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Abstract.
A first-principles approach to obtain the attachment length within a hollow

cathode with a constrictive orifice, and its scaling with internal cathode pressure,
is developed. This parameter, defined herein as the plasma density decay
length scale upstream of (away from) the cathode orifice, is critical because
it controls the utilization of the hollow cathode insert and influences cathode
life. A two-dimensional framework is developed from the ambipolar diffusion
equation for the insert-region plasma. A closed-form solution for the plasma
density is obtained using standard partial differential equation techniques by
applying an approximate boundary condition at the cathode orifice plane. This
approach also yields the attachment length and electron temperature without
reliance on measured plasma property data or complex computational models.
The predicted plasma density profile is validated against measurements from the
NSTAR discharge cathode, and calculated electron temperatures and attachment
lengths agree with published values. Nondimensionalization of the governing
equations reveals that the solution depends almost exclusively on the neutral
pressure-diameter product in the insert plasma region. Evaluation of analytical
results over a wide range of input parameters yields scaling relations for the
variation of the attachment length and electron temperature with the pressure-
diameter product. For the range of orifice-to-insert diameter ratio studied, the
influence of orifice size is shown to be small except through its effect on insert
pressure, and the attachment length is shown to be proportional to the insert
inner radius, suggesting high-pressure cathodes should be constructed with larger-
diameter inserts.

Keywords: hollow cathode, thermionic, experimental validation, electric propulsion,
plasma propulsion, low-temperature plasma
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The Attachment Length in Orificed Hollow Cathodes 2

1. Introduction

Hollow cathodes are critical components for a
number of technologies and applications, including
surface processing, [1–3] neutral-beam injection for
fusion devices, [4–7] and plasma propulsion [8–
29]. The reliable operation of these devices,
however, is particularly important for in-space electric
propulsion. In this application, hollow cathodes
provide electron current for both plasma generation
and beam neutralization and (except during ground
testing) cannot be readily serviced or replaced.
Orificed hollow cathodes for next-generation Hall and
ion thrusters will require increasingly high discharge
currents and operational lifetimes. “Near-term”
projections for the required discharge powers are in
the range of 100 to 200 kW, [30] with some proposed
missions demanding operational lifetimes of up to
100 kh. [29, 31] For a specific impulse in the 2000
to 6000 s range, this translates to discharge currents
of up to 700 A. [28, 32] Cathodes operating at lower
current have undergone life tests of up to 50 kh. [26]
Higher-current cathodes capable of providing up to
300 A of discharge current have been developed, [28,33]
with estimated lifetimes of 10 to 20 kh for those
developed by Goebel et al. [28] Because life tests are
both time-consuming and costly, there is a clear need
for the development of methods that can accurately
predict the operational life of hollow cathodes. The
lifetime of a cathode is limited by erosion of external
surfaces (most notably the keeper electrode) and,
fundamentally, by erosion or evaporation of emitter
material. To estimate the evaporation rate of the
emitter material we must estimate the area over which
the discharge current is extracted, which depends
on both the plasma density and emitter temperature
profiles.

The length within a hollow cathode over which
the internal plasma is sufficiently dense to support
temperature-limited thermionic emission, or where
plasma is “attached,” not only influences the emitter
temperature profile, but also its operational life and
the maximum current that can be extracted before
the emitter evaporation rate becomes too great.
Emission current density inferred from measured insert
temperature or plasma density profiles is typically
axially nonuniform, and may peak sharply near
the orifice (especially for high-pressure dispenser
cathodes). [27,34] The axial plasma density maximum

near the orifice creates the possibility for space-charge-
limited emission in the upstream portion of the emitter.
This makes prediction of the emitter life substantially
more difficult than for vacuum cathodes.

The attachment length has been identified by
several terms including: emission length [35], active
zone [36], plasma penetration depth [35], conduction
length [27], or ion production region [37]. These
terms are often used interchangeably. However,
it is not guaranteed that ion production prevents
space-charge-limited emission (i.e., the ion production
region and attachment length may not coincide). In
addition, plasma may not extend over the entire region
of maximum emitter temperature, which typically
characterizes the active zone. Early work on tube
hollow cathodes (i.e., with no orifice constriction)
showed that the dense plasma may also extend beyond
the active emission area [36]. The typical attachment
length or “active zone” for a tube cathode is on the
order of the tube diameter, and this region can occur
upstream from the exit by approximately the tube
diameter [22]. No simple relationship between the
cathode geometry and attachment length has been
published for orificed hollow cathodes. Increasing the
pressure or discharge current also tends to decrease the
attachment length within an orificed hollow cathode
[27, 35]. If the pressure is reduced, the attachment
length tends to increase, but usually at the cost
of higher sheath voltages — and increased exposure
to the collisionless plume plasma in the case of
very large orifice diameters [27, 35] — increasing ion
bombardment energies at the emitter surface. In
early experiments with a mercury-fed orificed hollow
cathode, Siegfried and Wilbur [21] found that the
distribution of emission current density and insert
temperatures (and therefore the attachment length)
were insensitive to changes in orifice size or total
discharge current when the internal pressure was held
constant.

Several approaches to calculate the attachment
length have been proposed. 0-D models either
include a direct dependence of the attachment length
on the energy-exchange mean free path for emitted
electrons [18, 19], an ambipolar-diffusion-dominated
density decay [27], empirical correlations of the
attachment length with cathode internal pressure [35],
iterative calculations minimizing power deposited in
the sheath [24], or use the attachment length as a
free parameter to fit experimental data [35]. Both the
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The Attachment Length in Orificed Hollow Cathodes 3

empirical pressure correlation and the electron-energy-
exchange mean free path approaches have drawbacks
when applied to new or different cathodes than
those for which they were originally developed. The
latter approach, for instance, vastly underpredicts the
length scale over which the plasma density decays
when applied to the NSTAR discharge cathode, and
the former tends to require parameters outside the
range of proposed values to fit experimental data.
[38] One- [39] and two-dimensional models [40–42]
have typically required experimental data as input,
usually in the form of the axial emitter temperature
profile. One method to remove the dependence on
experimental emitter temperature data is the use of
a coupled plasma-thermal model, as described in [43–
46]. However, coupled plasma-thermal models require
detailed information about the thermal configuration
of the cathode and its environment. Thermal
property data (e.g., conductivity and emissivity) of
some cathode materials are also not well-characterized
experimentally (e.g., emissivity measurements [47, 48]
of lanthanum hexaboride). In this work, we present
an alternative and expedient analytical approach that
does not rely on the cathode thermal configuration to
obtain scaling of the attachment length.

We have chosen to revisit the ambipolar-diffusion-
dominated density decay proposed by Goebel and Katz
in [27], altering it to provide a self-consistent theoreti-
cal framework to estimate the attachment length while
minimizing the dependence on experimental data. The
model of [27] requires the on-axis plasma potential, to-
tal emitter heat loss, and total ion current (from mea-
surements and/or a 2-D computational model anchored
with experimental data) in order to predict the attach-
ment length. [38] This renders the original model effec-
tively semi-empirical in terms of capturing the attach-
ment length.

A complete 2-D description of all plasma species
(neutrals, ions, and electrons) such as proposed in [41–
43, 49, 50] combined with a thermal model is beyond
the scope of this work. Our approach also cannot
be readily used for a detailed investigation of the
effects of the thermal design of a given device on
the attachment length. Our goal is not the detailed
simulation of experiments, but rather understanding
of the basic scaling and nature of physical mechanisms
within hollow cathodes. To the authors’ knowledge,
no approximate formulae like those given in our work
have been produced by 2-D modeling efforts in the
open literature. For codes that do not depend on
experimental data, studies similar to ours could yield
further insight as 2-D codes can provide particle
fluxes to the walls, insert density profiles, and emitter
temperature profiles.

We solve a 0-D plasma power balance for the av-

erage orifice plasma density, the 1-D radial ambipo-
lar diffusion equation for the electron temperature and
plasma density profile in the orifice region, and the
2-D ambipolar diffusion equation for the electron tem-
perature and plasma density profile within the insert
region. The attachment length is deduced from the ax-
ial plasma density decay length scale in the insert re-
gion plasma. Our approach differs from that presented
in [27] in that it considers appropriate boundary condi-
tions for lower pressure cathodes, does not rely on ex-
perimental data as input, features a continuous plasma
density profile between the orifice and insert regions,
and uses a complete orthogonal basis to represent the
solution of the ambipolar diffusion equation.

In Section 2 we discuss the overarching assump-
tions of our approach that are common to all re-
gions. In Sections 3 and 4, we present the one- and
two-dimensional approaches for the orifice and insert
plasma regions, respectively. Governing equations are
nondimensionalized and the controlling parameters are
identified. We show a direct comparison of our solution
to previous numerical results and experimental data in
Section 5. We perform a sensitivity analysis as part of
the plasma density profile validation. Finally, scaling
relationships for the analytically obtained attachment
length and electron temperature with cathode operat-
ing pressure are obtained from fits to the results of a
parametric study.

2. Assumptions

The fundamental assumptions required for the analyti-
cal solution of the proposed approach are the following:

(i) The plasma density in the insert region is gov-
erned by resonant-charge-exchange-limited am-
bipolar diffusion (with the implicit assumption of
quasineutrality).

(ii) The Bohm and ambipolar diffusion fluxes are
equal at the plasma-sheath boundary, and the
Bohm velocity does not depend on the emission
current.

(iii) The neutral pressures and heavy particle temper-
atures are constant in each of the considered re-
gions.

(iv) The electron temperature in each region is
constant.

(v) The orifice plasma density is axially uniform.

(vi) The plasma density is continuous across the
orifice/insert boundary and decays exponentially
in the radial direction along the orifice plate.

(vii) The net ion flux across the plane parallel to the
orifice plate surface in the insert region is zero.

Our first assumption is generally justified for the
noble gases for which the cross section for resonant
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The Attachment Length in Orificed Hollow Cathodes 4

charge exchange is very large [27, 51, 52] and the
electron mobility is much larger than the ion mobility.

The second assumption allows for an improvement
over previously considered boundary conditions (e.g.,
those used in [27,39]) in that the plasma density is not
assumed to be zero at the “wall” or, more accurately,
the plasma-sheath boundary. This boundary condition
is more general and is often applied in other areas
of plasma physics. [53, 54] This boundary condition
is obtained using ion continuity under the assumption
that there is no ionization in the sheath (a reasonable
assumption for the insert-region plasma within orificed
hollow cathodes). Asserting that the plasma density
vanishes at the boundary overestimates the diffusion
losses to the walls and therefore overpredicts the
required electron temperature for a given cathode
pressure and geometry. Taking the sheath-edge ion
velocity to be equal to the Bohm velocity greatly
simplifies the dependence of the boundary conditions
on operating conditions. This assumption has been
used in many cathode models, including some 2-D
computational models. [43] This approximation is also
reasonable because the energy of ions entering the
sheath does not typically vary by more than 20% of
the value for a non-emitting wall. [55,56]

Because we limit the study to the ambipolar
diffusion region within the cathode, our approach is
unable to determine the sheath potential or the emitter
temperature directly. Those quantities, along with the
bulk plasma density, would be necessary to evaluate
the sputtering and evaporation rates of the emitter
and determine its lifetime. While the plasma density
obtained with our approach may be used to determine
the plasma potential structure within the ambipolar
region (e.g., using current continuity [53]), proper
sheath modeling on all cathode surfaces would still
be required. This is beyond the scope of this work:
the ambipolar diffusion framework we consider here
is not applicable to the sheath region because it is
not quasineutral and models only the ions for which
the effects of the sheath voltage, surface emission, and
current-carrying plasma are small or negligible.

Two-dimensional computational model predic-
tions suggest that the assumption of constant heavy
particle temperature in the orifice and insert regions
may be challenged (see, e.g., [43,57]). However, due to
the lack of experimental data, it is difficult to deter-
mine how well we can approximate the neutral or ion
temperatures as constants in either region. This as-
sumption is nonetheless common to most approaches
and is justified in a later section via sensitivity anal-
ysis. Assumption (iii) approximates the behavior of
the insert-region total pressure for cathodes with ori-
fices that are sufficiently constricted with respect to
the insert diameter. For these cathodes, the Mach and

Reynolds numbers are both low in the insert region;
due to the relative size of the orifice, most of the pres-
sure drop associated with the cathode flow should oc-
cur along the length of the orifice channel. The as-
sumption of constant insert-region pressure (adopted
in the approaches of [19,27,39,58]) has previously been
justified by applying Poiseuille flow theory [27, 59].
Poiseuille flow models, however, are not strictly ap-
plicable to the cathode flow and fail to incorporate
the two-dimensional effects near the orifice constric-
tion. Strong pressure gradients are likely to exist in
the orifice (and, possibly, in the near-orifice region),
but we assume constant pressure in the orifice region
and use the average pressure in order to make the solu-
tion tractable. The assumption that the orifice plasma
density is axially uniform is likely to be equally un-
justified. It is equivalent to averaging the 2-D orifice
computational region over a single direction. These
assumptions represent potential limitations of our ap-
proach, but we have chosen to restrict our focus to the
density decay in the insert region. We therefore use a
one-dimensional radial diffusion representation of the
orifice plasma to capture the effect of the orifice size
and radial density distribution without making the so-
lution exceedingly complex.

Our final two assumptions are unique to our
approach and are used to couple the insert and
orifice solutions and to calculate the insert electron
temperature, respectively. The last assumption implies
that the maximum radially averaged plasma density
occurs at the orifice inlet surface and approximates
the behavior of the plasma density for cathodes with
constricted orifices operated at relatively high pressure,
for which the plasma density peak occurs near the
orifice. Imposing the Bohm flux along the orifice
plate surface and a separate flux across the orifice
inlet surface might prove to be a more physically
accurate constraint, but cannot be implemented
without knowledge of the ion flux across the orifice
inlet.

As opposed to modern 2-D computational codes,
our approach is therefore not able to capture the near-
orifice density variation for cathodes in which the peak
occurs upstream of the orifice inlet. In fact, it can be
shown using the ambipolar diffusion framework that a
peak in plasma density cannot exist within the insert
region plasma volume without a spatial variation in
neutral pressure or electron temperature. Rather than
complicate the analytical solution further, and in the
absence of a good model for the ion flux into the
insert region from the orifice, we impose the zero flux
condition in order to bound the attachment length to
its likely minimum value and capture its scaling with
cathode operating conditions. While the predicted
attachment length cannot be used directly for the
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The Attachment Length in Orificed Hollow Cathodes 5

detailed design of a hollow cathode, it provides insight
into the physical mechanisms behind the variation
of the attachment length inside hollow cathodes for
a wide variety of operating conditions (both low
and high currents and mass flow rates). While the
assumptions of zero flux along the orifice inlet plane
and constant neutral pressure in the insert region
may be challenged for cathodes with large orifice-to-
insert diameter ratio, ambipolar diffusion theory is
broadly applicable to most cathode plasma conditions.
Two outlying cases for which our approach will not
perform well are relevant to discuss, that of large
orifice-to-insert diameter ratio (r̄ ∼ 1) and small
orifices at high pressure (pressure-diameter product
for the insert Pgd � 10 Torr-cm and for the orifice
Pgd ∼ 1 Torr-cm). In the limit as r̄ approaches 1,
the geometry becomes that of a single-channel or tube
hollow cathode, and because the insert and orifice have
the same diameter the constant-pressure assumption
implies that the orifice and insert Pgd should be
identical. This would cause the solution to revert
to the single-eigenmode solution of the orifice, which
results in an axially uniform plasma density (infinite
attachment length, Leff). Such a cathode would
likely have strong axial pressure gradients throughout,
requiring the inclusion of the relevant terms in the
ambipolar diffusion equation. In the other limit, for
cathodes with small orifices operated at high pressure,
the constant-pressure assumption is more likely to
hold in the region upstream of the orifice. The
plasma density may be concentrated in the orifice
itself, rather than in the insert region. For this case,
the plasma density decay in the insert region may no
longer be representative of the density distribution.
In addition to bounding the minimum value of the
attachment length, the final assumption also gives
us an independent expression with which to self-
consistently solve for the insert electron temperature
without relying on a solution that uses only the
lowest-order eigenmode as in [27]. Continuity between
the insert- and orifice-region plasmas along with a
given, strictly positive functional form for the density
decay away from the orifice in the radial direction are
necessary to extend the Dirichlet boundary condition
along the entire insert-region downstream boundary.
If we were not to make this assumption, obtaining
an analytical solution by standard partial differential
equation techniques would not be feasible.

3. One-Dimensional Radial Ambipolar
Diffusion

We treat the orifice plasma as axially uniform
and consider only the radial variation. Spatial
representation beyond a volume-averaged value of the

orifice density is important because the orifice solution
is later included as a boundary condition for the insert
solution; a full 2-D representation of the orifice plasma,
however, would require boundary information beyond
what can be obtained from a power balance. The
steady-state density in a cylindrical geometry can be
found from the time-independent ambipolar diffusion
equation: [27]

d2ne
dr2

+
1

r

dne
dr

+
νiz
Da

ne = 0, (1)

where ne is the plasma density, νiz is the ionization
rate, and Da is the ambipolar diffusion coefficient. The
ambipolar diffusion coefficient is given by:

Da =
e (TeV + TiV )

MngσCEXvi,th
, (2)

where σCEX is the cross section for resonant charge
exchange for the propellant species, ng is the neutral
number density, and vi,th is the ion thermal velocity.
Equation (1) can be written in terms of a normalized
radius:

d2ne
dr̄2

+
1

r̄

dne
dr̄

+ γ2ne = 0, (3)

where r̄ = r/R, R is the insert radius, and

γ2 = R2ngσiz v̄

Da
. (4)

In Equation (4), σiz is the Maxwellian-averaged
ionization cross section for ground-state neutrals by
electron impact, and v̄ is the average electron velocity.
In the orifice region, γ should be evaluated using orifice
properties but retain the normalization with respect
to the insert radius. This is required in order to
maintain compatibility between the orifice and insert
eigenfunctions when the orifice solution is applied as a
boundary condition in the insert region.

The parameter γ is defined by the ratio of ion
production to losses due to ambipolar diffusion, and is
roughly equivalent to the second Damköhler number
for the ionization reaction. Due to the inverse
relationship between Da and ng it can be shown that,
for a given gas species and heavy-particle temperature,
γ varies only with TeV and the product ngR (or
neutral pressure-diameter product, Pgd). Considering
that γ ∼ 1 and is the only parameter that appears
in Equation (3), we can immediately ascertain the
importance of Pgd to the solution.

When γ is small, diffusion losses are large with
respect to ion production. This creates a more uniform
ion density (ions are more quickly spread throughout
the volume than they are produced). When γ is large,
ion production occurs faster than diffusion, and the
density will be more “peaked” in the radial direction,
with stronger density gradients toward the boundaries.
This parameter also specifies the number of ions that
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The Attachment Length in Orificed Hollow Cathodes 6

must be produced for each ion in the volume in order
to maintain the existing plasma density. For xenon
gas, γr̄o increases from approximately 0.7 to 2.4 as Pgd
increases from 0.1 to 10 Torr-cm. Due to the differences
in normalization and solution dimension between the
orifice and insert regions, respectively, γ in the orifice
depends on r̄o, while γ in the insert region does not.
For the 2-D insert solution described in Section 4,
γ increases from approximately 0.85 to 2.0 as Pgd
increases from 0.1 to 10 Torr-cm for xenon.

3.1. General solution

Equation (3) is a Helmholtz equation with unknown
eigenvalue, γ. In radial coordinates with r̄ ∈ [0, r̄o]
(where r̄o would be replaced by 1 in the insert region)
the bounded, nontrivial form of the solution is a zeroth-
order Bessel function of the first kind,

ne = CJ0 (γr̄) , (5)

where C is a proportionality constant.
Previous authors [27] have used a homoge-

neous Dirichlet boundary condition at the wall,
ne (r̄ = r̄o) = 0 (again replacing r̄o with 1 if applied
in the insert region). This boundary condition is valid
for sufficiently high-pressure discharges. [54] Examples
of this case include the NSTAR neutralizer cathode
[27] and cathodes with small orifice-to-insert diame-
ter ratios [59], which operate at pressures in excess of
100 Torr. A Robin boundary condition is more appro-
priate in the context of most hollow cathodes, where
the insert and orifice pressures are typically within the
range of 1 to 10 Torr. The Robin boundary condition
enforces flux continuity at the plasma-sheath boundary
and equates the Bohm and diffusion fluxes:

−Da
dne
dr

= nevB ⇔
dne
dr̄

+ neδ = 0, (6)

where δ = vBR/Da and can be interpreted as a
measure of the ratio of the Bohm (advective) velocity
to the average radial diffusion velocity (a plasma
analogue of the Péclet number). This parameter,
like γ, varies only with ngR (or Pgd) and TeV for
a given gas species and heavy-particle temperature.
Unlike γ, however, δ should be evaluated using the
local radius for the region considered (i.e., R = ro
for the orifice). The parameter δ is typically ∼ 10,
varies approximately linearly with Pgd due to its
weak dependence on TeV , and governs the slope of
the density gradient near the solution boundary. In
conjunction with γ, δ causes similar changes in the
plasma density solution with Pgd; for increasing Pgd,
near-boundary gradients in density become larger,
and at smaller Pgd the density profile becomes more
uniform.

Both Dirichlet and Robin boundary conditions
generate an infinite set of positive, increasing eigen-
values. The Dirichlet boundary condition requires γr̄o
to be a zero of J0, while the Robin boundary condition
yields the following transcendental equation for γ:

−γr̄oJ1 (γr̄o) + δJ0 (γr̄o) = 0. (7)

Because we do not have inhomogeneous Dirichlet
information along any boundary of the orifice and we
assumed our solution was one-dimensional, we retain
only the first eigenmode for the solution — retaining
further terms would render the coefficients of the
eigenmodes impossible to determine. This allows us to
compute the maximum electron temperature for the
orifice region with Equation (4) and the smallest γ
found using Equation (7). For a single eigenmode, the
electron temperature cannot exceed this value with a
strictly positive plasma density. The same procedure
can be used to determine the maximum permissible
electron temperature in the insert region. However, we
do not use this value as the insert electron temperature
as we do in the orifice solution; imposing this value
results in non-decaying solutions that do not satisfy
the upstream boundary conditions.

We observe that the electron temperature, and
therefore the plasma density profile, depend only on
the product of the neutral density and radius (or Pgd)
of the region of interest. If we have a fixed value
of the heavy particle temperature, we can calculate
the electron temperature for both types of boundary
condition in terms of Pgd, as shown in Figure 1. Both
boundary conditions yield identical solutions in the
high-pressure limit, and above Pgd = 1 Torr-cm the
two solutions for TeV differ by less than 5%. We assume
the more general case of the Robin boundary condition
for the remainder of this paper.

3.2. Orifice

For the single-eigenmode orifice solution, the propor-
tionality constant in Equation (5) corresponds to the
maximum density in the orifice, nor, which is computed
from the average density:

n̄e =

∫ r̄o
0
norJ0 (γs) sds

πr̄2
o

⇔ nor =
γr̄o

2J1 (γr̄o)
n̄e. (8)

The average density is determined using the power
balance from [27]:

RpI
2
d =

5

2
Id

(
TeV − T ins

eV

)
+ngn̄ee〈σizve〉εi

(
πr2
oLo

)
, (9)

where Rp is the plasma resistance, Lo is the orifice
length, Id is the total cathode discharge current, TeV
is the electron temperature, ng is the neutral density
in the orifice, and εi is the total ionization energy.
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Figure 1. Dependence of electron temperature on the pressure-
diameter product expressed in Torr-cm for both forms of radial
boundary condition with Ti fixed at 3000 K. Adapted from
“Christopher J. Wordingham et al., Theoretical Prediction of
the Dense-Plasma Attachment Length in an Orificed Hollow
Cathode, 35th International Electric Propulsion Conference,
2017, IEPC-2017-566 [60].” Copyright 2017, Christopher J.
Wordingham et al.

The plasma resistance is calculated with the plasma
resistivity and orifice geometry:

Rp = ηp
Lo
πr2
o

. (10)

The resistivity, ηp, is computed based on the electron-
ion and electron-neutral collision frequencies and
the average electron density (because the exact
distribution of the current density within the orifice
plasma is unknown):

ηp =
m

n̄ee2
(νei + νen) . (11)

The electron-ion collision frequency is calculated using:

νei = 2.9× 10−12n̄e
ln Λ

T
3/2
eV

. (12)

Both the electron-neutral and ionization reaction rates
rely on Maxwellian-averaged cross sections calculated
using Hayashi’s most recent data [61]. The Coulomb
logarithm is given by:

ln Λ = 23.0− 1

2
ln
(
10−6n̄eT

−3
eV

)
. (13)

4. Insert Region Ambipolar Diffusion

We consider the two-dimensional, axisymmetric diffu-
sion equation with a source term corresponding to vol-
umetric ionization to compute the steady-state plasma
density in the insert region. Using normalized coor-
dinates r̄ = r/R and z̄ = z/R, this equation may be
written as:
∂2ne
∂r̄2

+
1

r̄

∂ne
∂r̄

+
∂2ne
∂z̄2

+ γ2ne = 0. (14)

The value of γ is found using the value of TeV from
the flux condition at the orifice plate discussed in the
following section.

4.1. Boundary conditions

The insert region is axisymmetric with a Robin
boundary condition at the insert surface (Equation (6))
and a homogeneous Neumann boundary condition on
the centerline to enforce symmetry about the cathode
axis. In the axial direction, the extent of the solution
domain is assumed to be infinite, so the solution must
be bounded as z̄ → −∞ upstream of the orifice.
Different sets of boundary conditions at z̄ = 0 may
be used to represent the boundary value problem,
with two cases shown in Figure 2. The most general
representation, Figure 2(a), includes an additional
Robin boundary condition on the orifice plate surface
and a Dirichlet condition enforcing continuity with
the orifice solution along the orifice inlet. This
piecewise-defined boundary condition prevents the use
of standard partial differential equation techniques
such as separation of variables and requires numerical
techniques. To obtain an analytical solution, we
propose a simplification of the boundary condition on
the orifice plate, as shown in Figure 2(b).

The boundary condition for z̄ = 0 and r̄ ∈ [0, r̄o]
is represented by the orifice solution. This solution is
extended for r̄ ≥ r̄o by imposing three constraints:

1. The extension is C0 at r̄ = r̄o.

2. The extension is C1 at r̄ = r̄o.

3. The extension verifies the boundary condition
imposed at r̄ = 1.

These three constraints can be used with any functional
representation of the density that is strictly positive
and that features up to three parameters. The first
two conditions ensure that the density and the radial
flux are continuous at the orifice edge, and the third
constraint ensures that the extended function can be
represented by the solutions of the eigenvalue problem.

A polynomial form of the density extension can
be found that satisfies the first three constraints
above, but this representation can yield negative
densities. Negative densities can be avoided with
a linear representation of the density, although the
C1 condition cannot then be enforced. We propose
instead the use of an exponential decay to satisfy these
requirements. The density at z̄ = 0 is represented by:

ne (r̄, 0) = f (r̄) =

{
norJ0 (γor r̄) , r̄ ≤ r̄o
a exp (br̄) + c, r̄ ≥ r̄o

, (15a)

where the subscript or denotes orifice quantities. The
imposed constraints form a non-linear system for the
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(b)

1: −∂ne/∂r̄ = δne 3: ne(r̄, 0) = f(r̄)
2: −∂ne/∂z̄ = δne 4: ∂ne/∂r̄ = 0

Figure 2. Mathematical representation of the insert region for two different cases: (a) General case with piecewise boundary
condition at z = 0 and (b) Infinite-length insert with continuous boundary condition. Reproduced from “Christopher J.
Wordingham et al., Theoretical Prediction of the Dense-Plasma Attachment Length in an Orificed Hollow Cathode, 35th
International Electric Propulsion Conference, 2017, IEPC-2017-566” [60]. Copyright 2017, Christopher J. Wordingham et al.

continuation function coefficients. We give the case for
the Robin boundary condition below:

a exp (br̄o) + c− J0 (γor r̄o) = 0 (C0) (16a)

ab exp (br̄o) + γorJ1 (γor r̄o) = 0 (C1) (16b)

ab exp (b) + δ (a exp (b) + c) = 0 (Robin). (16c)

The non-linear system is solved using the Newton-
Krylov solver implemented in the Scipy library [62].
It can be shown that for this particular choice of
the continuation function, the system of coefficient
expressions can be reduced to a single non-linear
equation for one of the coefficients:(
b

δ
+ 1

)
exp b =

(
b

δor
r̄o + 1

)
exp (br̄o), (17)

which can then be substituted to obtain the remaining
values,

a = −γorJ1 (γor r̄o)

b exp (br̄o)
, and (18a)

c = J0 (γor r̄o) +
γor
b
J1 (γor r̄o) . (18b)

In order to self-consistently obtain the electron
temperature, we cannot use the temperature from
the single-eigenmode approximation as used in [27].
To obtain the electron temperature and restrict our
focus to the minimum attachment length, we impose
the condition that the total net flux to/from the
orifice and orifice plate must be zero. Viewed from a
1-D axial perspective, this ensures that the maximum
radially averaged density occurs at the orifice, yielding
strictly decaying solutions. The solution of Equation
(14) obtained with this approach should satisfy flux
conditions on both the orifice plate and orifice hole at

z̄ = 0:
Φor = 2πR

∫ r̄o

0

(
−Da

∂ne
∂z̄

)
sds ≤ 0, for r̄ ≤ r̄o

Φpl = 2πR

∫ 1

r̄o

(
−Da

∂ne
∂z̄

)
sds ≥ 0, for r̄o ≤ r̄ ≤ 1

Φpl + Φor = 0

The first two expressions must be checked to
ensure that the choice of continuation function can
generate a solution for which the flux to the orifice
plate takes a physically justified direction. Φpl < 0
would imply that ions were entering the insert region
from the orifice plate. A side-effect of this condition
on the z̄ = 0 surface is that the plasma density profile
in the insert cannot support an ion flux into the orifice
region, so a peak density occurring upstream of the
orifice inlet surface will not be captured.

4.2. Analytical solution

Using the choice of boundary conditions represented
in Figure 2(b) and described above, we solve Equation
(14) using separation of variables:

ne = R (r̄)Z (z̄) .

The Robin boundary condition at r̄ = 1 gives a
condition on the eigenvalues of the problem, and
the application of both the inhomogeneous Dirichlet
boundary condition at z̄ = 0 and ne → 0 as z̄ → −∞
allows for the computation of the unknown coefficients
for the solution.

Eigenfunctions We obtain the solution for each
eigenmode,

φk (r̄, z̄) = CkJ0 (λkr̄) exp (αkz̄) , (19)

where αk is the separation constant, λ2
k = γ2 + α2

k,
and Ck is the coefficient for each eigenmode. The
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The Attachment Length in Orificed Hollow Cathodes 9

separation constant is strictly positive and real, as
other cases yield non-vanishing densities for z̄ → −∞.

Separation constant The boundary condition at
r̄ = 1 yields the eigenvalues λk and therefore the
corresponding separation constants αk. In the case
of a Robin boundary condition, the λk satisfy the
transcendental equation

DaλkJ1 (λk)

R
= vBJ0 (λk)⇔ λkJ1 (λk) = δJ0 (λk) , (20)

where δ = vBR/Da. Equation (20) yields an infinite
number of increasing and unique eigenvalues. The
superposition of all eigenmodes gives the solution of
the diffusion equation:

ne (r̄, z̄) =
+∞∑
k=1

CkJ0 (λkr̄) exp (αkz̄) (21)

Eigenmode coefficients The constants Ck are deter-
mined with the Dirichlet boundary condition at z̄ = 0
and the orthogonality of the Bessel functions:

+∞∑
k=1

CkJ0 (λkr̄) =

{
norJ0 (γor r̄) , r̄ ≤ r̄o
fc(r̄), r̄ ≥ r̄o

(22)

where fc(s) is the continuation function. Multiplying
Equation (22) by r̄J0 (λmr̄) and integrating for r̄ ∈
[0, 1] yields:

Cm =
1∫ 1

0
sJ0 (λms)

2
ds

×
(∫ r̄o

0

snorJ0 (γors) J0 (λms) ds

+

∫ 1

r̄o

sfc (s) J0 (λms) ds

)
(23)

The integration may be carried out analytically
excluding the integral involving the continuation
function:

Cm =
2

J2
0 (λm) + J2

1 (λm)

×
[

nor r̄o
γ2
or − λ2

m

(γorJ0 (λmr̄o) J1 (γor r̄o)

− λmJ0 (γor r̄o) J1 (λmr̄o))

+

∫ 1

r̄o

sfc (s) J0 (λms) ds

]
(24)

The remaining integral is calculated numerically.

4.3. Insert electron temperature

As mentioned earlier, we use the electron temperature
which balances the total particle flux from the orifice,
Φor, with the total flux to the orifice plate, Φpl. The
decaying solutions obtained represent the minimum
attachment length, assuming that the net flux of ions

across the orifice inlet is into the insert region. This
likely restricts the applicability of our solution to
cathodes with relatively constricted orifices, but this
is consistent with our assumption of a narrow orifice
in the orifice density solution. In order to find the full
solution, we calculate the solution for an arbitrary TeV ,
then iterate until the flux boundary condition is met.

4.4. Algorithm

For a given electron temperature and the required
inputs of pressure and heavy particle temperature in
each region, the diffusion equation is solved using the
following algorithm:

1. The electron temperature for the orifice is
calculated from the first eigenmode of the 1-D
radial diffusion problem (Equation (7)).

2. The average and peak densities in the orifice
are determined with Equations (8) and (9),
respectively, and the continuation function is also
generated.

3. The insert electron temperature is used to
calculate the ambipolar diffusion coefficient, Bohm
velocity (or δ), and γ for the insert region plasma.

4. The eigenvalues for the insert problem are
computed using Equation (20).

5. The coefficients of each eigenmode are calculated
using Equation (24).

6. The series of eigenfunctions is computed with a
truncated sum because Cm → 0 as m→ +∞.

7. The orifice and orifice plate fluxes are calculated
to determine whether the choice of insert electron
temperature satisfies the boundary condition at
z̄ = 0.

8. If the solution does not satisfy the boundary
condition in step 7, a new electron temperature
is chosen and the procedure is repeated until
the correct electron temperature is found using a
bisection algorithm.

5. Results and discussion

We compare the results of our approach to the density
measurements along the cathode main axis from [9]
and with the methodology outlined in [27]. We use
neutral gas pressures of 4.5 and 7.8 Torr in the orifice
and insert regions, respectively, and a heavy particle
temperature of 3000 K in both regions. The values
were chosen to coincide with the inputs used in [27].

5.1. Verification

The coefficients calculated from Equation (24) decay
as λm increases with m. Figure 3 shows the eigen-
coefficients for m ≤ 50. The solution we propose
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The Attachment Length in Orificed Hollow Cathodes 10

features multiple prominent eigenmodes, though most
of them decay rapidly. It is important that we have
used the sum over multiple eigenmodes, as we can see
that the fundamental eigenmode does not necessarily
have the largest coefficient due to the constricted shape
of the orifice solution compared to the fundamental
mode in the insert region. In addition, a single-
eigenmode solution in the insert region clearly cannot
meet the boundary conditions imposed by the presence
of the orifice.
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E
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Figure 3. Eigencoefficients Ck. Adapted from “Christopher
J. Wordingham et al., Theoretical Prediction of the Dense-
Plasma Attachment Length in an Orificed Hollow Cathode, 35th
International Electric Propulsion Conference, 2017, IEPC-2017-
566 [60].” Copyright 2017, Christopher J. Wordingham et al.

We also verify that the solution on the z̄ = 0 sur-
face follows the imposed Dirichlet boundary condition.
Figure 4 shows the normalized density as a function
of normalized radius, along with the imposed Dirich-
let boundary condition. We have excellent agreement
with the imposed condition from Equation (15a), and
we observe that the proposed extension is indeed C0

and C1 at r̄ = r̄o. The Robin condition at r̄ = 1 re-
sults in a small, yet non-zero, derivative at the wall, as
opposed to the solution for the homogeneous Dirich-
let condition, for which a strong density gradient is
expected. Another important side-effect of the Robin
condition is that the plasma density at the sheath edge
is readily calculated from the solution, which is neces-
sary for accurately calculating the fluxes to the insert.
The Dirichlet condition, on the other hand, artificially
increases the flux to the wall for all but very high pres-
sures and makes the calculation of the density at the
sheath edge problematic; an infinite velocity is required
for finite flux at zero density.

The results of imposing the exponential extension
can be validated using a 2-D numerical solution
that includes the Bohm flux condition instead of an
imposed radial density profile along the orifice plate
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Solution
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Figure 4. Verification of the imposed Dirichlet boundary
condition. Adapted from “Christopher J. Wordingham et al.,
Theoretical Prediction of the Dense-Plasma Attachment Length
in an Orificed Hollow Cathode, 35th International Electric
Propulsion Conference, 2017, IEPC-2017-566 [60].” Copyright
2017, Christopher J. Wordingham et al.

surface. We show in Figure 5 the radial density profiles
as obtained from the exponential extension, a 2-D
numerical solution of the ambipolar diffusion equation
where the Bohm flux is imposed on the orifice plate,
and 2-D fluid simulation from [44].
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Figure 5. Comparison of radial density profiles. The results of
Sary et al. for the z̄ = 0 surface were recovered from contour
plots in [44].

Using a parametric study, however, we have found
that the exponential extension, for certain combina-
tions of orifice and insert Pgd, can produce erroneous
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The Attachment Length in Orificed Hollow Cathodes 11

results especially when the orifice Pgd is much smaller
than the insert Pgd. Using the same analytical ap-
proach, we have found that applying a homogeneous
Dirichlet boundary condition (ne (r̄) = 0) along the ori-
fice plate surface produces more reliable results over
a wide range of input parameters. As such, we ap-
ply the exponential extension for the density profile
validation, but use the simpler ne (r̄) = 0 condition to
derive scaling relationships for the electron tempera-
ture and attachment length. This boundary condition
on the orifice plate should also represent a worst-case
for the flux to the plate surface and, due to the zero-
flux condition along the z̄ = 0 surface, a worst-case
for the density derivative at the orifice inlet surface.
This should result in a lower bound for the attachment
length.

5.2. Sensitivity analysis

Because the only required inputs for our analytical
approach are the neutral densities and heavy particle
temperatures in each region (excluding the cathode
geometry), and the pressures are generally determined
using measurements or flow models, we must determine
the sensitivity of the solution to the ion temperature.
The variation in the solution result for different heavy
particle temperatures is shown in Figure 6. The shape
of the solution remains relatively constant when the
ion temperature varies by ±1000 K (±33%) from the
nominal value of 3000 K, though the resulting electron
temperature varies by less than ±8%.

5.3. Density profile

Our 2-D approach allows for the computation of
the plasma density on the entire domain. Figure 7
shows a contour plot of the density calculated for
the NSTAR cathode, with an insert pressure of
7.8 Torr and a discharge current of 15 A. The contour
features qualitative agreement with previous numerical
results for various cathodes and operating regimes as
described in [34,39,40,63,64].

We compare the axial plasma density calculated
using our approach to experimental data [9] and to
the results calculated using the semi-empirical model
described in [27] in Figure 6. Both our analytical
approach and the semi-empirical model accurately
predict the density decay rate, but neither is able
to capture the increase in density upstream of the
orifice. Near-orifice changes in neutral pressure and
electron temperature that likely occur are not included
in either representation of the cathode plasma. These
effects, along with the chosen boundary conditions,
cause both methods to underpredict the experimental
plasma density. In the case of our approach, the
assumption of zero net ion flux across the orifice plane
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Figure 6. Numerical results for the axial plasma density profile
for varying ion temperature (2000–4000 K) and comparison
to previous modeling [27] and experimental results [9] for the
NSTAR discharge cathode operating at Id = 15 A. Adapted
from “Christopher J. Wordingham et al., Theoretical Prediction
of the Dense-Plasma Attachment Length in an Orificed Hollow
Cathode, 35th International Electric Propulsion Conference,
2017, IEPC-2017-566 [60].” Copyright 2017, Christopher J.
Wordingham et al.

surface also causes an effective downstream “shift” in
the plasma density solution. In the case of Goebel and
Katz’s single-eigenmode solution, it is only valid in the
decaying (upstream) portion of the density profile, and
must be normalized by a peak density, resulting in a
similar effect if the density chosen is the peak orifice
density.

The most important difference between the two
approaches is that our method only requires the
pressures and heavy particle temperatures as inputs,
while the semi-empirical model requires knowledge of
the ion current generated within the insert region.

It is relevant to mention a limitation of our
approach: given that the operator and boundary
conditions do not depend on the discharge current,
with the exception of the scaling of the orifice peak
density, a theoretical framework of this form cannot
directly capture the experimentally observed trend of
decreasing attachment length with increasing discharge
current. However, the entire operator for the 2-D
solution can be shown to depend predominantly on
the insert Pgd (including the exponential extension
coefficients), and the effects of γ and δ on the form
of the solution are similar to those described for the
1-D solution. The plasma density in the 2-D solution
also depends on the discharge current through the
peak density from the orifice solution, but this only
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Figure 7. Plasma density contour (m−3) for the NSTAR cathode operating at Id = 15 A. Reproduced from “Christopher
J. Wordingham et al., Theoretical Prediction of the Dense-Plasma Attachment Length in an Orificed Hollow Cathode, 35th
International Electric Propulsion Conference, 2017, IEPC-2017-566 [60].” Copyright 2017, Christopher J. Wordingham et al.

contributes a multiplicative scale factor to the entire
profile and does not affect γ or δ.

The attachment length, therefore, depends on the
discharge current and orifice diameter only indirectly
through their effects on the total pressure. This
dependence on the total pressure has been suggested
by early work on mercury-fed cathodes by Siegfried
and Wilbur, [21] in which the attachment length was
shown to be insensitive to changes in the orifice size
and discharge current if the total pressure was held
constant. The only apparent methods to diagnose the
direct dependence of attachment length or electron
temperature on discharge current or orifice size would
be to model the effect on the insert region neutral
pressure or to model the change in the Bohm velocity
at the insert boundary with changes in emission current
density.

5.4. Attachment length

The experimental attachment length is derived from
the measured electron density profile. Because we —
following [27] — define the attachment length as the
length-scale of the exponential decay of the electron
density upstream of the cathode orifice, we fit only
the relevant portion of the experimental data with a
decaying exponential. We show an example of this
approach in Figure 8. The attachment length is derived
from the experimental data through a log-linear fit of
the exponential plasma density decay. Figure 8 shows
this portion of the plasma density decay, which can
be well-approximated as an exponential, and against
which we compare the results of our approach. This
region is upstream of and away from the cathode
orifice and any near-orifice effects. Because the first-
order eigenmode decays over the longest distance
(other eigenmodes quickly decay upstream of the near-
orifice region), we use this term to evaluate the
attachment length. Our data were obtained from
the open literature [9, 10, 18, 25, 40, 65] that contains
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Figure 8. Example of the derivation of the attachment
length from an experimentally measured electron density profile.
Experimental data from [9] for the NSTAR discharge cathode
operating at 15 A. Reproduced from “Pierre-Yves C. R. Taunay,
Scaling Laws in Orificed Thermionic Hollow Cathodes, Ph.D.
dissertation, Princeton University, 2020 [33].” Copyright 2020,
Pierre-Yves C. R. Taunay.

the necessary information to use our approach (i.e.,
measurements of the total pressure, electron density,
and relevant geometry). The data span a range of
discharge currents of 2–100 A, mass flow rates of
1.8–13 sccm of xenon, and orifice-to-insert diameter
ratios of 0.2–0.7. We have assembled a database of
publicly available cathode experimental data [66] and
a permanent identifier is shown in the Data Availability
section of this manuscript.

Error analysis The NSTAR, NEXIS, and JPL
lanthanum hexaboride cathodes share the same
experimental setup and diagnostics for which the error
in the density measurement was reported [49] to be
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±40% (σ2
n = 0.04). For the density measurements

taken by Salhi [25] no experimental uncertainty was
reported so we assume the same value of ±40%. The
error inherent in performing the various steps of the
linear regression on the logarithm of the density must
also be estimated to obtain a confidence interval for the
derived attachment length. If the density at a given
point has a variance of n̄2

eσ
2
n (where n̄e is the average

density at that point) then it can be shown [67] that
its logarithm, Y = lnne, has a variance of σ2

n. For the

linear fit of lnne with parameters β̂0 and β̂1, we have

Ŷ = β̂0 + β̂1z̄. (25)

The inverse of β̂1 is the normalized emission length.
The standard error of the slope is [68]:

σ2
β =

σ2
n∑N

i=1 (z̄i − ẑ)2
, (26)

where ẑ is the average distance from the orifice
inlet. If we now assume that β̂1 is also normally
distributed about the value calculated using the
regression procedure, then the emission length has a
variance (to first order) of:

σ2
L =

σ2
β

β̂2
1

. (27)

5.5. Electron temperature

The electron temperature is typically measured as a
function of axial position in the insert region. Because
the electron temperature varies gradually upstream of
the cathode orifice, we use the axial line-average of
the experimental data over the entire cathode insert
region to obtain a single experimental value, as shown
in Figure 10. We take the uncertainty of the electron
temperature measurements to be ±0.5 eV, as reported
in [49], unless otherwise specified.

5.6. Scaling Relationships

Using the results of our analytical approach —
calculated over a wide range of r̄o and Pgd — it
is possible to obtain approximate, but insightful,
expressions for the dependencies of the electron
temperature and attachment length on the input
operating conditions. The method described in
the preceding sections yields an analytical solution
for the plasma density within the cathode domain,
but due to the transcendental root-finding and
bisection procedure required by the solution algorithm,
obtaining closed-form solutions in terms of elementary
functions for the resulting electron temperature and
attachment length is likely not possible. However, by
defining the attachment length as the decay length

scale of the lowest-order eigenmode of the solution (in
units of insert radii):

Leff =
1

α0
, (28)

we can obtain an approximate relationship for Leff as
a function of the neutral Pgd in the insert region.
As mentioned in the previous section, the operator
governing density evolution in the insert plasma is
almost solely dependent on the insert neutral pressure-
diameter product, Pgd. While r̄o and orifice Pgd
potentially affect the solution, it can be shown that
the effects of these parameters on electron temperature
are negligible, and the effects on attachment length
are small. We performed a parametric study using
the ne (r̄) = 0 boundary condition along the orifice
plate, values of r̄o ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, Pgd ∈
[0.1, 10] Torr-cm in the insert region, and Pgd ∈
[0.01, 10r̄o] Torr-cm in the orifice region. This study
demonstrated that there is essentially no effect of
the normalized orifice size or orifice Pgd on either
the attachment length or electron temperature. The
effect of orifice size on neutral pressure (which is not
considered in our analysis) is likely to have a much
greater effect on Leff and electron temperature through
the insert Pgd than the independent effect of either r̄o
or orifice Pgd. Fitting the calculated attachment length
and electron temperature values for xenon gas and
the aforementioned range of input parameters yields
the following relationships for each as functions of the
insert neutral pressure-diameter product in Torr-cm:

Leff = 0.75832 +
0.18239

(Pgd)
1.22956 (29)

TeV = 0.51897 +
1.21492

(Pgd)
0.35322 . (30)

These approximations are shown alongside the
calculated values from our approach in Figures 9
and 10. Due to the weakly ionized nature of the
cathode insert region plasma, we assume that the
neutral Pgd is equal to the measured total pressure.
No distinction is made between our results for different
values of the non-dimensional orifice radius, r̄o, or
the orifice pressure-diameter product due to the
insensitivity of the attachment length and electron
temperature to these parameters over the range of
values presented. The form used for each fit was chosen
from a selection of candidate functions: a+ b/ log(x+
c)n, a+b/ (x+ c)

n
with n ∈ 1, .., 6, along with a+b/xc,

a/x (equivalent to the form used by Albertoni [24]
for fixed R), a + bx + cx2, and a + b/x + c/x2. In
order to select the best fit for out-of-set prediction,
K-Fold cross-validation was used with 10 folds in the
source data. Using this method, we fit each candidate
function to a training set comprised of a random
selection of 90% of the source dataset, then calculate
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the total squared error for the remaining 10% of the
data (the test set); we repeat this method once for each
“fold” with different training and test sets and select
the fit function with the lowest average total squared
error across all folds. We then fit the best candidate
function — in this case a + b/xc for both calculated
values — to the entire dataset to obtain the coefficients
provided above.

The formula shown in Equation (29) is in units of
insert radii. For a given Pgd, the dimensional value
of the attachment length is obtained from Equation
(29) by multiplying it by the insert radius. For
the experimental case shown in Figure 8, the total
pressure is 8.1 Torr and insert diameter 3.8 mm. [9]
Assuming that the neutral pressure is given by the
experimentally measured total pressure of 8.1 Torr,
we calculate a non-dimensional attachment length of
0.80. The corresponding dimensional value is 0.15 cm,
which is within the error bounds of the experimentally
determined value of 0.17±0.02 cm shown in Figure 8.
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Figure 9. Attachment length as defined in Equation (28),
calculated using the analytical solution (thin shaded region)
and the approximate functional form given in Equation (29)
(line). All available experimental values of the attachment
length from [9, 10, 18, 25, 40, 65] are shown as individual points.
Adapted from “Pierre-Yves C. R. Taunay et al., The Influence
of Ambipolar Diffusion on the Attachment Length and Electron
Temperature in Orificed Hollow Cathodes, 36th International
Electric Propulsion Conference, 2019, IEPC-2019-A628 [69].”
Copyright 2019, Pierre-Yves C. R. Taunay et al.

Examining these approximate forms, we see that
(under the stated assumptions) the density decay
length scale and the associated insert plasma electron
temperature depend almost exclusively on the neutral
pressure-diameter product in the insert region. In
addition, while Leff varies substantially for low values
of the pressure-diameter product (< 1 Torr-cm), once
Pgd reaches approximately 2 Torr-cm, the attachment
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Figure 10. Insert plasma electron temperature calculated using
the analytical solution (thin shaded region – obscured by fit
line) and the approximate functional form given in Equation
(30) (line). All available experimental values of the average
insert electron temperature from [9, 10, 18, 25, 40] are shown as
individual points. Adapted from “Pierre-Yves C. R. Taunay et
al., The Influence of Ambipolar Diffusion on the Attachment
Length and Electron Temperature in Orificed Hollow Cathodes,
36th International Electric Propulsion Conference, 2019, IEPC-
2019-A628 [69].” Copyright 2019, Pierre-Yves C. R. Taunay et
al.

length changes by only a few percent even for large
increases in pressure for a fixed diameter. This suggests
that larger insert inner diameters would lead to better
utilization of the emission area, especially in the high-
pressure limit where our assumptions are most likely
to hold. This is consistent with the experimental
observation that attachment length increases for a
given cathode when operated at lower pressure. [27,
35, 70] In the range of operation for most existing
cathodes, 1–10 Torr-cm, the attachment length will
generally be on the order of the insert inner radius.

6. Conclusion

We have developed a methodology to analytically
determine the plasma density profile (and therefore
the attachment length) within the hollow cathode
insert region, along with the insert-region electron
temperature, using only gas pressure and temperature
as inputs. The plasma density profile we calculate
compares well to both experimental data and prior
modeling efforts for the validation case shown,
though near-orifice effects (including the peak in
plasma density near the cathode orifice observed
experimentally) cannot be captured with the included
boundary conditions.

Because it does not rely on experimental data
or complex computational methods, our approach
can be used to predict the scaling of electron
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temperature and attachment length for a wide range
of input parameters. Nondimensionalization of the
governing equations and evaluation of the solution
results over a range of input parameters reveal
that the attachment length and electron temperature
depend almost exclusively on the insert-region neutral
pressure-diameter product. This dependence suggests
that any direct influence of orifice size on attachment
length or electron temperature is likely small. Rather,
changes in orifice size for fixed mass flow rate will affect
the pressure-diameter product in the insert region and
therefore the plasma properties. Fits to our results
yield simple relationships for the variation of electron
temperature and attachment length with insert Pgd,
and suggest that, for fixed operating pressure, high-
pressure cathodes should be designed with larger insert
inner diameter to make more efficient use of the emitter
surface.
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