our solution to previous model results and experimental data for both the
plasma density profile and the attachment length (axial decay) in Section V.

II. Model Assumptions

The fundamental assumptions required for the analytical solution of the proposed model are the following:

• The plasma density in the insert region is governed by resonant-charge-exchange-limited ambipolar
diffusion.

• The Bohm and ambipolar diffusion fluxes are equal at the plasma-sheath boundary, and the Bohm
velocity does not depend on the emission current.

• The neutral pressure and heavy particle temperature is constant in each of the model regions.

• The electron temperature in each region is spatially uniform and constant.

• The orifice plasma density is assumed not to vary in the axial direction.

• The plasma density is continuous across the orifice/insert boundary, and we assume that the plasma
density along the orifice plate decays exponentially in the radial direction.

• The net flux across the plane parallel to the orifice plate surface in the insert region is zero.

Our first assumption is generally justified given that the cross section for resonant charge exchange in
typical inert gases is very large8,19,20 and µe � µi. The second assumption allows for an improvement over
previous model boundary conditions (e.g., those used in Refs. 8,16) in that the plasma density is not assumed
to be zero at the “wall” or, more accurately, the plasma-sheath boundary. This improved, more-general
boundary condition used in this model is well known in other plasma modeling approaches.21 Asserting
that ne → 0 at the boundary overestimates the diffusion losses to the walls and therefore overpredicts the
required electron temperature for a given cathode pressure and geometry. Taking the Bohm velocity to
be constant greatly simplifies the dependence of the boundary conditions for the insert plasma model on
operating conditions. This assumption has been used in most, if not all, previous cathode models and is also
a reasonable approximation in general as the energy of ions entering the sheath does not typically vary by
more than 20% of the value for a non-emitting wall.22

Measurements of the heavy particle temperature have not been performed in the insert or orifice regions,
so it is difficult to determine how well we can approximate the neutral or ion temperatures as constants
in either region. However, this assumption is also generally common to all but 2-D computational models.
According to Poiseuille flow models,8,23 we would be justified in approximating the pressure in the insert
region as a constant (as is done in Refs. 8,13,16,24), but these models are not strictly applicable for cathode
conditions and fail to incorporate the two-dimensional effects near the orifice constriction. Strong pressure
gradients are likely to exist in the orifice, but we assume constant pressure in this region and use the average
pressure in order to make the solution tractable. The assumption that the orifice plasma density is axially
uniform is likely to be equally unjustified, but we wish to focus on the density decay in the insert region.
We therefore use a one-dimensional radial solution in the orifice to capture the effect of the orifice size and
radial density distribution without making the solution exceedingly complex.

Our final two assumptions are unique to this model and are used to couple the insert and orifice solutions
and to calculate the insert electron temperature assuming the radially-averaged maximum insert plasma
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density occurs at the orifice inlet surface, respectively. The latter is not well-justified theoretically, as we
would prefer to impose the Bohm flux along the orifice plate surface and a separate flux along the orifice inlet,
but this has proven to be exceptionally difficult. Rather than complicate the analytical solution further, and
in the absence of a good model for the flux into the insert region from the orifice, we chose to impose the
zero flux condition in order to bound the attachment length to its likely minimum value. In addition to
bounding the minimum value of the attachment length, the final assumption also gives us an independent
expression with which to self-consistently solve for the insert electron temperature without relying on the
solution for the lowest-order eigenvalue as in Ref. 8. The assumption of a given, strictly positive functional
form for the density decay away from the orifice in the radial direction is necessary to extend the Dirichlet
information along the entire insert region downstream boundary. If we were not to make this assumption,
an analytical solution by standard partial differential equation techniques would not be possible.

III. One-Dimensional Radial Diffusion Model

In order to avoid unnecessary complexity in our solution, we treat the orifice plasma as axially uniform
and model only the radial variation. This level of fidelity is important as the orifice solution is later included
as a boundary condition for the insert solution, but taking the extra step toward a full 2-D model of the orifice
would require boundary information beyond what can be obtained from a power balance. The steady-state
density in a cylindrical geometry can be found from the time-independent ambipolar diffusion equation:

d2ne
dr2

+
1

r

dne
dr

+
νiz
Da

ne = 0. (1)

Equation 1 may be written in terms of a normalized radius:

d2ne
dr̄2

+
1

r̄

dne
dr̄

+ γ2ne = 0, (2)

where r̄ = r/R and

γ2 = R2ngσiz v̄

Da
. (3)

A. General solution

Equation 2 is a Helmholtz equation with unknown γ. In radial coordinates with r̄ ∈ [0, 1] its bounded
solution is a zeroth-order Bessel function of the first kind,

ne = CJ0 (γr̄) , (4)

where C is a proportionality constant.
Previous authors8 have used a homogeneous Dirichlet boundary condition at the wall (ne (r̄ = 1) = 0).

This boundary condition is valid for high-pressure discharges21 such as the ones encountered in the NSTAR
neutralizer cathode8 or cathodes with small orifice-to-insert diameter ratios.23 A Robin boundary condition
is more appropriate in the context of hollow cathodes, where the insert and orifice pressures are typically
within the range of 1 to 10 Torr. The Robin boundary condition enforces continuity at the plasma-sheath
boundary and equates the Bohm and diffusion fluxes:

−Da
dne
dr

= nevB ⇔
dne
dr̄

+ neδ = 0, (5)

where δ = vBR/Da and can be interpreted as a measure of the ratio of the Bohm velocity to the average
radial diffusion velocity.

Each type of boundary condition generates an infinite set of positive and increasing eigenvalues. The
Dirichlet boundary condition requires γ to be a zero of J0, while the Robin boundary condition yields the
following transcendental equation for γ:

− γJ1 (γ) + δJ0 (γ) = 0. (6)

Since we do not have inhomogeneous Dirichlet information along any boundary of the orifice and assumed
our solution was one-dimensional, we retain only the first eigenmode for the solution — retaining further
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terms would render the coefficients of the eigenmodes impossible to determine. This allows us to compute
the maximum electron temperature for the orifice region with Eq. 3 and the smallest eigenvalue found using
Eq. 6. The same procedure can also be used to determine the maximum permissible electron temperature in
the insert region, though we do not use this value as the model electron temperature as we do in the orifice
solution.

We also observe that the electron temperature and therefore density profile in the proposed model depends
only on the product of the neutral density and radius of the region of interest. If we have a fixed value of the
heavy particle temperature, we can calculate the electron temperature for both types of boundary condition
in terms of the pressure-diameter product, as shown in Figure 1. This also demonstrates that the two
boundary conditions yield identical solutions in the limit of high pressure. Above Pgd = 1 Torr-cm the two
solutions for TeV differ by less than 5%. We shall assume the more general case of the Robin boundary
condition for the remainder of this paper, as the Dirichlet condition is likely to become problematic for some
cathode orifice pressures.
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Figure 1. Dependence of electron temperature on the pressure-diameter product expressed in Torr-cm for
both forms of radial boundary condition with Ti fixed at 3000 K.

B. Orifice

For the single-eigenmode orifice solution, the proportionality constant in Eq. 4 corresponds to the maximum
density in the orifice, nor, which is computed from the average density:

n̄e =

∫ r̄o
0
norJ0 (γs) sds

πr̄2
o

⇔ nor =
γr̄o

2J1 (γr̄o)
n̄e (7)

The average density is determined using the power balance from Ref. 8:

RpI
2
d =

5

2
Id
(
TeV − T ins

eV

)
+ ngn̄ee〈σizve〉εi

(
πr2

oLo

)
, (8)

where Rp is the plasma resistance, Id the total cathode discharge current, TeV the electron temperature,
ng the neutral density in the orifice, σiz the cross-section for electron-impact ionization, and εi the total
ionization energy. The plasma resistance is calculated with the plasma resistivity and orifice geometry:

Rp = ηp
Lo

πr2
o

. (9)

The resistivity is computed based on the electron-ion and electron-neutral collision frequencies and the
average electron density (because the exact distribution of the current density within the orifice plasma is
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unknown):

ηp =
m

n̄ee2
(νei + νen) . (10)

The electron-ion collision frequency is calculated using:

νei = 2.9× 10−12n̄e
ln Λ

T
3/2
eV

. (11)

Both the electron-neutral and ionization reaction rates rely on Maxwellian-averaged cross sections calculated
using Hayashi’s most recent data (Ref. 25). The Coulomb logarithm is given by:

ln Λ = 23.0− 1

2
ln
(
10−6n̄eT

−3
eV

)
. (12)

IV. Insert Region Diffusion Model

We consider the two-dimensional, axisymmetric diffusion equation with a source term corresponding to
volumetric ionization to compute the steady-state plasma density in the insert region. Using normalized
coordinates r̄ = r/R and z̄ = z/R, this equation may be written as:

∂2ne
∂r̄2

+
1

r̄

∂ne
∂r̄

+
∂2ne
∂z̄2

+ γ2ne = 0, (13)

where

γ2 = R2ngσiz v̄

Da
. (14)

The value of γ is found using the value of TeV from the flux condition at the orifice plate discussed in the
following section.
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(b)

1: −Da∂ne/∂r̄ = neRvB 3: ne(r̄, 0) = f(r̄)
2: −Da∂ne/∂z̄ = neRvB 4: ∂ne/∂r̄ = 0

Figure 2. Mathematical representation of the insert region for two different cases: (a) General case with
non-linear boundary condition at z = 0 and (b) Infinite-length insert with linear boundary condition.

A. Boundary conditions

The insert region is axisymmetric with a Robin boundary condition at the insert surface (Eq. 5) and a
homogeneous Neumann boundary condition on the centerline to enforce symmetry about the cathode axis.
In the axial direction, the extent of the solution domain is assumed to be infinite, so the solution must be
bounded as z̄ → −∞ upstream of the orifice. Different sets of boundary conditions at z̄ = 0 may be used
to represent the boundary value problem, with two cases shown in Fig. 2. The most general representation
(Fig. 2 (a)) includes an additional Robin boundary condition on the orifice plate surface and a Dirichlet
condition enforcing continuity with the orifice solution along the orifice inlet. This piecewise boundary
condition prevents the use of standard partial differential equation techniques such as separation of variables
and requires numerical techniques. To obtain an analytical solution, we propose a simplification of the
boundary condition on the orifice plate, as shown in Fig. 2 (b).

6 of 13

American Institute of Aeronautics and Astronautics



The boundary condition for z̄ = 0 and r̄ ∈ [0, r̄o] is represented by the orifice solution. This solution is
extended for r̄ ≥ r̄o by imposing three constraints:

1. The extension is C0 at r̄ = r̄o.

2. The extension is C1 at r̄ = r̄o.

3. The extension verifies the boundary condition imposed at r̄ = 1.

These three constraints can be used with any functional representation of the density which features up to
three parameters. The first two conditions ensure that the density and the flux are continuous at the orifice
edge, and the third constraint ensures that the extended function can be represented by the solutions of the
eigenvalue problem. The functional representation should also be positive for r̄ ≥ r̄o.

We propose the use of an exponential decay to satisfy all requirements. The density at z̄ = 0 is represented
by: norJ0 (γor r̄) , r̄ ≤ r̄o

x0 exp (x1r̄) + x2, r̄ ≥ r̄o
, (15)

where the subscript or denotes orifice quantities. The imposed constraints form a non-linear system for the
continuation function coefficients. We give the case for the Robin boundary condition below:

x0 exp (x1r̄o) + x2 − J0 (γor r̄o) = 0 (C0)

x0x1 exp (x1r̄o) + γorJ1 (γor r̄o) = 0 (C1)

x0x1 exp (x1) + δ (x0 exp (x1) + x2) = 0 (Robin)

(16)

The non-linear system is solved using the Newton-Krylov solver implemented in the Scipy library.26 It can
be shown that for this particular choice of the continuation function, the system of coefficient expressions
can be reduced to a single non-linear equation for one of the coefficients, which can then be back-substituted
to obtain the remaining values, but the Newton-Krylov solution method is general and can be applied to
any choice of continuation function.

In order to self-consistently obtain the electron temperature, we cannot use the temperature from the
single-eigenmode approximation as in previous insert models.8 Therefore, in order to both obtain the electron
temperature and restrict our focus to the minimum attachment length, we impose the condition that the
total net flux to/from the orifice and orifice plate must be zero. Viewed from a 1-D axial perspective, this
ensures that the maximum radially averaged density occurs at the orifice, yielding strictly decaying solutions.
The solution of Eq. 13 obtained with this approach should satisfy flux conditions on both the orifice plate
and orifice hole at z̄ = 0: 

Φor = 2πR

∫ r̄o

0

(
−Da

∂ne
∂z̄

)
sds ≤ 0, for r̄ ≤ r̄o

Φpl = 2πR

∫ 1

r̄o

(
−Da

∂ne
∂z̄

)
sds ≥ 0, for r̄o ≤ r̄ ≤ 1

Φpl + Φor = 0

(17)

The first two expressions must be checked to ensure that the choice of continuation function can generate
a solution for which the fluxes take physically justified directions. Φpl < 0, for instance, would imply that
ions were entering the insert region from the orifice plate.

B. Analytical solution

Using the choice of boundary conditions represented in case (b) in Fig. 2 and described above, we solve
Eq. 13 using separation of variables:

ne = R (r̄)Z (z̄) .

The Robin boundary condition at r̄ = 1 gives a condition on the eigenvalues of the problem, and the
application of both the inhomogeneous Dirichlet boundary condition at z̄ = 0 and ne → 0 as z̄ → −∞ allow
for the computation of the unknown coefficients for the solution.
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Eigenfunctions We obtain the solution for each eigenmode,

φk = CkJ0 (λkr̄) exp (αkz̄) , (18)

where αk is the separation constant, λ2
k = γ2 + α2

k, and Ck is the coefficient for each eigenmode. The
separation constant is strictly positive, as other cases yield non-vanishing densities for z̄ → −∞.

Separation constant The boundary condition at r̄ = 1 yields the eigenvalues λk and therefore the corre-
sponding separation constant αk. In the case of a Robin boundary condition, the λk verify the transcendental
equation

DaλkJ1 (λk)

R
= vBJ0 (λk)⇔ λkJ1 (λk) = δJ0 (λk) , (19)

where δ = vBR/Da. Equation 19 yields an infinite number of increasing and unique eigenvalues. The
superposition of all eigenmodes gives the solution of the diffusion equation:

ne (r̄, z̄) =

+∞∑
k=1

CkJ0 (λkr̄) exp (αkz̄) (20)

Eigenmode coefficients The constants Ck are determined with the Dirichlet boundary condition at
z̄ = 0 and the orthogonal properties of the Bessel functions:

+∞∑
k=1

CkJ0 (λkr̄) =

norJ0 (γor r̄) , r̄ ≤ r̄o
fc(r̄), r̄ ≥ r̄o

, (21)

where fc(s) is the continuation function. Multiplying Equation 21 by r̄J0 (λmr̄) and integrating for r̄ ∈ [0, 1]
yields:

Cm =
1∫ 1

0
sJ0 (λms)

2
ds
·
(∫ r̄o

0

snorJ0 (γors) J0 (λms) ds+

∫ 1

r̄o

sfc (s) J0 (λms) ds

)
(22)

The integration may be carried out analytically excluding the integral involving the continuation function:

Cm =
2

(J2
0 (λm) + J2

1 (λm))
·
[

nor r̄o
γ2
or − λ2

m

(γorJ0 (λmr̄o) J1 (γor r̄o)− λmJ0 (γor r̄o) J1 (λmr̄o)) + . . .∫ 1

r̄o

sfc (s) J0 (λms) ds

]
. (23)

The remaining integral is calculated numerically.

C. Insert electron temperature

As mentioned earlier, we use the electron temperature which balances the total particle flux from the orifice,
Φor, with the total flux to the orifice plate, Φpl. This assumption is equivalent to the assertion that the
maximum radially averaged density is obtained at the orifice, consistent with our representation of the
solution. The decaying solutions obtained represent the minimum attachment length (assuming that the
net flux of ions across the orifice inlet is into the insert region), as the solution cannot capture a density
maximum at any location other than the orifice inlet. This likely restricts the applicability of our solution
to cathodes with narrow orifices, but this assumption was already required by the orifice density solution.
In order to find the full solution, we must therefore calculate the solution for an arbitrary TeV , then iterate
until the flux boundary condition is met.

D. Algorithm

For a given electron temperature and the required model inputs of pressure and heavy particle temperature
in each region, the diffusion equation is solved using the following algorithm:

1. The electron temperature for the orifice is calculated from the first eigenmode of the 1-D radial diffusion
problem (Eq. 6).
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2. The average and peak densities in the orifice are determined with Eqs. 7 and 8, respectively, and the
continuation function is also generated.

3. The insert electron temperature is used to calculate the ambipolar diffusion coefficient and Bohm
velocity (or δ) as well as γ for the insert region plasma.

4. The eigenvalues for the insert problem are computed using Eq. 19.

5. The coefficients of each eigenmode are calculated using Eq. 23.

6. The semi-infinite sum of eigenfunctions is computed with a truncated sum, since the Cm → 0 as
m→∞.

7. The orifice and orifice plate fluxes are calculated to determine whether the choice of electron temper-
ature satisfies the boundary condition at z̄ = 0.

8. If the solution does not satisfy the boundary condition in step 7, the procedure is repeated until the
correct electron temperature is found using a bisection algorithm.

V. Results and discussion

We compare the results of our approach to the density measurements along the cathode main axis from
Ref. 27 and with the methodology outlined in Ref. 8. We use neutral gas pressures of 4.5 and 7.8 Torr in
the orifice and insert regions, respectively, and a heavy particle temperature of 3000 K in both regions. The
values were chosen to coincide with the model inputs used for Ref. 8.

A. Verification

First, we verify that the coefficients calculated from Eq. 23 decay as λm increases with m. Figure 3 shows the
evolution of the eigen-coefficients with increasing m, for m ≤ 50. The solution we propose features multiple
prominent eigenmodes, though most of them decay rapidly. It is important that we have used the sum over
multiple eigenmodes, as we can see that the fundamental eigenmode does not necessarily have the largest
coefficient due to the constricted shape of the orifice solution compared to the fundamental mode in the
insert region. In addition, a single-eigenmode solution in the insert region clearly cannot meet the boundary
conditions imposed by the presence of the orifice.
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Figure 3. Eigencoefficients Ck.

We verify also that the solution on the orifice follows the imposed Dirichlet boundary condition. Figure 4
shows the normalized density as a function of normalized radius at z̄ = 0, along with the imposed Dirichlet
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boundary condition. We have excellent agreement with the imposed condition from Eq. 15, and we observe
that the proposed extension is indeed C0 and C1 at r̄ = r̄o. Imposing the Robin condition at r̄ = 1 results
in a small, yet non-zero, derivative at that point, as opposed to the solution for the homogeneous Dirichlet
condition for which a strong density gradient is expected at the walls. Another important side-effect of
the use of the Robin condition is that the plasma density at the sheath edge is readily calculated from
the solution, which is necessary for accurately calculating the fluxes to the insert. The Dirichlet condition,
on the other hand, artificially increases the flux to the wall for all but very high pressures and makes the
calculation of the density at the sheath edge problematic (as an infinite velocity is required for finite flux at
zero density).
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Figure 4. Verification of the imposed Dirichlet boundary condition.

B. Sensitivity analysis

Because the only required model inputs are the neutral densities and heavy particle temperatures in each
region (excluding the cathode geometry), and the pressures are generally determined using measurements
or flow models, we must determine the sensitivity of the solution to the ion temperature (as it is essentially
arbitrary). The variation in the solution result for different heavy particle temperatures is shown in Figure 5.
The shape of the solution remains relatively constant when the ion temperature varies by ±1000 K from the
nominal value of 3,000 K, though the resulting electron temperature varies by about ±10%.

C. Density profile

Our 2-D model allows for the computation of the plasma density on the entire domain. Figure 6 shows a
contour plot of the density calculated for the NSTAR cathode, with an insert pressure of 7.8 Torr and a
discharge current of 15 A. The contour features qualitative agreement with previous numerical results for
various cathodes and operating regimes as described in Refs. 7, 16,28–30.

We compare the density calculated using our model along the cathode axis to experimental data and to
the results obtained by the method outlined in Ref. 8 in Figure 5. Our model accurately predicts the density
decay rate but is not able to capture the increase in density upstream of orifice due to the chosen boundary
conditions. The results of the model match that of Ref. 8 but underpredict the experimental plasma density.
The most important difference between the two model curves shown is that our calculation only requires
the pressures and heavy particle temperatures as inputs, whereas the existing model required that the ion
current generated within the insert region be known, which was found using the results of a separate 2-D
model which also required further experimental data as input.

Two further insights can be extracted from the new model. First, given that the operator and boundary
conditions do not depend on the discharge current with the exception of the scaling of the orifice peak density,
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Figure 5. Density decay of the model for varying ion temperature (2000 to 4000 K), and comparison to
previous modeling and experimental results for the NSTAR discharge cathode operating at Id = 15 A.
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Figure 6. Plasma density contour (m−3) for the NSTAR cathode operating at Id = 15 A.

a theoretical model of this form cannot properly capture the experimentally observed trend of decreasing
attachment length with increasing discharge current. The only apparent remediations for this drawback
would be to include the dependence of the insert region neutral pressure on the discharge current or to
allow the Bohm velocity at the insert boundary to be modified by the emission current density. Second, as
mentioned in Section III above for the 1-D solution, the entire operator for the 2-D solution can be shown
to depend only on the pressure-diameter product (including the exponential extension) with an additional
dependence on the discharge current through the peak density of the orifice model.

VI. Conclusion

We have developed a methodology to analytically determine the decay length of the plasma density
within the hollow cathode insert region, using only gas pressures and temperatures as model inputs. The
method relies on a charge-exchange-dominated ambipolar diffusion model, and we solve the diffusion equation
using one- and two- dimensional approaches for the orifice and insert regions, respectively. We enforce both
continuity between the orifice and insert densities as well as a condition of zero net flux along the plane of
the orifice plate surface in the insert region, using an exponential continuation of the boundary data in order
to allow for a separation solution to the governing PDE. The insert electron temperature is also calculated
using the net flux condition imposed across the plane parallel to the orifice inlet, which corresponds to a
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condition for the minimum dense-plasma attachment length.
As opposed to previous models, our approach does not rely on external computational models, phe-

nomenological assumptions, correlations with experimental data, or the input of plasma property data from
experimental results. The plasma density solution calculated for the NSTAR discharge cathode features
qualitative agreement with previous numerical solutions and good agreement with experimental data. The
solution within the insert region is self-consistent and is relatively insensitive to the ion temperature param-
eter.

The most important consequence of this model is that 2-D plasma data including the attachment length
(or density decay length scale) and sheath-edge fluxes can be calculated theoretically with pressure and
temperature information typically available using 0-D models. The current model iteration applies predom-
inantly to cathodes with restrictive orifices, but work is underway to extend the region of validity of the
model.
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